两级投影仪结构的制作方法

文档序号:7580163阅读:355来源:国知局
专利名称:两级投影仪结构的制作方法
技术领域
本发明大体上涉及一种具有两级投影仪结构的显示系统。
背景技术
液晶显示器(LCD)、尤其是利用反射光引擎或成像器的、硅上液晶(LCOS)系统正在逐渐成为入背投电视(RPTV)等成像设备的主流。在LCOS系统中,通过偏振分束器(PBS)对所投影的光进行偏振,并将其引向包括像素矩阵的LCOS成像器或光引擎。在整个说明书中,与现有技术的实际相一致,术语像素用于表示图像的小区域或点、光传输的相应部分、以及产生所述光传输的成像器部分。
成像器的每个像素根据输入成像器或光引擎的灰度级因子对入射到其上的光进行调制,以形成离散调制光信号或像素矩阵。从成像器反射或输出调制光信号矩阵,并指向投影透镜系统,其将调制光投影到显示屏幕上,对光像素进行组合,以形成可视图像。在此系统中,从像素到像素的灰度级变化受到用于处理图像信号的比特数的限制。从亮状态(即,最大光)到暗状态(即,最小光)的对比度受到成像器中光泄漏的限制。
现有LCOS系统的主要缺点之一在于难以减少暗状态下的光量,从而导致其难以提供卓越的对比度。这部分上是由于LCOS系统所固有的光泄漏。
此外,由于输入是固定比特数的(例如,8、10等),其必须描述光的全标度,于是倾向于非常少的比特能够用于描述图像的暗区域中的细微差别。这可能会导致轮廓假像。
一种增强LCOS在暗状态下的对比度的解决方案是利用COLORSWITCHTM或类似的设备,根据特定帧中的最大值,对整幅画面进行定标。这样做改进了一些画面,但对于包含高和低光电平的画面来说几乎没有作用。解决此问题的其他尝试涉及做出更好的成像器等,但最多只是额外的改进。
所需的是一种投影系统,其增强了视频图像的对比度,尤其是在暗状态下,并减少了轮廓假像。

发明内容
本发明提供了一种投影系统,其利用两级投影结构,以逐个像素为基础,提供了光信号的改进对比度和轮廓效应,从而改善了全部视频画面。在本发明的典型实施例中,此投影系统包括第一成像器,配置用于逐个像素地、与针对图像的每个像素而设置的灰度级数值成正比地调制波段,以提供第一输出矩阵。定位并配置第二成像器,接收光调制像素的第一输出矩阵,并逐个像素地、与针对图像的每个像素而设置的第二灰度级数值成正比地调制来自所述第一成像器的单个已调制光像素。第二成像器的每个像素提供其强度与第一成像器中的对应像素的调制光输出和第二成像器中针对该像素的选定灰度级数值成正比的光输出。


现在,将参照附图对本发明进行描述,其中图1示出了根据本发明典型实施例、具有两级投影结构的LCOS投影系统的方框图;
图2示出了图1所示的投影系统的典型透镜中继系统;图3示出了图1所示的投影系统中的光泄漏;图4示出了根据本发明另一典型实施例、具有两级投影结构的LCOS投影系统的方框图;图5示出了图4所示的投影系统的典型中继透镜系统;图6示出了图5所示的中继透镜系统的计算包围矩形能量;以及图7示出了由于图5所示的中继透镜系统的场弯曲而导致的失真。
具体实施例方式
本发明提供了一种投影系统,如用于电视显示器等,具有增强的对比度和减少的轮廓效应。在典型的LCOS系统中,如图1所示,由灯10产生白光1。灯10可以是适合于用在LCOS系统中的任何灯。例如,可以使用短弧汞灯。白光1进入积分器20,其向投影系统30引导白光1的远心光束。然后,将白光1分为其分量红、绿和蓝(RGB)波段2。可以通过分色镜(未示出)来分离RGB光2,并将其引入红、绿、蓝投影系统30,进行调制。然后,通过棱镜组件(未示出)重新组合调制后的RGB光2,并通过投影透镜组件40将其投影到显示屏幕(未示出)上。
可选地,可以在时域上将白光1分为RGB波段的光2,例如,通过色轮(未示出),从而每次一个地将其引导到单个LCOS投影系统30中。
典型的LCOS投影系统30如图1所示,利用了根据本发明的两级投影结构。通过两个不同的成像器50、60、逐个像素地顺序调制单色RGB波段2。RGB波段的光2包括p偏振分量3和s偏振分量4(在图3中示出)。这些RGB波段的光2进入第一PBS 71的第一表面71a,并在第一PBS 71中,由偏振表面71p进行偏振。偏振表面71p允许RGB波段2的p偏振分量3通过第一PBS 71,到达第二表面71b,而以一定的角度反射s偏振分量,使其偏离投影路径,其通过第四表面71d从第一PBS 71中出来。设置第一成像器50,超出第一PBS 71的、与第一表面71a相对的第二表面71b之外,RGB波段的光在此进入第一PBS 71。因此,通过了PBS 71的p偏振分量3入射到第一成像器50上。
在典型实施例中,如图2所示,第一成像器50是包括与显示图像(未示出)的像素相对应的偏振液晶矩阵的LCOS成像器。这些晶体根据其朝向透射光,其朝向根据提供给第一成像器50的信号所创建的电场强度而变化。成像器像素针对每个单独的像素,逐个像素地、与提供给第一成像器50的灰度级数值成正比地调制p偏振光3。作为调制单独像素的结果,第一成像器50提供第一光矩阵5,包括像素或离散光点矩阵。第一光矩阵5是从第一成像器50向后反射通过第一PBS71的第二表面71b的调制s偏振光的输出,在此其以一定的角度被偏振表面71p反射,通过第三表面71c离开第一PBS 71。第一光矩阵5的每个像素具有与针对第一成像器50中的像素而设置的各灰度级数值成正比的强度或亮度。
s偏振光的第一光矩阵5由PBS 71反射,通过中继透镜系统80,其提供对第一光矩阵5的1对1传输。在典型实施例中,如图2所示,中继透镜系统80包括一系列消球差透镜和消色差透镜,配置用于提供以放大率1透射的图像的低失真,从而将第一成像器50中的每个像素的输出投影到第二成像器60的相应像素上。
如图2所示,典型中继透镜系统80包括第一消球差透镜81和第一消色差透镜82,位于第一PBS 71和透镜系统的焦点或系统光阑83之间。在系统光阑83和第二成像器72之间,透镜系统80包括第二消色差透镜84和第二消球差透镜85。第一消球差透镜81具有第一表面81a和第二表面81b,将来自第一PBS 71的发散光图案弯曲为向透镜系统80的光轴会聚的光图案。第一消色差透镜82具有第一表面82a、第二表面82b和第三表面82c,将来自第一消球差透镜81的会聚光图案聚焦到系统光阑83上。在系统光阑83处,光图案反转并发散。具有第一表面84a、第二表面84b和第三表面84c的第二消色差透镜84是第一消色差透镜82的镜像(即,将相同的透镜向后反转,从而使第二消色差透镜84的第一表面84a等价于第一消色差透镜82的第三表面82c,以及第二消色差透镜84的第三表面84c等价于第一消色差透镜82的第一表面82a)。第二消色差透镜84的表面84a、84b和84c将发散光图案分布到第二消球差透镜85上。具有第一表面85a和第二表面85b的第二消球差透镜85是第一消球差透镜81的镜像。表面85a和85b对光图案进行弯曲,从而使其会聚并形成第二成像器72上的反转图像,其具有与来自第一成像器50的物体或像素矩阵一一对应的关系。对中继透镜系统80的表面进行配置,以便与成像器50、60和PBS71、72一起工作,从而实现第一成像器50和第二成像器60的像素的一一对应。在表1中给出了对典型的两级投影系统30的表面的总结,以及在表2中给出了表面81a、81b、85a和85b的非球面系数。可以根据以下因素对此典型投影系统进行多种修改成本、尺寸、亮度级和其他设计因素。在中继透镜系统80中,消色差透镜82和84是等价的,消球差透镜81和85是等价的。因此,需要较少的惟一部件,提高了制造效率,并降低了成本。
表1(以毫米为单位)

表2

在第一光矩阵5离开中继透镜系统80之后,其通过第一表面72a进入第二PBS 72。第二PBS 72具有偏振表面72p,将s偏振第一光矩阵5通过第二表面72b反射到第二成像器60上。在典型实施例中,如图1所示,第二成像器60是LCOS成像器,其针对每个单独的像素,逐个像素地、与提供给第二成像器60的灰度级数值成正比地调制先前已经调制过的第一光矩阵5。第二成像器60上的像素逐个像素地对应于第一成像器50的像素和显示图像的像素。因此,对于第二成像器60的特定像素(i,j)的输入是来自第一成像器50的对应像素(i,j)的输出。
然后,第二成像器60产生p偏振光的输出矩阵6。在强度上,通过针对第二成像器60的像素而提供给成像器的灰度级数值来调制输出距离6中的每个光像素。因此,数据矩阵6的特定像素(i,j)将具有与其在第一成像器中的对应像素(i,j)1及其在第二成像器60中的对应像素(i,j)2的灰度级数值成正比的强度。
由入射到第一成像器50的给定像素上的光、在第一成像器50处针对给定像素而选择的灰度级数值和在第二成像器60处所选择的灰度级数值的乘积给出特定像素(i,j)的光输出LL=L0×G1×G2L0对于给定像素是恒定的(是灯10和照明系统的函数)。因此,光输出L实际上主要由每个成像器50、60上为该像素而选择的灰度级数值来确定。例如,将灰度级归一化为以1为最大值,并假设每个成像器具有非常适中的对比度200∶1,则像素(i,j)的亮状态是1,而像素(i,j)的暗状态为1/200(不是零,因为泄漏)。因此,两级投影仪结构具有40,000∶1的亮度范围。
Lmax=1×1=1Lmin=.005×.005=.000025由这些限制所定义的亮度范围给出了1/.000025∶1或40,000∶1的对比度。重要地,典型两级投影仪结构的暗状态亮度将只是亮状态亮度的四万分之一,而不是将假定的成像器用在现有单一成像器结构中时、亮状态的二百分之一。如本领域普通技术人员所理解的那样,能够以比具有较高对比度的成像器低得多的成本提供具有较低对比度的成像器。因此,利用具有200∶1的对比度的两个成像器的两级投影系统将提供40,000∶1的对比度,而利用昂贵得多的500∶1的成像器的单级投影系统将只能提供500∶1的对比度。而且,利用500∶1对比度的一个成像器和200∶1对比度的较为便宜的成像器的两级投影系统将具有100,000∶1的系统对比度。因此,可以实现成本/性能折中,从而创建优化的投影系统。
输出矩阵6通过第二表面72b进入第二PBS 72,由于其包括p偏振光,其通过偏振表面72p,并通过第三表面72c离开第二PBS 72。在输出矩阵6离开第二PBS 72之后,其进入投影透镜组件40,将显示图像7投影到屏幕(未示出)上,以便进行观看。
图3示出了本发明的两级投影仪结构的减少的泄漏。如上所述,第一PBS 71的偏振表面71p透射p偏振光3,其通过第二表面71b离开第一PBS。第一PBS 71的偏振表面71p通过第四表面71d反射s偏振光4。即使是最好的PBS,也具有一些泄漏,但是,非常小的一部分s偏振光(第一泄漏4’)将透射或泄漏,通过第一PBS 71的偏振表面71p,并离开第二表面71b,到达第一成像器50。第一成像器50将第一泄漏4’中的大部分反转为p偏振光,并通过偏振表面71p,离开第一PBS 71的第一表面71a,去往灯10。类似地,第一成像器50将反射小部分的p偏振光3,作为p偏振第二泄漏3’。由于第二泄漏3’是p偏振光,其大部分将通过第一PBS 71的偏振表面71p,并离开第一表面71a,去往灯10。
PBS 1的偏振表面71p将向第二PBS 72反射小部分的p偏振第一泄漏3’和p偏振第二泄漏4”,作为第四泄漏3”、4。此第三泄漏3”、4中的大部分将通过第二PBS 72的偏振表面72p,并通过第四表面72d离开图像路径,这是因为其是p偏振光。小部分的第三泄漏3”、4将被反射到第二成像器60上,作为第四泄漏3、4””。第四泄漏3、4””中的大部分将被反转为s偏振光,并被反射回第一PBS 71。如本领域普通技术人员所清楚的那样,随后每次通过PBS的光泄漏或反射被透射而通过PBS 71、72时,大部分的光泄漏将被转移出图像路径,从而只有先前部分中的一部分继续沿图像路径行进。因此,每次光信号通过PBS时,减少了相反偏振泄漏。
对于PBS,成像器并非理想的,第一成像器50中、具有被设置为暗状态的灰度级数值的像素将反射小部分的光,作为s偏振的第五泄漏8。与p偏振的第四泄漏形成鲜明对比,偏振表面71p和偏振表面72p将大部分s偏振第五泄漏8反射到第二成像器60上,因为其具有与第一光矩阵5相同的偏振。当第二成像器60的对应像素被设置为暗状态时,如上所述,通过第二成像器60的对比度在此减少第五泄漏8,将暗状态下的光减少到第六泄漏8’,并提高了对比度。
额外的光泄漏9发生在第二成像器60处。但是,此额外的光泄漏9来自第一光矩阵5,之前由第一成像器71进行调制,因此,其将是比入射到第一成像器71上的RGB波段3小得多的光信号的一部分。因此,本发明的两级投影结构通过额外的偏振滤波和串联成像器50、60的累积对比度减少了泄漏。
根据本发明的两级投影系统的另一优点是较多的比特可用于描述图像暗区域中的深浅的细微差别,减少轮廓效应。例如,如果将八个比特用于产生成像器的每个像素的灰度级数值,则可以定义28或256个灰色深浅度。但是,因为在本发明中,两个成像器50、60顺序调制图像的相同像素,可以定义216或65,536个灰色深浅度。因此,能够极大地减少轮廓效应。
在本发明的可选实施例中,如图4和5所示,两级投影系统包括第一级100,具有分别逐个像素地调制红、绿、蓝光的三个第一级成像器150R、150B和1506。每个第一级成像器150R、150B、150G具有调制单色光像素矩阵151P。第一级成像器旋转光的偏振,从而使输出矩阵151P为p偏振光。在所示实施例中,按照COLORQUADTM结构来配置第一级100,其中四个颜色选择分束器120彼此邻接,形成正方形图案,并对其进行排列,从而使其有选择地通过或反射各种颜色的光,从而将进入第一级100的每种颜色的光引导到不同的第一级成像器150R、150B、150G。COLORQUADTM结构只将红光送往红色成像器150R、只将蓝光送往蓝色成像器150B、以及只将绿光送往绿色成像器150G。然后,COLORQUADTM结构将引导离开第一级100的调制单色光像素的三个矩阵151P,去往第二级200。应当注意,各种颜色的光的每一个在第一级100中传播相同的距离。因此,能够同时调制和投影三种颜色。
图4所示的实施例还包括第二级160,具有按照COLORQUADTM结构排列的三个第二级成像器160R、160B、160G,其再次将光分为三个不同的颜色红、蓝、绿,并将其引导到三个第二级成像器160R、160B、160G。第二级成像器160R、160B、160G逐个像素地调制从第一级成像器150R、150B、150G输出的光,形成二次调制的单色光像素矩阵201。通过COLORQUADTM结构,将这些二次调制的单色光像素矩阵201引导到投影透镜系统(未示出),从而将其投影到屏幕(未示出)上,形成可视彩色图像。
将可选典型中继透镜系统380设置在第一级150和第二级160之间,用于将第一级成像器150R、150B、150G的像素的输出投影到第二级成像器160R、160B、160G的相应像素上,从而使第二级的输出的特定像素包括红像素、蓝像素和绿像素,每一个均被调制过两次(由第一级成像器150R、150B、150G调制一次,由对应的第二级成像器160R、160B、160G调制一次)。
COLORQUADTM结构将只接收s偏振光。因此,s偏振光101被引入第一级100,其中将s偏振光101分为三种颜色,由三个第一级成像器150R、150B、150G单独同时调制。由于第二级200的COLORQUADTM结构将接收s偏振输入,并且来自第一级100的光调制单色像素矩阵151是p偏振光,必须在第一级100和第二级200之间旋转偏振。因此,在图4和5所示的实施例中,在第一级100和第二级200之间设置半波片383。半波片383最有效的位置是位于中继透镜系统的孔径或透镜光阑处。
如图5所示,可选典型中继透镜系统380包括位于第一级100和透镜光阑或系统光阑之间的第一消球差透镜381和第一消色差透镜382。在系统光阑和第二级200之间,可选典型透镜系统380包括第二消色差透镜384和第二消球差透镜385。第一消球差透镜381具有第一表面381a和第二表面381b,将来自第一级100的发散光图案弯曲为向透镜系统380的光轴会聚的光图案。第一消色差透镜382具有第一表面382a、第二表面382b和第三表面382c,将来自第一消球差透镜381的会聚光图案聚焦到系统光阑上。在系统光阑处,光图案反转并发散。具有第一表面384a、第二表面384b和第三表面384c的第二消色差透镜384具有与第一消色差透镜382相同的配置和相反的朝向(即,将相同的透镜向后反转,从而使第二消色差透镜384的第一表面384a等价于第一消色差透镜382的第三表面382c,以及第二消色差透镜384的第三表面384c等价于第一消色差透镜382的第一表面382a)。第二消色差透镜384的表面384a、384b和384c将发散光图案分布到第二消球差透镜385上。具有第一表面385a和第二表面385b的第二消球差透镜385具有与第一消球差透镜381相同的配置和相反的朝向。表面385a和385b对光图案进行弯曲,从而使其会聚并形成第二级200上的反转图像,其具有与来自第一级100的物体或像素矩阵一一对应的关系。对中继透镜系统380的表面进行配置,以便与成像器150R、150B、150G、160R、160B、160G和COLORQUADTM结构一起工作,从而实现第一级成像器150R、150B、150G和第二级成像器160R、160B、160G的像素的一一对应。在表3中给出了对典型的两级投影系统380的表面的总结,以及在表4中给出了表面381a、381b、385a和385b的非球面系数。尽管只示出了红色成像器150R和160R,但对于蓝色和绿色成像器,中继透镜系统是相同的。可以根据以下因素对此可选典型投影系统380进行多种修改成本、尺寸、亮度级和其他设计因素。在可选典型中继透镜系统380中,消色差透镜382和384是等价的,消球差透镜381和385是等价的。因此,需要较少的惟一部件,提高了制造效率,并降低了成本。
表3(以毫米为单位)

表4

利用ZEMETTM软件来计算可选典型中继透镜系统380的包围矩形能量和场弯曲失真。如图6所示,至少将来自第一级成像器150R、150B、150G上的特定像素的光能量的大约百分之五十(50%)聚焦到十二平方微米的区域上(例如,第二级成像器160R、160B、160G的对应像素)。如图7所示,由于可选典型中继系统380的场弯曲而引起的失真小于大约百分之0.5。
前面描述了实现本发明的一些可能。在本发明的范围和精神内,多种其他实施例也是可能的。例如,尽管前面的描述和附图涉及LCOS成像器,利用数字光处理(DLP)成像器的类似系统也包括在本发明的范围内。因此,倾向于将前面的描述看作示例性的而非限制性的,并且本发明的范围由所附权利要求及其等价物的全部范围给出。
权利要求
1.一种投影系统,用于投影包括具有调制亮度的光像素矩阵的图像,所述投影系统包括第一成像器,配置用于逐个像素地、与针对图像的每个像素而设置的灰度级数值成正比地调制光波段,以提供第一输出矩阵;以及第二成像器,定位并配置其,用于接收已调制光像素的第一输出矩阵,并逐个像素地、与针对图像的每个像素而设置的第二灰度级数值成正比地调制来自所述第一成像器的单个已调制光像素。
2.根据权利要求1所述的投影系统,其特征在于所述第一成像器和所述第二成像器中的至少一个是LCOS成像器。
3.根据权利要求2所述的投影系统,其特征在于所述第一成像器和所述第二成像器两者均是LCOS成像器。
4.根据权利要求3所述的投影系统,其特征在于所述第一成像器和所述第二成像器尺寸不同。
5.根据权利要求3所述的投影系统,其特征在于所述第一成像器和所述第二成像器允许不同级别的泄漏。
6.根据权利要求1所述的投影系统,其特征在于所述成像器中的至少一个是DLP成像器。
7.根据权利要求2所述的投影系统,其特征在于还包括至少一个偏振分束器,用于向所述LCOS成像器提供偏振光。
8.根据权利要求1所述的投影系统,其特征在于还包括中继透镜系统,用于将从所述第一成像器的每个像素输出的调制光引导到所述第二成像器的对应像素。
9.根据权利要求8所述的投影系统,其特征在于还包括投影透镜组件,用于将来自所述第二成像器的调制光投影到显示屏幕上。
10.根据权利要求8所述的投影系统,其特征在于中继透镜系统是对称的。
11.一种图像投影系统,包括第一成像器和第二成像器,所述第一和第二成像器中的每一个均包括对应的像素矩阵,配置用于提供与针对该像素而设置的灰度级成正比地进行调制的光输出,配置所述投影系统,从而将来自所述第一成像器的特定像素的调制输出投影到所述第二成像器的对应像素上;由此,第二成像器的特定像素的光输出与针对该像素而设置的灰度级数值和针对所述第一成像器的对应像素而设置的灰度级数值成正比。
12.根据权利要求11所述的图像投影系统,其特征在于所述第一成像器和所述第二成像器中的至少一个是硅上液晶光引擎。
13.根据权利要求11所述的图像投影系统,其特征在于还包括中继透镜系统,用于将从所述第一成像器的特定像素输出的光引导到所述第二成像器的对应像素。
14.一种光投影系统,包括第一成像器,具有像素阵列,每个像素提供其强度与针对该像素而选择的灰度级数值成正比的调制光输出;第二成像器,具有与所述第一成像器中的所述像素阵列相对应的像素阵列,每个像素提供其强度与所述第一成像器中的对应像素的调制光输出和针对该像素而选择的灰度级数值成正比的光输出;以及中继透镜系统,用于将从所述第一成像器的每个像素输出的调制光引导到所述第二成像器的对应像素。
15.根据权利要求14所述的光投影系统,其特征在于所述第一成像器和所述第二成像器中的至少一个是硅上液晶反射光引擎。
16.根据权利要求14所述的光投影系统,其特征在于所述第一成像器和所述第二成像器中的至少一个是数字光脉冲成像器。
17.根据权利要求14所述的光投影系统,其特征在于还包括投影透镜组件,用于将来自所述第二成像器的调制光投影到显示屏幕上。
18.根据权利要求14所述的光投影系统,其特征在于所述中继透镜系统是对称的。
19.根据权利要求14所述的光投影系统,其特征在于所述第一成像器和所述第二成像器是等价的。
20.一种两级投影系统,包括第一级,具有一个或多个成像器,用于逐个像素地对光进行调制;第二级,具有一个或多个成像器,用于逐个像素地对光进行调制;以及中继透镜系统,用于将第一级成像器的像素的输出投影到第二级成像器的对应像素上。
21.根据权利要求20所述的两级成像器,其特征在于第一级包括三个成像器,分别用于调制红、蓝和绿光;以及一结构,配置用于将所需颜色的光引导到每个成像器。
22.根据权利要求21所述的两级成像器,其特征在于第二级包括三个成像器,分别用于调制红、蓝和绿光;以及一结构,配置用于将所需颜色的光引导到每个成像器。
23.根据权利要求22所述的两级成像器,其特征在于还包括设置在第一级和第二级之间的半波片。
24.根据权利要求23所述的两级成像器,其特征在于将所述半波片设置在中继透镜系统的系统光阑处。
25.根据权利要求20所述的两级成像器,其特征在于所述中继透镜系统至少将来自第一级成像器的特定像素的能量的大约百分之50矩形包围到第二级成像器的对应像素上。
26.根据权利要求20所述的两级成像器,其特征在于所述中继透镜系统提供小于大约百分之0.5的、由于场弯曲而引起的失真。
全文摘要
一种光投影系统,投影包括具有调制亮度的光像素矩阵的图像。所述投影系统包括第一成像器,配置用于逐个像素地、与针对图像的每个像素而设置的灰度级数值成正比地调制波段,以提供第一输出矩阵。定位并配置第二成像器,接收光调制像素的第一输出矩阵,并逐个像素地、与针对图像的每个像素而设置的第二灰度级数值成正比地调制来自所述第一成像器的单个已调制光像素。
文档编号H04N5/74GK1711778SQ200380103091
公开日2005年12月21日 申请日期2003年11月26日 优先权日2002年12月4日
发明者埃斯蒂尔·索恩·小霍尔, 尤金·墨菲·奥多内, 瓦尔特·德拉日奇 申请人:汤姆森许可贸易公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1