用于转换视频信号的分辨率的方法及其装置的制作方法

文档序号:7598822阅读:136来源:国知局
专利名称:用于转换视频信号的分辨率的方法及其装置的制作方法
技术领域
本发明涉及一种用于将输入的视频信号转换成具有期望的分辨率的方法及使用该方法的装置,更特别地,本发明涉及一种转换视频信号的分辨率的方法及其装置,其中通过所述方法和装置,通过利用基于输入和输出视频信号的分辨率所计算的最佳滤波器系数来滤波视频信号,在没有诸如峰值电路(peaking circuit)的任何附加清晰度增强电路的情况下,就能以高清晰度来提供输入视频的细节。
背景技术
由于诸如液晶显示器(LCD)、数字微镜像设备(DMD)和等离子体显示面板(PDP)的数字显示设备具有对于每一个产品模型所固定的显示分辨率,输入到单独的数字显示设备的视频具有不同的分辨率,因此应该被转换到具有调整到对应的显示设备的分辨率上。
特别地,需要一种分辨率转换技术来将由高级电视系统委员会(ATSC)所定义的各种数字电视格式转换成能在高分辨率电视(HDTV)中再现的格式。
分辨率转换技术允许对输入视频信号的取样率进行转换,以及将所述转换技术分类成用于将低分辨率格式转换成高清晰度格式的分辨率扩展和用于将高分辨率格式转换成低分辨率格式的分辨率减少。在分辨率扩展的情况中,由于新的信号分量被插值在原始输入信号的取样之间,所以当正在对信号进行滤波时,由于高频分量的损失而会发生模糊(blurring)。因此,当在诸如HDTV的高清晰度数字显示设备上再现标准的清晰度(SD)视频信号时,用户能容易地识别出显示质量的恶化(deterioration)。
同样,在分辨率减少的情况中,由于在低频信号上混叠了输入视频中的高频分量,所以诸如锯齿状现象(zigzag artifact)和波纹图案(moirépattern)就会发生。
根据如美国专利申请第5889895号和美国专利申请第5671298号中所公开的现有的线性滤波技术,通过使用双线性内插(bilinear interpolation)和三次插值(cubic interpolation)来实现分辨率转换。但是,由于在分辨率扩展期间没有足够地扩展输入视频的高频分量,所以清晰度和显示质量这两者都变坏了。为了对如此的问题进行补偿,、建议了一种方法,凭此方法将峰值应用到低分辨率视频上,以便辨别潜在的边缘像素,然后顺序地实现边缘像素检测(edgepixel-detection)、边缘连接(edge linking)以及亮度转变增强(luminance transitionenhancement),从而输出高清晰度视频信号。但是,如此的定标法(scalingmethod)使用了传统的线性滤波器,因此具有一个问题预处理和后处理这两者都需要大量的算术运算和额外的硬件,从而导致成本增加,这是因为在滤波期间在预处理和后处理这两个阶段中应该为视频信号实现峰值和亮度转变增强,以便改善视频的显示质量和清晰度。
此外,根据在美国专利申请第5852470号和美国专利申请第5446804号中所公开的现有技术,圆满地处理了与边缘区域相关的视频信号。但是,不能利用高分辨率来处理视频的精细纹理的区域(fined textured region)。此外,和利用边缘分量的最异常的区域的线性滤波技术相比,它们的性能不令人满意的。

发明内容
本发明提供了一种转换分辨率的方法及其装置,其能够通过基于输入和输出视频信号的每一个分辨率来计算最佳滤波器系数并将其应用到定标滤波器上,在既没有预处理也没有后处理(诸如在分辨率转换处理期间的峰值或亮度转变增强)的情况下,就能再现具有期望的分辨率的输入视频。
根据本发明的一个方面,提供了一种用于转换视频信号的分辨率的方法,该方法包括步骤(a)基于输入视频信号的分辨率和输出视频信号的期望的分辨率来计算向上取样比率和向下取样比率;(b)通过将所述向上取样比率和向下取样比率乘以旁瓣的数量来计算滤波器抽头的数量;(c)通过将窗函数和正弦函数相乘来计算滤波器抽头的相同数量的第一滤波器系数;(d)通过从第一滤波器系数中减去高斯(Gaussian)函数与窗函数相乘的结果来计算最终滤波器系数,并且然后对该最终滤波器系数进行归一化;以及(e)通过调整依靠于所述向上取样比率和向下取样比率的输入视频信号的取样比率,来基于所述最终滤波器系数在垂直和水平方向上进行滤波。
可以通过使用输入视频信号的取样的数量和具有期望的清晰度的视频信号的取样的数量这两者的最大公约数来计算所述向上取样比率和向下取样比率。
可以通过使用如下方程来计算滤波器抽头的数量T=round(max{U,D}×SmoothingAmount×nLobes-1)×2+1,这里,T是滤波器抽头的数量,nLobes是旁瓣的数量,U和D是最佳向上取样比率和最佳向下取样比率,SmoothingAmount是调整滤波器的截止频率的常量。
可以将SmoothingAmount的值设置为小于1,以及可以将nLobes的值设置为小于2。
可以通过使用如下方程来计算第一滤波器系数的数量h[i]={sin(x)x}×Kaiser(i,β),i=0,1,...,T-1,x=i-T-12T-12×π×nLobes]]>这里,sin(x)/x是理想的低频率带通函数,和Kaiser(I,β)是Kaiser窗函数。
最终滤波器系数可以被定义为h[i]=[sin(x)x-ES·Gaussian(x)]·Kaiser(i,β),i=0,1,...,T-1,x=i-T-11T-11×π×nLobes]]>这里,ES是用于确定在通带中的高频信号的幅度的参数,以及Kaiser(I,β)是Kaiser窗函数。
根据本发明的另一个实施例,提供了一种用于转换视频信号的分辨率的装置,该装置包括用于基于输入视频信号的分辨率和输出视频信号的期望的分辨率来计算向上取样比率和向下取样比率的装置;用于通过将所述向上取样比率和向下取样比率乘以旁瓣的数量来计算滤波器抽头的数量的装置;用于通过将窗函数和sinc函数(sinc function)相乘来计算滤波器抽头的相同数量的第一滤波器系数的装置;用于通过从第一滤波器系数中减去高斯(Gaussian)函数与窗函数相乘的结果来计算最终滤波器系数,并且然后对该最终滤波器系数进行归一化的装置;以及用于通过调整依靠于所述向上取样比率和向下取样比率的输入视频信号的取样比率,来基于所述最终滤波器系数分别在垂直和水平方向上进行滤波的第一和第二定标滤波器。


通过参照附图来对本发明的示范性实施例进行详细的描述,本发明的上述和其它的特征和优点将变得更加明显,其中图1是根据本发明的用于描述输入视频信号的取样率转换的方框图;图2是显示图1中的L倍向上取样器的方框图;图3A是图2中的输入信号x(n)的频谱;图3B是按照L向上取样图2中的输入信号x(m)的取样值的频谱;图4是连接到图2中的L倍向上取样器的第一低通滤波器的方框图;图5是显示图1中的M倍向下取样器的方框图;图6A是图5中的输入信号x2(n)的频谱;图6B是按照M向下取样图5中的输入信号x2(n)的取样值的频谱;图7是连接到图5中的M倍向下取样器的第二低通滤波器的方框图;图8是其中在图4和7中集成了向上取样和向下取样处理单元的方框图;图9是显示在滤波器设计期间所考虑的截止频率、转变带宽和阻带衰减的量的示意性图;图10A、10B和10C是频率响应的曲线图;图11是显示根据本发明的具有500HZ的截止频率的低通滤波器的频率响应的曲线图;以及图12是显示根据本发明的用于描述转换分辨率的方法的典型的分辨率转换单元的方框图。
具体实施例方式
现在将参照附图详细描述本发明,其中显示了本发明的示范性实施例。但是,可以以很多不同的形式来实现本发明,并且本发明不应该被认为只限制到这里所提出的实施例上;相反,提供了这些实施例使得本公开将是彻底和全面的,并且将充分地将本发明的概念传达给本领域的技术人员。在附图中相同的附图标记表示相同的元件,因此将省略对它们的描述。
图1是根据本发明的用于描述输入视频信号的取样率转换的方框图,根据典型的取样转换技术,向上取样器10在输入视频信号的x(n)的像素之间执行零插入并且输出向上取样的视频信号。插值滤波器20基于所接收到的滤波器系数来对所述向上取样的视频信号执行低通滤波,以及向下取样器30对已滤波的视频信号进行适合于所期望的分辨率的向下取样。
图2是显示图1中的L倍向上取样器的方框图。L倍向上取样器在L倍向上取样的输入视频信号的取样之间插入(L-1)个零。假设输入信号的取样是x(n)={...,3,5,9,6,...}和L=4,则输出信号x1(n)={...,3,0,0,0,5,0,0,0,9,0,0,0,6,0,0,0,...},也就是说,在输入信号x(n)的每一个取样之间插入3个零。这能用下列的一般表达式来表示。
x1(n)=[↑L]x(n)=x(n/L);当n是L的倍数时=0;其它图3A是图2中的输入信号x(n)的频谱。图3B是其中按照L向上取样图2中的输入信号x(n)的取样值的频谱。图4是示出连接到图2中的L倍向上取样器10的第一低通滤波器22的方框图。
在-π~+π的范围内将输入信号x(n)的频谱压缩成(L-1)个频谱分量。第一低通滤波器22具有设置在π/L处的截止频率(cut-off frequency),以便仅仅使已压缩的输入信号x1(n)的频谱中的位于低频带中的频谱分量32通过,如图3B中所示。
图5是显示M倍向下取样器30的方框图。该M倍向下取样器是一个电路,其中从该电路中,仅仅当输入取样的位置处于M的整数倍数时,输出输入信号而没有对其更改。假设输入信号x2(n)的取样是x2(n)={...,7,3,5,2,9,6,4,...},M=2和x3=(5),则输出信号的取样变成x3(n)={...,7,5,9,4,...}。这可以由下列的一般表达式来表示。
x3(n)=[↓L]X2(n)=x2(n/L);当n是M的倍数时=0;其它图6A是图5中的输入信号x2(n)的频谱。图6B是其中按照M向下取样图5中的输入信号x2(n)的取样值的频谱。图7是连接到图5中的M倍向下取样器的第二低通滤波器24的方框图。已经调整了图6A和6B中所示的频谱的频率带宽,以便于描述。
通过按照X[M]来扩展输入信号x2(n)以使其具有(M-1)个频谱分量,来形成M倍向下取样的信号x3(n)的频谱,使得由于输入信号x2(n)的频谱的重叠而发生混叠(aliasing)。为了防止如此的混叠(aliasing),在向下取样之前使输入信号x2(n)通过具有截止频率为π/M的第二低通滤波器24,如图7中所示。此外,为了去除由向上取样所导致的附加的频谱分量以及防止由向下取样所导致的混叠(aliasing),图1中的插值滤波器20被设置得具有第一低通滤波器22和第二低通滤波器24的最低的截止频率,min(π/L,π/M)。
存在有各种估计插值滤波器20、有限脉冲响应(FIR)滤波器的滤波器系数的方法。根据本发明,为了便于控制阻带衰减量和转变带宽,而采用了基于窗口设计的方法,这对于确定滤波器特性来说是重要的。
图9是显示在滤波器设计期间所考虑的截止频率、转变带宽和阻带衰减量的示意性图。在滤波器设计期间,窄的转变带宽和大的阻带衰减量能防止视频质量变坏,诸如通过滤波所引起的跳动(ringing)和混叠。窗函数的类型确定滤波器的频率特征。也就是说,当窗函数的主瓣的宽度变得较窄时,所设计的滤波器具有较大的阻带衰减量。
在滤波器设计的领域中,正在采用各种类型的窗函数,以便优化转变带宽和阻带衰减量。根据本发明,采用了Kaiser窗函数,这是因为可以方便地控制窗函数的主瓣的带宽和旁瓣的波纹。
能按如下等式来表示典型的窗函数的脉冲响应h(n)。
1/2]I0(β);0≤n≤T,α=T/2=0;]]>其它这里,T是滤波器抽头的数量,I0是调整的零阶Bessel函数,以及α和β是用于确定Kaiser窗的配置的系数。由系数β和T来确定Kaiser窗函数的频率特性。当β增加时,阻带衰减减少。当T增加时,窗函数的主瓣变得较窄。因此,减少了转变带宽。
理论上,用于转换分辨率的插值滤波器20应该具有在通带上平坦的频率响应和具有在阻带上较大的衰减量,以便防止混叠。特别是,在取样频率的倍数中,最好是插值滤波器20具有很高的阻带衰减,以便防止在输入信号的直流(DC)分量中的混叠,这是因为通过裸眼能敏感地识别出混叠。此外,为了防止图像的边缘区域中的跳动(ringing)和过冲(overshooting),建议插值滤波器20的脉冲响应具有较小数量的旁瓣分量和较小的旁瓣。
根据本发明,当确定滤波器系数时,通过使用阻带衰减和过渡区域(transition region)带宽来计算滤波器抽头数目(T),这不是一种折衷(trade-off),如下列等式中所示。
T=round(max{U,D}×SmoothingAmount×nLobes-1)×2+1这里,round是舍入函数(rounding function),nLobes是脉冲响应中的旁瓣的数量,以及U和D分别是最佳向上取样和向下取样率,计算在输入信号中的取样数目和在输出信号中的取样数目这两者之间的最大公约数,然后将输入信号和输出信号中的取样数目每一个分别都除以该最大公约数,以便获得最佳向上取样和向下取样率。使用该最佳的向上取样和向下取样率来确定滤波器的截止频率。通常,脉冲响应中的旁瓣的数量直接与滤波器抽头数目(T)成比例。能通过将旁瓣的数量(nLobes)乘以向上取样和向下取样率来计算滤波器抽头数目(T)。这里,SmoothingAmoun是用于修改滤波器的截止频率的参数,并且如果确定了旁瓣的数量就变成直接与滤波器抽头数目和截止频率成比例。用于计算滤波器抽头数目的等式包括参数SmoothingAmoun就是由于这个原因。
最好,在[等式5]中,将SmoothingAmount设置成小于1,以及将nLobes设置成小于2。从下列的等式中能获得滤波器系数h[i]。
h[i]={sin(x)x}×Kaiser(i,β),i=0,1,...,T-1,x=i-T-12T-12×π×nLobes]]>这里,x是允许sinc函数具有在零和滤波器抽头数目的范围(0~L-1)之内在[等式5]中集成的旁瓣的数量的定标常量因子(scaling constant factor)。对由[等式6]所计算的滤波器系数进行归一化以便为恒定的连续输入信号产生恒定的输出信号,即,平坦信号(flat signal)。
由于插值滤波器通常被用作改变取样率的方法,所以在输入信号的高频带上产生频谱衰减。这就导致了在滤波的视频中的清晰度的变坏,这将被容易地识别出来。为了对这个问题进行补偿,根据本发明,在滤波器系数的产生期间,利用保持恒定的滤波器抽头数目来强制增加滤波器的通带中的高频信号的频率响应的幅度,因此改善清晰度。为了这个目的,从[等式6]中的原始滤波器内核中减去Gaussian函数以便计算如下列的[等式7]所表示的滤波器系数。随后,通过归一化来获得最终滤波器系数。
h[i]=[sin(x)x-ES·Gaussian(x)]·Kaiser(i,β),i=0,1,...,T-1,x=i-T-12T-12×π×nLobes]]>这里,ES是用于确定通带中的高频信号的幅度的控制因子。假设H(W)是通过使用从[等式6]中所获得的滤波器系数所计算的频率响应。以及G(W)是频率响应,Gaussian(x)。[等式7]中的Gaussian滤波器的Kaiser(i,β),从[等式7]中所产生的滤波器的最终频率响应能被表示为H(W)-ES×G(W)。这里,当高频信号的增益ES为较小时,最终频率响应变得接近于滤波器的原始频率响应H(W)。此外,当控制因子ES增加时,在低频带中的幅度响应增益减少。能够通过归一化滤波器系数来补偿如此较小的幅度响应。
图10A显示了根据本发明的当通过使用图1中的插值滤波器和[等式6]中的滤波器系数来进行滤波时的频率响应的曲线图。这里,A是频率响应,B是Gaussian函数的频率响应。
图10B显示了当通过使用图1中的插值滤波器和[等式7]中的滤波器系数来进行滤波时的频率响应的曲线图。
图10C显示了当对图10B中所应用的滤波器系数进行归一化以及然后进行滤波时的频率响应的曲线图。可以识别出,在输入信号中的高频分量能被有效地加强,而没有更改滤波器抽头数目。
图11是显示根据本发明的具有500HZ的截止频率的低通滤波器的频率响应的曲线图。在图11中,A′是理想的低通滤波器的频率响应,B′是根据本发明的在[等式6]中通过使用滤波器系数所获得的频率响应,以及C是其中基于从[等式7]中所获得的滤波器系数增强了通带中的高频分量的幅度的滤波器的频率响应。
如图11中所示,在没有高频带中的阻带衰减的任何恶化的情况下,就能有效地增加通带中的高频分量。这将改善图像清晰度。
参照图12,显示了用于相对于视频信号YCbCr和RGB的垂直和水平方向来转换分辨率的块。分别通过第一和第二多路复用器110将在输入信号处理单元100中被划分在垂直和水平方向上的视频信号应用到第一和第二定标滤波器130和140上,并且然后将其转换为具有期望的分辨率。在滤波之后,通过第三多路复用器单元150将信号输出到输出信号处理单元160。这里,第一和第二定标滤波器130和140中的每一个都是包括如图1中所示的插值滤波器20的取样转换块。它们基于从用于计算滤波器系数的装置(在附图中未示出)中输入的滤波器系数来对视频信号进行滤波,以便即使在转换分辨率之后也能提供高清晰度的图像。
根据本发明,由于能够自由地转换输出图像的分辨率,所以在各种数字显示设备中能支持不同的分辨率的图像。此外,尽管插值滤波器的过渡区域带宽和阻带衰减之间存在相折衷(trade-off),但是它们都能被用来计算最佳滤波器系数和控制插值滤波器。因此,在没有增加峰值电路或清晰度增强电路的情况下提供高清晰度输出图像信号是可能的。
同样,通过控制用于计算滤波器系数的等式中的控制因子ES来精确地控制输出视频的清晰度和混叠和跳动(ringing)特性是可能的。
虽然已经参照本发明的示范性实施例详细地显示和描述了本发明,但是本领域技术人员将理解,在没有脱离如权利要求书所定义的本发明的精神和范围的情况下,这里可以做出形式和细节上的各种变化。所述示范性实施例应该被认为仅仅是描述性的,而不是用于限制。因此,不能由本发明的详细描述来定义本发明的范围,而是要由所附的权利要求书来定义本发明的范围,并且在该范围内的所有差别将被认作被包括在本发明中。
权利要求
1.一种用于转换视频信号的分辨率的方法,该方法包括步骤(a)基于输入视频信号的分辨率和输出视频信号的期望的分辨率来计算向上取样比率和向下取样比率;(b)通过将所述向上取样比率和向下取样比率乘以旁瓣的数量来计算滤波器抽头的数量;(c)通过将窗函数和正弦函数相乘来计算滤波器抽头的相同数量的第一滤波器系数;(d)通过从第一滤波器系数中减去高斯函数与窗函数相乘的结果来计算最终滤波器系数,并且然后对该最终滤波器系数进行归一化;以及(e)通过调整依靠于所述向上取样比率和向下取样比率的输入视频信号的取样比率,来基于所述最终滤波器系数在垂直和水平方向上进行滤波。
2.根据权利要求1所述的方法,其中通过使用输入视频信号的取样的数量和具有期望的清晰度的视频信号的取样的数量这两者的最大公约数来计算所述向上取样比率和向下取样比率。
3.根据权利要求1所述的方法,其中通过使用如下方程来计算滤波器抽头的数量T=round(max{U,D}×SmoothingAmount×nLobes-1)×2+1,这里,T是滤波器抽头的数量,nLobes是旁瓣的数量,U和D是最佳向上取样比率和最佳向下取样比率,SmoothingAmount是用于调整滤波器的截止频率的常量。
4.根据权利要求3所述的方法,其中将SmoothingAmount的值设置为小于1,以及将nLobes的值设置为小于2。
5.根据权利要求3所述的方法,其中通过使用如下方程来计算所述第一滤波器系数h[i]={sin(x)x}×Kaiser(i,β),i=0,1,...,T-1,x=i-T-12T-12×π×nLobes]]>这里,sin(x)/x是理想的低频带通函数,和Kaiser(I,β)是Kaiser窗函数。
6.根据权利要求5所述的方法,其中所述最终滤波器系数被定义为h[i]=[sin(x)x-ES·Gaussian(x)]·Kaiser(i,β),i=0,1,...,T-1,x=i-T-12T-12×π×nLobes]]>这里,ES是用于确定在通带中的高频信号的幅度的参数,以及Kaiser(i,β)是Kaiser窗函数。
7.一种用于转换视频信号的分辨率的装置,该装置包括用于基于输入视频信号的分辨率和输出视频信号的期望的分辨率来计算向上取样比率和向下取样比率的装置;用于通过将所述向上取样比率和向下取样比率乘以旁瓣的数量来计算滤波器抽头的数量的装置;用于通过将窗函数和sinc函数相乘来计算滤波器抽头的相同数量的第一滤波器系数的装置;用于通过从第一滤波器系数中减去高斯函数与窗函数相乘的结果来计算最终滤波器系数,并且然后对该最终滤波器系数进行归一化的装置;以及用于通过调整依靠于所述向上取样比率和向下取样比率的输入视频信号的取样比率,来基于所述最终滤波器系数在垂直和水平方向上进行滤波的第一和第二定标滤波器。
全文摘要
本发明提供一种转换视频信号的分辨率的方法,该方法包括(a)基于输入视频信号的分辨率和输出视频信号的期望分辨率计算向上取样比率和向下取样比率;(b)通过将向上取样比率和向下取样比率乘以旁瓣数量来计算滤波器抽头的数量;(c)将窗函数和正弦函数相乘来计算滤波器抽头的相同数量的第一滤波器系数;(d)从第一滤波器系数中减去高斯函数与窗函数相乘的结果来计算最终滤波器系数,然后归一化最终滤波器系数;以及(e)通过调整依靠于向上取样比率和向下取样比率的输入视频信号的取样比率,来基于最终滤波器系数在垂直和水平方向上进行滤波,从而使在没有增加需要计算最佳滤波器系数并然后滤波输入图像信号的附加清晰度增强电路的情况下获得清楚的视频图像成为可能。
文档编号H04N7/01GK1622592SQ20041008696
公开日2005年6月1日 申请日期2004年10月20日 优先权日2003年11月24日
发明者李晧荣, 金昌容, 朴斗植, 李性德, 亚历克西·卢金 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1