在多用户通信系统中增强的编码的方法和装置的制作方法

文档序号:7605725阅读:117来源:国知局
专利名称:在多用户通信系统中增强的编码的方法和装置的制作方法
技术领域
本发明针对在无线通信系统中编码和发射信息的改进方法。
背景技术
现在将讨论在多用户通信系统中的叠加编码。多用户通信系统包括若干相互通信的发射机和接收机,并且可以使用一种或多种通信方法。一般来说,多用户通信方法可被分类为两种情况之一(a)单个发射机与若干接收机通信,其通常被称为广播通信方法,以及(b)若干发射机与一个公共的接收机通信,其通常被称为多路访问通信方法。
广播通信方法在通信与信息论著作中通常被称为“广播信道”,并且在本文档的余下部分中将被如此称呼。所述“广播信道”指的是在发射机和多个接收机之间的物理通信信道以及由发射机进行通信而使用的通信资源。相似地,多路访问通信方法被普遍地称为“多路访问信道”,并且本文档的余下部分将使用这一术语。同样,所述“多路访问信道”指的是在多个发射机和公共的接收机之间的物理通信信道,以及由发射机使用的通信资源。广播通信方法常常用于实施典型蜂窝无线系统中的下行链路通信信道,其中基站向多个无线终端进行广播,而在这种系统中的上行链路信道通常使用多路访问通信方法来实施,其中多个无线终端可以向一个基站发射信令。
多用户通信系统中的发射资源通常可以在时间、频率或代码空间上表示。信息论表明特别地,在相同的发射资源中,例如同时在相同的频率中,在广播通信方法的情况下通过向多个接收机同时发射,或者在多路访问通信方法的情况下通过允许多个发射机同时进行发射,在这两种情况下可以增加系统的容量。在广播通信方法的情况下,用于在相同的发射资源中向多个用户同时发射的技术也被称为“叠加编码”。在本发明的背景中,受控叠加编码在广播和多路访问通信方法中均表现为一种有价值的实用技术。
鉴于下述用于广播通信方法中的发射技术的讨论,叠加编码的优势将是显而易见的。考虑单个发射机与两个接收机通信,它们的信道可由环境高斯噪声水平N1和N2来描述,其中N1<N2,即与第二接收机相比,第一接收机有更强的信道。假定发射机可用的通信资源是总带宽W,以及总功率P。发射机可以采用若干策略以与接收机通信。图1包括一个图形100,其描绘了在三种不同的发射策略下,有较强接收机的第一用户和有较弱接收机的第二用户在广播信道中可达到的速度。图1的纵轴102表示较强的接收机的速度,而横轴104表示较弱的接收机的速度。
首先,考虑在时间上,发射机在两个接收机之间多路复用的策略,每次向一个接收机分配它所有的资源。如果由α表示与第一(较强的)接收机通信所花费的时间部分,则不难证明两个用户可达到的速度满足R1≤αWlog(1+PN1)]]>R2≤(1-α)Wlog(1+PN2)]]>随着服务于第一用户所花费的时间部分α的变化,由上述公式达到的速度用图1中表示时分复用(TDM)策略的直线106来表示。现在考虑另一发射策略,其中发射机向第一用户分配带宽的某一部分,β,以及可用功率的一部分,γ。第二用户获得带宽和功率的剩余部分。分配了这些部分之后,发射机与这两个接收机同时通信。在这一发射策略下,速度区域的特征可由下述公式表示。
R1≤βWlog(1+αPN1)]]>R2≤(1-β)Wlog(1+(1-α)PN2)]]>从图1中表示频分复用(FDM)策略的凸起的分段曲线108可直观地看到由上述公式达到的速度。很明显在两个用户之间以适当的方式分配可用功率和带宽的策略胜过资源的时间分隔。然而,所述第二策略仍然不是最优的。
在所有的发射策略下可达到的速度区域的上确界是广播容量区域。对于高斯噪声水平的情况,该区域的特征由公式R1≤Wlog(1+αPN1)]]>R2≤Wlog(1+(1-α)PαP+N2)]]>来表示,并且由图1中表示容量的虚曲线110来描绘。由IT-18(1)2 14,1972的IEEE信息论学报,广播信道,T.M.Cover中的ThomasCover指出,被称为叠加编码的通信技术可以达到这一容量区域。在该技术中,使用在相同的发射资源中且相互叠加的不同的功率来发射到不同用户的信号。通过叠加编码可达到的增益超过任何其它需要在不同的用户之间分享发射资源的通信技术。
叠加编码的基本概念如图2的图形200所示。图形200包括一个表示正交的纵轴202和一个表示同相的横轴204。尽管本例采用QPSK调制,但一般来说调制设置的选择不受限制的。而且,本例概述了两个用户的情况,但这一概念可以以简单的方式推广到多个用户。假定发射机的总发射功率预算为P。假定第一接收机,被称为“较弱的接收机”,有较大的信道噪声,并且第二接收机,被称为“较强的接收机”,有较小的信道噪声。四个使用图案填充的圆205表示将以高功率(更好地保护的),(1-α)P,向较弱的接收机发射的QPSK星座点,其中箭头206提供高功率QPSK发射强度的测量。同时,还使用QPSK星座以低功率(较少地保护的),αP,向较强的接收机传递额外的信息,其中箭头207提供较低的功率QPSK发射强度的测量。组合这两个高功率和低功率信号的实际发射的符号,在图2中表示为空白的圆208。这一图例表达的关键概念是发射机使用相同的发射资源,与这两个用户同时通信。在本文档中,高功率信号也被称为受保护的信号,并且低功率信号也被称为常规的信号。
接收机的策略是相当简单的。较弱的接收机观测到有低功率信号叠加在其上的高功率QPSK星座。当较弱的接收机解码高功率信号时,由较弱的接收机感受的信噪比(SNR)可能不足以分析低功率信号,因此低功率信号表现为噪声并略微地降低了SNR。而另一方面,由较强的接收机感受的SNR足以分析高功率和低功率QPSK星座点这两者。较强的接收机的策略是首先解码高功率的点(其为打算供较弱的接收机使用的),从合成信号中除去它们的影响,然后解码低功率信号。
然而实际上,这一策略通常并未很好地工作。对于恢复低功率信号的解码器来说,消除高功率信号过程中的任何瑕疵都表现为噪声。
考虑到上述的讨论,很明显需要有新颖的方法和装置,其允许通信系统使用受控叠加编码的广播和/或多路访问通信方法来工作,从而利用信道中可达到的较高速度的优势,而克服不完美地消除高功率信号实际遇到的困难以及与联合解码器方法相关的复杂性和成本。

发明内容
本发明针对用于编码的发射机和接收机技术,其使常规信号的解码能够进行而无需被受保护信号的不完美消除所损害。
下面在使用正交频分复用(OFDM)的蜂窝无线数据通信系统的环境下,来描述本发明的典型实施例。尽管出于解释本发明的目的使用了典型的无线系统,但本发明并不限于典型的实施例,并且也可被应用到许多其它的通信系统,例如使用码分多址(CDMA)的系统。
依照本发明的各个实施例,使用一个传输块来发射第一和第二组信息,所述传输块包括多个最小传输单元,每个最小传输单元对应于唯一的资源组合,所述资源包括时间、频率、相位以及展频码中的至少两个。最小传输单元也被称为自由度。在本文档中,可互换地使用最小传输单元和自由度这两个术语。当与可被要求来编码将发射的信息组之一的最小尺寸传输块相比时,传输块可以相对较大。
本发明的一个典型实施例包括定义所述最小传输单元的第一组以用于传递所述第一组信息,所述第一组最小传输单元至少包括所述传输块中的最小传输单元的大部分,定义所述最小传输单元的第二组以用于传递所述第二组信息,所述第二组最小传输单元包括与第一组相比较少的最小传输单元;第一和第二组最小传输单元中的至少一些最小传输单元是相同的;并且使用包含在所述第一和第二组最小传输单元中的最小传输单元来传递第一和第二组信息。包含在传输块中的所述最小传输单元的第一组用于传递所述第一组信息,所述第一组最小传输单元至少包括传输块中的所述最小传输单元的大部分。定义例如选择所述最小传输单元的第二组,以用于传递所述第二组信息,所述第二组最小传输单元包括与第一组相比较少的最小传输单元;第一和第二组最小传输单元中的至少一些最小传输单元是相同的。通过发射包括在所述第一和第二组最小传输单元中的至少一些最小传输单元且有对应信息调制在其上,来传递第一和第二组信息。信息的传递可以通过在共用的最小传输单元上叠加第一和第二信息,或通过击穿第一组信息以便在第一和第二组共用的最小信息单元上发射第二组信息。可以使用纠错码来恢复由于在共用的传输单元上叠加第二组信息而丢失的信息。在第一和第二组信息中发射的信息可以是,例如用户数据和包括确认和分配在内的控制信息。
第一和第二组信息可以,并且在各个实施例的确是,通过从不同发射机发射包括对应于不同信息组的调制信息的最小传输单元,使用最小传输单元的第一和第二部分来发射。发射机可以位于不同的设备例如无线终端中。在其它实施例中,通过从单个发射机,例如一个基站发射机,发射用于传递第一和第二组信息的最小传输单元,来传递第一和第二组信息。
第一组最小传输单元包括传输块中的最小传输单元的大部分,但通常是较高比例的最小传输单元,例如在一些实施例中,第一组最小传输单元包括最小传输单元总数的至少75%,并且有时,包括所述块中的最小传输单元的100%。第二组最小传输单元通常包括一个块中少于50%的最小传输单元,并且有时包括相对较少的最小传输单元,例如少于传输块中最小传输单元数量的5或10%。在此情况下,即使试图解码用于传递第一组信息的最小传输单元的接收机没有恢复第二组传输单元中的任何最小传输单元,但是在一些实施例中通过使用纠错码,也可以恢复打算在包括在第二组中的一些最小传输单元上发射的第一组的信息。
通过使用对第一和第二组最小传输单元这两者共用的最小传输单元,正确的叠加可用于传递同时对应于第一和第二组信息的信息。作为替代地,可以击穿(例如不发射)对应于第一组信息的打算在共用的最小信息单元上发射的信息,同时通过使用纠错码可恢复被击穿的信息。
在一个特定的典型实施例中,作为传输过程的一部分,可以以第一功率水平来发射使用包含在第一组最小传输单元中的至少一些最小传输单元的所述第一和第二组信息,同时使用以每一最小传输单元为基础、与所述第一信号相比较高的功率水平发射所述第二组最小传输单元中的最小传输单元。发射所述第二组中的最小信息单元的功率水平,在一些实施方式中,至少比发射对应于第一信号的最小传输单元的功率水平大3dB。有时可以,并且确实,改变所述第一和第二组中的最小信息单元的功率水平,例如以反映信道状态的变化。
依照本发明,各种接收机的实施例是可能的。两个接收机,例如第一和第二接收机,可以独立且并行地运转。从实际发射的所述传输块中的最小信息单元中,一个接收机用于恢复第一组信息,另一个接收机用于恢复第二组信息。在一个这样的实施例中,第一接收机将包括对应于第二组信息的信号的最小信息块视为包括脉冲噪声,并且例如丢弃、忽略或者最小化它们对接收机的输出的影响。在这种实施方式中,第二接收机将接收的最小传输单元的对应于第一组信息的信号的影响视为背景噪声。由于通常使用相对较高的功率水平,例如足以使第一接收机将该信号认为是脉冲噪声的功率水平,来发射对应于第二组信息的信号,因此即使在对应于第一组信息的信号表现为背景噪声的情况下,通常也相对较容易恢复第二信号。由于发射第二组信息的影响通常限于传输块中相对较少的符号,在用于发射第一组信息的信号上高功率信号的影响趋向于非常局部化,以允许在多数情况下通过使用包括在发射机信息中的传统纠错码,恢复任何丢失信息。
在本发明的另一实施例中,一种装置也包括两个接收机。然而,并非独立并行地运转,第一接收机识别对应于第二组信息的最小传输单元,例如高功率最小传输单元。然后,它向第二接收机传递表示哪一个接收的最小传输单元对应于第二组信息的信息。第二接收机丢弃对应于第二组信息的最小传输单元,然后解码剩余的接收的最小传输单元。由于丢弃的最小信息单元的数量趋向于较小,例如在多数情况下低于接收的最小信息单元的5%,第二接收机通过使用用于保护发射信息避免由于在发射期间最小传输单元的损失或讹误而导致误码的纠错码,通常仍能恢复完整的第一组信息。
在不同的实施例中,本发明实现了在多用户通信系统中的叠加编码的好处,同时使用设计简单但就运转性能而言仍然良好的接收机。本发明公开了用于广播信道和多路访问信道这两者的新颖的有效的叠加编码技术。
在广播信道的情况下,例如,单个发射机向多个接收机发送数据。在典型系统的环境中,发射机是在蜂窝下行链路中与无线接收机(例如移动接收机)进行通信的基站。由于根据在单元之内的位置的路径损耗的变化,蜂窝系统中的移动用户可以感受到各种各样的SNR状态。不失一般性地假定基站有两个想与两个感受不同路径损耗的不同移动接收机同时通信的信号。常规信号是打算供感受较高信噪比(SNR)的接收机使用的,以下将其称为“较强的”接收机。术语为“受保护的”信号的第二信号,是打算供在较低质量的信道上以较低的SNR运转的“较弱的”接收机使用的。将移动接收机分类为“较强的”或“较弱的”,并非静态的,而是相对的界定。
如果未使用叠加编码,那么应当在常规的和受保护的信号之间分配空中链路资源,这并非最优的。为了区别在本发明中公开的新的叠加编码方法,此后在本文档的余下部分中,将在背景部分描述的现有的叠加编码方法称为“传统的叠加编码”。在传统的叠加编码环境中,使用相同的空中链路资源,同时发射受保护的信号和常规信号。例如,假定用于同时发射常规的和受保护的代码字的空中链路资源包括K个符号,A1、...、AK。而且假定常规的代码字将传送M个信息比特,受保护的代码字将传送N个信息比特。假定常规的和受保护的代码字均使用BPSK(二相相移键控)调制。在传统的叠加编码中,通过一个编码方案例如卷积编码,将M个常规信息比特转换成K个编码比特,然后,将这K个编码比特映射到K个BPSK符号B1、...、BK。同时,通过另一编码方案例如卷积编码,将N个受保护的信息比特转换成不同的K个编码比特,然后,将这K个编码比特映射到K个BPSK符号C1、...、CK。最后,组合来自受保护的信息比特的K个BPSK符号和来自常规信息比特的K个BPSK符号,并使用K个空中链路资源符号A1、...、AKA1=B1+C1、...、AK=BK+CK将其发射。在合成信号中,通常以每一比特较高的功率来发射受保护的符号,以便较弱的接收机能够可靠地接收它们。以每一比特相对较低的功率发射常规的符号。在本例中,并且本质上一般来说,常规信号的能量在其上将发射受保护的信号的所有自由度之间分配。
以较弱的接收机通常只能够解码受保护的代码字这样的方式,来选择发射机的功率。对该接收机来说,常规信号仅仅表现为噪声。而另一方面,较强的接收机应当能够解码这两种代码字。一种较强的接收机可以采用的好的解码策略是试图一起解码这两个代码字。然而,对于实际的接收机来说,这往往太过复杂。因此,较强的接收机通常采用的策略是相继的解码。较强的接收机首先解码受保护的代码字,然后将它从接收的合成信号中除去,最后解码常规的代码字,这是对较强的接收机有意义的代码字。然而实际上,上述相继的消除和解码方案并不能总是很好地完成。如果较强和较弱接收机的SNR和要求通信的速度是如此以至常规和叠加的信号以大致相同的功率来发射,那么,消除受保护的代码字可能是困难的或不准确的。
实际上,即使当在这两个代码字上发射的功率是不同的时候,也存在着相继解码的障碍。例如,大多数通信系统在接收机处感受到某一程度的固有噪声。不同于加性噪声,该固有噪声通常与发射过的信号相关,并且有与发射的功率成比例的能量。无线通信系统中的信道估计噪声是固有噪声的一个例子。在传统的叠加编码环境中,信道估计噪声在较强的接收机引起受保护的信号的不完美的消除。残余的消除误码可能有相当大的能量,尤其当与低功率叠加信号相比。因此,考虑到残余的消除误码,较强的接收机可能无法正确地解码常规的代码字。
由所述讨论可知,很明显,尽管传统的叠加编码在每个自由度中分配受保护的代码字的能量,但在一个或几个自由度之间集中该能量是合乎需要的。依照本发明,在有限数量的自由度上集中能量,便于在接收机容易地检测和消除受保护的信号,即使当包括在这两个信号中的全部发射能量是相似的时候。依照本发明,代码字中的能量集中在一个或几个自由度之间。
使用上文描述的编码和发射方法,可以使用一组共用的重叠的通信资源,例如时间、频率和/或代码,来发射多组信息。鉴于下述的详细描述,本发明的许多额外的特征和好处,将是显而易见的。


图1描绘了一个表示在三种不同的发射策略下,有较强接收机的第一用户和有较弱接收机的第二用户在广播信道中可达到的速度的图形。
图2表示使用QPSK调制的叠加编码的例子。
图3表示一个脉冲位置调制的例子。
图4表示一个依照本发明的高速叠加编码的例子。
图5表示依照本发明的高速叠加编码的另一例子,其中闪动信号在4个符号位置上集中它的能量。
图6表示依照本发明,在多路访问信道中的典型的高速叠加编码,其表示为一个在基站接收机的合成信号。
图7表示典型的业务部分和由基站向用户分配业务部分。
图8表示对应于业务部分的典型分配部分。
图9表示典型的下行链路业务部分和确认部分。
图10表示典型的分配部分、下行链路业务部分以及确认部分,其中分配和确认部分均使用依照本发明的高速叠加编码。
图11表示依照本发明的2组典型的信息、一个最小传输单元(MTU)的传输块以及部分重叠的最小传输单元组,其可用于定义信息组并可部分或全部用于发射信号以传递信息。
图12表示依照本发明的另一典型MTU的传输块,其表示该传输块可被细分为子块。
图13表示依照本发明的一种使用有不同发射机的不同设备,发射两个对应于两组信息的信号的方法,其中每个发射机生成对应于一组信息的信号。
图14表示依照本发明的另外两种发射两组信息的方法,或者使用输出两个信号的单个发射机,其中每个信号对应于一组信息中的信息,或者使用在内部组合信令以输出单个合成信号的单个发射机。
图15表示依照本发明的两种包括滤波和一个纠错模块的设备;每种设备包括两个接收机,并且每种设备可用于接收合成信号并检索已经发射过的两组信息。
图16表示依照本发明的另一种包括一个MTU信号识别模块的设备;所述设备包括两个接收机,并且所述设备可用于接收合成信号并检索已经发射过的两组信息。
图17表示一种实施本发明的装置和方法的典型通信系统。
图18表示一种依照本发明实施的典型基站。
图19表示一种依照本发明实施的典型终端节点(无线终端)。
具体实施例方式
本发明针对用于编码的发射机和接收机技术,其使常规信号的解码能够进行而无需被受保护信号的不完美消除所损害。
图17表示一种使用依照本发明的装置和方法的典型通信系统1700。典型通信系统1700包括多个基站,有基站1(BS 1)1702和基站N(BS N)1702′。将BS 11702经由无线链路1712、1714分别连接到多个终端节点(EN),EN 11708、EN N 1710。相似地,将BS N 1702′经由无线链路1712,、1714′分别连接到多个终端节点(EN),EN 11708′、EN N 1710′。单元11704代表BS 11702可以与EN,例如EN11708,进行通信的无线覆盖区域。单元N 1706代表BS N 1702′可以与EN,例如EN 11708′,进行通信的无线覆盖区域。EN 1708、1710、1708′和1710′可以在通信系统1700中到处移动。将基站BS 11702、BS N 1702′分别经由网络链路1718、1720连接到一个网络节点1716。将网络节点1716经由网络链路1722连接到其它网络节点,例如其它基站、路由器、归属代理节点、验证授权计费(AAA)服务器节点等,以及连接到因特网。网络链路1718、1720、1722可以是例如光缆。网络链路1722提供了通信系统1700之外的接口,以允许用户例如EN与系统1700之外的节点通信。
图18表示一种依照本发明的典型基站1800。典型基站1800可以是图17的基站1702、1702′的更详细的说明。典型基站1800包括经由总线1826连接在一起的多个接收机,接收机1 1802、接收机N 1804,多个发射机,发射机1 1810、发射机N 1814,一个处理器1822例如CPU,一个I/O接口1824以及存储器1828。各个单元1802、1804、1810、1814、1824和1828可以通过总线1826交换数据与信息。
将接收机1802、1804和发射机1810、1814分别连接到天线1806、1808和1818、1820,从而为基站1800提供一条通路,以在其蜂窝覆盖区域之内与终端节点例如无线终端进行通信,例如交换数据与信息。每个接收机1802、1804可以分别包括一个解码器1803、1805,以接收和解码由在其单元之内工作的终端节点编码和发射的信令。接收机1802、1804可以是图15的设备51502、图15的设备61532、或图16的设备71562中所示的典型接收机的任意一个或其变化,例如接收机(1506、1508)、(1536、1538)、(1563、1564)。依照本发明,接收机1802、1804应当能够接收包括一个常规或基础信号和一个闪动信号的合成信号,并检索对应于原始的预先发射信息组的信息组。每个发射机1810、1814可以包括一个在发射之前编码信令的编码器1812、1816。发射机1810、1814可以是图13的设备11302和设备21308、图14的设备3或图14的设备41410中所示的典型发射机的任意一个或其变化,例如发射机(1304和1310)、(1404)、(1412)。依照本发明,发射机1802、1805应当能够发射一个或多个下述的常规或基础信号、闪动信号和/或合成信号。
存储器1828包括例行程序1830和数据/信息1832。处理器1822通过执行存储器1828中的例行程序1830并使用存储器1828中的数据/信息1832控制基站1800的操作,以操作接收机1802、1804、发射机1810以及I/O接口1824,来执行处理控制基本基站功能,并控制和实施本发明的新的特征和改进,包括生成并发射合成信号、接收合成信号、将合成信号分类为常规或基础信号信息和闪动信号信息、分类和恢复信息。I/O接口1824为基站1800提供了一个到因特网及其它网络节点,例如,中间网络节点、路由器、AAA服务器节点、归属代理节点等的接口,从而允许通过无线链路与基站1800通信的终端节点与其它在通信系统中各处以及例如经由因特网在通信系统之外的同级节点,例如另一终端节点,进行连接、通信和交换数据与信息。
例行程序1830包括通信例行程序1834,以及基站控制例行程序1836。基站控制例行程序1836包括一个调度程序1838、一个检错及纠错模块1840、一个发射机控制例行程序1844以及一个接收机控制例行程序1846。数据/信息1832包括接收的信息11850、接收的信息N 1852、发射信息1 1854、发射信息N 1856、识别的MTU信息1858以及用户数据/信息1848。用户数据/信息1848包括多个用户信息,用户1信息1860以及用户N信息1862。每个用户信息,例如用户1信息1860,包括终端标识符(ID)信息1864、数据1866、信道质量报告信息1868、部分信息1870以及分类信息1872。
发射信息11854可以包括一组可对应于一个第一信号,例如,常规或基础信号的信息,定义可用于发射所述第一信号的MTU的传输块的信息,定义将用于定义所述信号的第一组MTU的信息,将在所述第一组MTU上调制以定义所述第一信号的信息,定义应当向例如一个无线终端发射对应于第一信号信息的哪些MTU的信息。在一些实施例中,将发射每个传递第一组信息数据的MTU。在其它实施例中,应当发射大部分传递第一组信息的MTU。在这种实施例中,在发射之前,可以丢弃对应于第一组信息且同时对应于第二组信息,例如,一个闪动信号的MTU。
发射信息N 1856可以包括一组可对应于一个第二信号,例如,闪动信号的信息,定义可用于例如向一个无线终端发射所述第二信号的MTU的传输块的信息,定义将用于定义所述第二信号的第二组MTU的信息,将在所述第二组MTU上调制以定义所述第二信号的信息。所述第一和第二传输块可以是相同的。在这种情况下,可以,并且常常,将来自发射信息1854、1856的指定共用传输块的规格和/或形状的传输块信息分别保存在存储器1828中。接收的信息11850包括第一组从接收机11802恢复的信息,例如对应于第一组无线终端的预先发射信息的信息。第一组恢复的信息可以,例如,从常规或基础信号中恢复。接收的信息N 1852包括第二组从接收机N 1804恢复的信息,例如对应于第二组无线终端的预先发射信息的信息。第二组恢复的信息可以,例如,从闪动信号中恢复。
定义每个原始的预先发射信息组的常规和闪动信号共用一些公共的MTU。识别的MTU信息1858可以包括一组在第二或闪动信号中识别的MTU,可以由接收机N的解码器1805来获得的所述识别的MTU组。可以将识别的MTU信息1858转发给接收机11802,其中该接收机可以在传递接收的信号以执行纠错模块之前排除那些MTU,或作为替代地,可以将识别的MTU信息1858转发给存储器中的检错及纠错模块1840和/或解码器1803中的检错及纠错模块。
数据1866可以包括从终端节点接收的数据和将向终端节点发射的数据。在一些实施例中,将一个终端标识符ID 1864用于N个可在同一时间点上与基站相互作用的无线终端中的每一个。当进入一个单元中时,给无线终端例如终端节点分配一个终端ID 1864。这样,随着无线终端进入和离开单元,终端ID将被再次使用。每个基站有一组分配给将被服务的用户(例如无线终端)的终端标识符(终端ID)1864。信道质量报告信息1868可以包括基站1800判断的关于用户的信道质量的信息,以及来自用户的包括下行链路信道质量报告、干扰信息、来自无线终端的功率信息在内的反馈信息。部分信息1870可以包括根据使用类型,例如业务信道、分配信道、请求信道;特性,例如MTU、频率/相位和时间、OFDM音调符号;用于部分的信号类型,例如常规或基础相对于闪动信号,来定义分配给用户的部分的信息。分类信息1872包括将用户,例如无线终端,分类为“较强的”或“较弱的”发射机的信息。
通信例行程序1834包括可用于向系统中的一个或多个用户终端节点提供特殊服务,例如,IP电话服务、文本服务和/或交互游戏的各种通信应用。
基站控制例行程序1836执行包括基本基站控制和与本发明的装置和方法有关的控制在内的功能。基站控制例行程序1836行使对信号生成和接收、检错及纠错、数据和导频跳频序列、I/O接口1824、向用户分配部分以及向终端ID 1864安排用户的控制。更具体地说,调度程序1838向终端ID 1864安排用户,使用用户分类信息1872以及部分信息1870向用户分配各个部分。依照本发明,调度程序决定关于应当将哪一个用户和哪一个部分分配给常规或基础信号,以及应当将哪一个用户和哪一个部分分配给闪动信号。与可能希望发射大量信息且可用功率有限的其它用户相比,某些用户,例如那些有可用的高功率并且将发射少量信息的用户,可能更适合于闪动信号发送。某些类型的信道可能更适合于使用闪动信号发送。例如,在许多蜂窝通信系统中,控制信道是以广播功率来发射的,因为它们受有最弱信道的移动用户的约束。闪动信号发送非常适合于该应用,并且它的使用常常可引起功率减小而几乎没有鲁棒性的损失。通过使用分类信息1872和部分信息1870,调度程序1838可以将有低的下行链路信噪比(SNR)的用户匹配到信道之内的常规部分,而有高的SNR的用户可以与信道之内的闪动(例如“受保护的”)部分相匹配。
依照本发明,发射机控制模块1844使用包括发射信息1 1854、发射信息N 1856、终端ID 1864、数据1866以及部分信息1870在内的数据/信息1832,来生成发射信号并控制发射机1810、1814的操作。例如,发射机控制模块1844可以控制发射机1810,经由它的编码器1812,将包括在发射信息1 1854中的信息组编码成发射机1 1810可以发射的信号,例如常规或基础信号。发射机控制模块1844可以使用对应于发射信息N 1856的MTU组,将包括在该信息1856中的信息组编码成闪动或受保护的信号。发射控制模块1844可以控制发射机N1814,经由它的编码器1816,将包括在发射信息N 1856中的信息组编码成发射机N 1814可以发射的信号。例如,发射控制模块1844可以使用对应于发射信息N 1856的MTU组,将包括在该信息1856中的信息组编码成闪动或受保护的信号。作为替代地,在发射机1810、1814的各种实施例中,可以使用单个发射机,其在内部根据发射信息1 1854和发射信息N 1856在发射机控制模块1844的指导下组合或混合信号。这种混合操作可以包括在发射之前,叠加常规和闪动信号,和/或有选择地形成一个包括每个闪动信号单元和未包括在闪动信号之内的常规信号中的单元的MTU发射组。
依照本发明,接收机控制模块1846控制接收机1802、1804的操作,以接收合成信号并提取两组信息,例如接收机信息1 1850和接收机信息N 1852。在接收机控制模块1846控制之下的接收处理可以包括控制解码器1803、1805,以及控制接收机之内的其它单元。在一些实施例中,接收机控制模块1846与接收机1802、1804一起控制脉冲噪声滤波、背景噪声滤波以及纠错模块。在一些实施例中,接收机控制模块控制着在一个接收机,例如,接收机N 1804中的第二信号MTU标识符模块,以及在另一接收机,例如,接收机1 1802中的丢弃模块,并从接收机N 1804向接收机1 1802传递识别的MTU信息1858;这允许接收机1 1802从进入试图恢复常规信号信息组的检错模块的信息流中除去包括闪动信号信息的MTU。
纠错模块1840联合或替代一个可被包括在接收机1802、1804中的检错及纠错模块而工作。包括在接收机1802、1804和/或模块1840中的检错及纠错能力允许基站1800再现对应于预先发射信息组的信息组,即使表示预先发射信息组的(常规或基础)信号已受第二闪动信号(闪动信号)的叠加或由第二信号(闪动信号)产生的击穿现象,例如,替换一些MTU的影响。在一些实施方式中,对应于第二组信息的MTU完全地覆盖对应于第一组信息的MTU。此外在一些实施例中,对应于第一组信息的MTU完全占用一个传输块。
图19表示一种依照本发明的典型终端节点(无线终端)1900。典型终端节点1900可被用于图17的终端节点1708、1710、1708′、1710′中的任意一个。典型终端节点1900,例如无线终端,可以是一个移动终端、手机、移动节点、固定无线设备等。在本申请中,可以将终端节点1900的引用解释为对应于任意一个无线终端、移动节点等。无线终端可以是支持无线通信链路的移动节点或固定设备。典型终端节点1900包括经由总线1928连接在一起的多个接收机,接收机1 1902、接收机N 1904,多个发射机,发射机1 1910、发射机N 1912,一个处理器1926例如CPU,以及存储器1930。通过总线1928,各个单元1902、1904、1910、1912、1926、1930可以交换数据与信息。
将接收机1902、1904和发射机1910、1912分别连接到天线1906、1908和1914、1916,从而为终端节点例如无线终端1900提供一条通路,以与无线终端1900工作的蜂窝覆盖区域所属的基站1800进行通信,例如交换数据与信息。每个接收机1902、1904可以分别包括一个解码器1918、1920,以接收和解码由基站1800编码和发射的信令。接收机1902、1904可以是图15的设备51502、图15的设备6 1532、或图16的设备7 1562中所示的典型接收机的任意一个或其变化,例如接收机(1506、1508)、(1536、1538)、(1563、1564)。依照本发明,接收机1902、1904应当能够接收包括一个常规或基础信号和一个闪动信号的合成信号,并检索对应于原始的预先发射信息组的信息组。每个发射机1910、1912可以包括一个在发射之前编码信令的编码器1922、1924。发射机1910、1912可以是图13的设备1 1302和设备2 1308、图14的设备3或图14的设备4 1410中所示的典型发射机的任意一个或其变化,例如发射机(1304和1310)、(1404)、(1412)。依照本发明,发射机1910、1912应当能够发射一个或多个下述的常规或基础信号、闪动信号和/或合成信号。
存储器1930包括例行程序1932和数据/信息1934。处理器1926通过执行存储器1930中的例行程序1932并使用存储器1930中的数据/信息1934控制终端节点1900的操作,以操作接收机1902、1904和发射机1910、1912,来执行处理控制基本无线终端功能,并控制和实施本发明的新的特征和改进,包括生成并发射合成信号、接收合成信号、将合成信号分类为常规或基础信号信息和闪动信号信息、分类和恢复信息。
例行程序1932包括通信例行程序1936和无线终端控制例行程序1938。无线终端控制例行程序1938包括一个发射机控制模块1940、一个接收机控制模块1942、一个纠错模块1946。数据/信息1934包括用户数据1947、终端标识符(ID)信息1948、接收的信息11950、接收的信息N 1952、发射信息1 1954、发射信息N 1956、识别的MTU信息1958、部分信息1960、质量信息1962以及基站ID信息1964。
用户数据1947包括将向基站1800发射的数据和从基站1800接收的数据,以及中间数据,例如在恢复检测的信息的解码处理中涉及的数据。发射信息1 1954可以包括一组可对应于一个第一信号,例如,常规或基础信号的信息,定义可用于发射所述第一信号的MTU的传输块的信息,定义将用于定义所述信号的第一组MTU的信息,将在所述第一组MTU上调制以定义所述第一信号的信息,定义应当向例如一个基站1800发射对应于第一信号信息的哪些MTU的信息。在一些实施例中,将向基站1800发射每个传递第一组信息数据的MTU。在其它实施例中,应当向基站1800发射大部分传递第一组信息的MTU。发射信息N 1956可以包括一组可对应于一个第二信号,例如,闪动信号的信息,定义可用于例如向一个基站发射所述第二信号的MTU的传输块的信息,定义将用于定义所述第二信号的第二组MTU的信息,应当在所述第二组MTU上调制以定义所述第二信号的信息。接收的信息1 1950包括第一组从接收机1 1902恢复的信息,例如对应于第一组基站的预先发射信息的信息。第一组恢复的信息可以,例如,从常规或基础信号中恢复。接收的信息N 1952包括第二组从接收机N1904恢复的信息,例如对应于第二组基站的预先发射信息的信息。第二组恢复的信息可以,例如,从闪动信号中恢复。
定义每个原始的预先发射信息组的常规和闪动信号共用一些公共的MTU。识别的MTU信息1958可以包括一组在第二或闪动信号中识别的MTU,可以由接收机N的解码器1920来获得所述识别的MTU组。可以将识别的MTU信息1958转发给接收机1 1902,其中该接收机1902可以在向解码器1918中的纠错模块传递接收的信号之前排除那些MTU,或作为替代地,可以将识别的MTU信息1958转发给存储器中的纠错模块1946和/或解码器1918中的纠错模块。
终端ID信息1948是一个基站分配的ID。基站ID信息1964包括可用于识别无线终端1900所连接的特定基站的信息,例如倾斜值。使用基站ID信息1964和终端ID 1948,无线终端可以确定数据并控制跳频序列。质量信息1962可以包括来自检测的导频的信息、下行链路信道质量测量和报告、干扰水平、功率信息例如当前的发射级别和电池能级、SNR等。依照本发明,可以将质量信息1962反馈到基站1800以用于将接收机分类为“较强的”或“较弱的”接收机,以有助于基站1800进行安排和分配,包括分配常规或基础部分和高速部分。部分信息1960可以包括根据使用类型,例如业务信道、分配信道、请求信道;特性,例如MTU、频率/相位和时间、OFDM音调符号;用于部分的信号类型,例如常规或基础相对于闪动信号,来定义分配给用户的部分的信息。
通信例行程序1936包括可用于向一个或多个终端节点用户提供特殊服务,例如,IP电话服务、文本服务和/或交互游戏的各种通信应用。
无线终端控制例行程序1938控制着无线终端1900的基本功能,包括发射机1910、1912和接收机1902、1904的操作、包括数据/控制跳频序列在内的信号生成和接收、状态控制以及功率控制。无线终端控制例行程序1938还控制并实施本发明的新的特征和改进,包括生成并发射合成信号、接收合成信号、将合成信号分类为常规或基础信号信息和闪动信号信息、分类并恢复信息。
依照本发明,发射机控制模块1940可以使用包括发射信息11954、发射信息N 1956、终端ID 1948、用户数据1947以及部分信息1960在内的数据/信息1934,来生成发射信号并控制发射机1910、1912的操作。例如,发射机控制模块1940可以控制发射机1910,经由它的编码器1922,将包括在发射信息1 1954中的信息组编码成发射机11910可以发射的常规或基础信号。发射机控制模块1940可以控制发射机N 1912,经由它的编码器1924,使用对应于发射信息N 1956中的信息的MTU组,将包括在信息1956中的信息组编码成闪动或受保护的信号。作为替代地,在发射机1910、1912的各种实施例中,可以使用单个发射机,其在内部根据发射信息11954和发射信息N 1956在发射机控制模块1844的指导下组合或混合信号。这种混合操作可以包括在发射之前,叠加常规和闪动信号,和/或有选择地形成一个包括每个闪动信号单元和未包括在闪动信号之内的常规信号中的单元的MTU发射组。
依照本发明,接收机控制模块1942控制接收机1902、1904的操作,以接收合成信号并提取两组信息,例如接收机信息1 1950和接收机信息N 1952。在接收机控制模块1942控制之下的接收处理可以包括控制解码器1918、1920,以及控制接收机之内的其它单元。在一些实施例中,接收机控制模块1942与接收机1902、1904一起控制脉冲噪声滤波、背景噪声滤波以及检错模块。在一些实施例中,接收机控制模块1942控制着在一个接收机,例如,接收机N 1904中的第二信号MTU标识符模块,以及在另一接收机,例如,接收机1 1902中的丢弃模块,并从接收机N 1904向接收机1 1902传递识别的MTU信息1958;这允许接收机1 1902从进入试图恢复常规信号信息组的纠错模块的信息流中除去包括闪动信号信息的MTU。
纠错模块1946联合或替代一个可被包括在接收机1902、1904中的纠错模块而工作。包括在接收机1902、1904和/或模块1946中的检错及纠错能力允许无线终端1900再现对应于预先发射信息组的信息组,即使表示预先发射信息组的(常规或基础)信号已受第二闪动信号(闪动信号)的叠加或由第二信号(闪动信号)产生的击穿现象,例如,替换一些MTU的影响。
开关键控是一种发射机沿着由代码字占用的自由度的子集集中它的能量的调制技术。例如,脉冲位置调制是开关键控的一个示例,其中发射机仅在那些传递“1”的位置上使用能量,并且当传递“0”时切断。通过在M个位置之一集中能量,脉冲位置调制可以传递log2(M)个比特。通过使用正负脉冲,可以传递额外的比特。脉冲位置调制的例子如图3所示。图3表示一个有32个隙,例如,典型的独立隙302的图示300。能量集中在第17个隙306上,并由脉冲304表示。在图3中,如果脉冲304只可位于一个方向例如正方向,则使用32个位置或隙,可以传递5个比特的信息。在图3中,如果脉冲304可以为正或者负,则使用32个位置或隙,可以传递6个比特的信息。一般来说,在开关键控的普遍情况下,可以以两种方法来传递信息——第一,由代码字占用的自由度之内的能量的位置,第二,包含在占用该位置的信号内的信息。例如,如果手机借助于一个基准信号可以估计信道,则除了在普遍的开关信号的能量的位置上编码的信息之外,可以在相位和/或振幅中编码信息。在本文档的余下部分中,所述普遍的开关键控的形式将被称为闪动信令。通常,在闪动信令的范例中,能量的集中限于可用自由度的一个小的子集。
依照本发明,可以使用闪动信令。将描述的是依照本发明的闪动编码的简单例子。考虑本发明的一个应用于使用BPSK信令的数字通信系统的实施例。在这里考虑的例子中,假定空中链路资源包括16个符号。例如,在典型的扩频OFDM多路访问系统中,16个空中链路资源符号可以是在一个OFDM符号周期内的16个正交的音调,或者是在16个OFDM符号周期内的一个音调,或者任何适当的音调与符号周期的组合(例如,在4个OFDM符号周期内的4个音调)。
在图4中,叠加的信号400包括一个使用能量横跨所有16个BPSK符号的代码字来传递的常规信号420,如图4中由没有阴影的小矩形所示。可以使用,例如卷积码,来构造常规的代码字。假定受保护的信号被要求传递5个信息比特。在本实施例中,可以使用如图4中由单个有阴影的较大矩形所示的高能量符号430的位置,来传递5个受保护的比特。受保护的信号包括一个以高功率发射的BPSK符号430,同时将能量分布在16个符号上的常规信号420叠加在其上。注意,受保护的信号的BPSK符号可以位于16个不同符号位置中的任意一个。作为参考地,在图4中识别第一个符号401和第16个符号416。例如,在图4中,在第9个符号上发射BPSK符号。因此,该符号位置传递5个受保护的信息比特中的4个比特。此外,BPSK符号的相位(例如,正负号)传递第5个受保护的比特。
为了看到本发明的所述编码方案胜过传统的重叠编码方案的优势,重新考虑较强的接收机的设计。较强的接收机可以使用相继解码的概念。较强的接收机首先解码受保护的信号,然后将它从接收的合成信号中除去,最后解码常规信号,或者作为替代地,向较弱的信号接收机发信号,以丢弃其上检测到较大信号的音调。注意使用本发明的新的编码方案,即使消除并不理想,但对常规代码字的损坏限于一个或几个符号,因此接收机可以最小化该毁坏的不利影响。例如,在解码过程中,接收机可以忽略由常规信号占用的符号。在此情况下,消除操作被简化为引起在特定符号位置上的消除,而有可能使用纠错码来校正损失。
在上述图4的例子中,16个空中链路资源符号的每个BPSK符号表示一个自由度。常规信号在所有的16个自由度上分配它的能量。同时,受保护的信号的每个代码字在16个自由度之一上集中它的能量。注意如上述实施例所定义的,闪动信号是一个正交码。然而,本发明并不决定于代码字的任何正交特性。
将描述的是依照本发明实施的供编码使用的发射机设计。上述的例子表示了本发明的特征和方法,其可以在各种通信系统中实施和利用。这种通过在可用自由度的一个小子集之间集中受保护的信号的能量来叠加信号,同时在基本上所有的可用自由度之间分配常规信号的能量的方法,在本文档中被称为闪动叠加编码。在本讨论中,将受保护的代码字表示为“闪动信号”,并且将常规代码字表示为“常规信号”或“基础信号”。尽管一般来说,本方法使用闪动信号来发射受保护的信息,而使用常规信号发射常规信息,但在本发明的一些实施例中,这可以是相反的。
依照本发明,闪动信令提供了一种允许在实际的接收机中很好地获得叠加编码增益的叠加信号的方法。一般来说,使用相同的发射资源组来传递闪动信号和常规信号。然而,闪动信号的每个代码字在可用自由度的小的子集上集中它的能量。常规信号的每个代码字可以在每个可用自由度上扩展它的能量。为了容易地检测和解码闪动信号,希望它的能量较高,在一些实施例中该能量显著地高于在对应于闪动信号的自由度的选择子集中常规信号的能量。即使当常规信号的总能量高于闪动信号的总能量时,这个相对较高的能量集中在选择的高速子集中也是可行的。最后,为了容易地检测和解码常规信号,闪动信号对常规代码字的影响应当是最小的。换句话说,由闪动信号占用的自由度的选择子集中的能量损失应当对解码常规代码字有小的影响。
闪动信号和常规信号的发射功率的选择根据若干因素,包括(a)高速和常规信号这两者的目标接收机的SNR;(b)高速和常规信号传递的信息速率;以及(c)高速和常规信号的代码的构造方法。一般来说,可以独立地选择功率以满足它们自己的鲁棒性和编码性能要求。而且,可以以机会主义的方式来执行闪动信令以获得最大的灵活性。特别地,发射机可以机会主义地选择不发射闪动信号,并使用它的可用功率的大部分来发射常规信号。作为替代地,发射机可以选择使用它的可用功率的大部分来机会主义地发射闪动信号,并选择不发射常规信号。
现在将讨论依照本发明实施的供编码使用的接收机设计。在本发明的一个实施例中,接收机首先解码闪动信号。该闪动信号在接收机处是可检测的,因为它是以与自由度的小子集中的常规代码字相比高得多的功率接收的。然后,接收机在试图解码常规代码字之前,消除闪动信号的影响。在传统叠加编码的情况下,消除包括解码受保护的代码字并将它从接收的合成信号中除去。在闪动叠加编码中,在一个实施例中,当接收机将解码常规信号时,接收机完全丢弃在解码的闪动信号代码字的自由度的子集中接收的信号。由于常规信号在所有的自由度中分配它的信号能量,鉴于解码器的检错及纠错能力,在自由度的小的子集中消除信号能量将有很少或可忽略的对解码常规代码字的性能影响。
在本发明的另一实施例中,接收机在解码常规信号之前,并不明确地消除闪动信号。作为替代地,接收机直接从接收的可能包括闪动信号的合成信号中解码常规信号。接收机使用软衡量标准外加饱和与反转限制。因此,闪动信号用于饱和或基本上消除它所占用的自由度的子集中的信号分量,但对解码常规代码字的性能有可忽略的影响。而且,如果接收机并不对闪动信号感兴趣,接收机可以仅仅解码常规信号而无需解码闪动信号,在此情况下接收机甚至可以不必意识到闪动信号的存在,而可以将其解释和/或认为是脉冲或背景噪声。
下面将讨论本发明的控制信道的实施例。在本节中,将描述应用于典型系统的控制信道的本发明实施例。在本例中,在如图17所示的蜂窝无线系统1700中,控制信道从基站1702通过下行链路广播信道向多个移动用户1708、1710传送信息。在大多数蜂窝无线系统中,控制信道是以广播功率来发射的,因为它们受有最弱信道的移动用户的约束。在此情况下,闪动信号发送非常适合于该应用,并引起显著的功率减小而没有或很少的鲁棒性的损失。
假定可以将在控制信道上承载的信息分成多个子集,每个子集指的是系统中的移动用户的一个或多个子集。在本例中,我们假定可以将控制信道信息分成两个子集。将第一子集表示为“常规信息”,并且是打算供那些感受中等至较高的下行链路SNR的移动用户使用的。表示为“受保护的信息”的第二子集,是打算供感受非常低的下行链路SNR的用户子集使用的。
在这里考虑的例子中,假定空中链路资源包含32个符号。例如,在典型的扩频OFDM多路访问系统中,空中链路资源可以是在一个OFDM符号周期内的32个正交的音调,或者是在32个OFDM符号周期内的一个音调,或者任何适当的音调与符号周期的组合(例如,在8个OFDM符号周期内的4个音调)。
如图5的叠加信号500中所示的,使用一个32个符号的代码字来发射在本例中由没有阴影的小矩形表示的常规信息540。作为参考地,表示出第一个符号位置501和第32个符号位置532。所述代码字以足以被感受中等或较高SNR的用户子集解码的功率来发射。较低SNR的用户可能不能解码所述代码字,由此该功率要求与所述代码字必须由每个移动用户解码的情况相比低得多。在移动用户可感受到变化几个数量级的SNR的无线环境中,解码代码字的能力中的这一差异特别正确。使用如图5中所示的、由4个有阴影的大矩形表示的闪动信号550,来发射打算供低SNR移动用户的子集使用的受保护的信息。在本实施例中,假定每个受保护的代码字在4个符号位置502、512、520、530上集中它的能量。假定在本例中,这组4个符号位置是不相重叠的,这产生8个正交的组,每组包括4个符号位置。然而一般来说,在其它结构中,代码字组可以部分或完全地重叠。从在蜂窝无线系统中提供多样性的观点看,在多于一个符号位置上集中受保护的代码字的能量是重要的,并提供了更高的承受信道衰落和干扰的保护程度。
在图5的例子中,每个受保护的代码字子集仅通过它的位置,传递3个比特。使k为8个不同的空中链路资源符号组的索引。假定从0至31来索引32个空中链路资源符号。对于k=0、...、7时,第k个符号集位置的空中链路资源符号是符号k、k+8、k+16和k+24。
当闪动信号代码字包括多个符号时,可以使用那些符号来传递额外的信息比特。使{q0、q1、q2、q3}表示将使用八个空中链路资源符号组中任意一个的四个空中链路资源符号来发射的四个符号。在一个实施例中,可以使用如表1所列出的4个长度为4的Walsh代码来构造{q0、q1、q2、q3}。q0、q1、q2或q3的选择产生通过4个代码字的选择传递的额外的2个比特。
所述信息可以以简单的方式在移动接收机处解码。由于可用于识别3个比特的符号集位置的闪动信号的较高能量,移动接收机可以识别闪动信号的位置。然后,它提取包含闪动信号的符号并解码剩余的2个比特。所述代码字结构的例子产生具有非均匀误码保护性质的代码字处理。由闪动信号的位置分辨的比特是以高可靠性接收的。当通过无线信道来传递闪动信号时,这是特别准确的,因为四个符号位置中只有一个需要被接收以指定代码字子集。q0、q1、q2或q3的检测对来自信道衰落或干扰的误码更易受影响。作为替代地,接收机可以采用更复杂的解码器,例如最大似然译码器,来解码闪动信号的全部内容。同样,本发明并不决定于如本例所示的在闪动信号上的正交码的使用。
这一概念同样可被以简单的方式推广到多元的调制组。例如,如果将使用BPSK调制,可以使用闪动信号代码字的相位(即正负号)再多发送一个比特。而且,如果将使用QPSK调制,可以使用同相或正交信令的选择,来发送额外的一个比特。
表1 在闪动信号上的正交码的结构

现在将描述依照本发明的多路访问信道中的闪动信令。尽管到目前为止在广播信道范例中描述了本发明,但它同样适用于多路访问信道的结构中。现在将在作为多路访问信道的典型系统的蜂窝上行链路的环境下描述本发明的所述特征。考虑一个在上行链路上从两个移动发射机接收信号的基站接收机。由于基站1702还是协调实体,它可以以相对的感应把两个发射机区分开。假定在有较低路径损耗的信道上工作的移动发射机被指定为“较强的”发射机,而感受较高路径损耗的另一发射机被认为是“较弱的”发射机。基站指示较弱的发射机以跨越每个自由度分配信号能量来发射它的信号,而较强的发射机被指示在几个自由度内集中它的发射能量。在基站接收机1802的接收的合成信号600如图6所示。基站接收机1802在解码由没有阴影的小矩形表示的、从“较弱的”发射机发射的弱信号620之前,可以轻易地解码并消除由有阴影的大矩形表示的、从“较强的”发射机发射的闪动信号610。
将移动发射机分类为“较强的”或“较弱的”,并非静态的,而是相对的界定,以允许系统之内的灵活性。替代于或除了在上行链路信道上感受的路径损耗,移动发射机的“较强的”或“较弱的”概念可以与其它标准相关。在一些实施例中的所述对“较强的”或“较弱的”移动发射机进行标记或分类,可被应用于蜂窝上行链路中的干扰成本的环境中。例如,可以将在其它单元中产生高的上行链路干扰的移动发射机认为是“较弱的”发射机,并因此可由基站指示通过跨越每个自由度分配能量,来发射它的信号。而另一方面,可以将由于位置而导致的有低干扰成本的移动发射机认为是“较强的”发射机,并可以使用闪动叠加编码以在“较弱的”发射机的信号上叠加它的信号。作为替代地,在一些实施例中,可以根据设备约束例如电池功率或状态,将移动发射机分类为“较强的”或“较弱的”。
将描述的是依照本发明的方法和装置的典型系统中的闪动信令。在一个典型的无线数据通信系统中,空中链路资源通常包括带宽、时间和功率。传送数据和/或语音业务的空中链路资源被称为业务信道。在典型的系统中,数据通过业务信道部分(简称为业务部分)中的业务信道来传递。业务部分可以作为可用业务信道资源的基本或最小的单元。下行链路业务部分从基站向无线终端传送数据业务,而上行链路业务部分从无线终端向基站传送数据业务。在典型的系统中,业务部分包括在有限的时间间隔内的许多频率音调。
在用于解释本发明的典型系统中,在与基站1702通信的无线终端1708、1710之间动态地共享业务部分。安排调度功能,例如基站1800中的模块1838,根据许多标准向移动终端1708、1710之一,分配每个上行链路和下行链路部分。可以从一个部分到另一部分向不同的用户分配业务部分。例如,在图7中,在纵轴702上的频率相对于横轴704上的时间的图形700中,基站调度程序将以垂直线阴影表示的部分A 706分配给用户#1,将以水平线阴影表示的部分B 708分配给用户#2。基站调度程序可以依照一般可能随时间变化的不同用户的业务需要和信道状态,快速地向它们分配业务信道部分。这样,以逐个部分为基础,在不同的用户之间,有效地共用并且动态地分配业务信道。在典型的系统中,在包括一系列分配部分的分配信道中传输业务信道部分的分配信息。在蜂窝无线系统例如图17中所示的系统1700中,通常在下行链路中发射分配部分。有用于下行链路业务部分的分配部分,以及独立的上行链路业务部分的分配部分。每个业务部分与唯一的分配部分相关。相关的分配部分传递业务部分的分配信息。分配信息可以包括被分配来使用所述业务部分的用户终端的标识符、以及用于所述业务部分中的编码和调制方案。图8包括一个有表示频率的纵轴802和表示时间的横轴804的图形800。图8表示两个分配部分,分配部分A′(AS A′)806和分配部分B′(AS B′)808,它们传递业务部分A(TS A)810和B(TS B)812的分配信息。分配信道是共用的信道资源。用户,例如无线终端,接收在分配信道中传递的分配信息,然后依照分配信息来使用业务信道部分。
由在预定的无线终端1708、1710中的接收机来解码由基站1702在下行链路业务部分上发射的数据,而由基站1702中的接收机来解码由分配的无线终端1708、1710在上行链路部分上发射的数据。通常,发射的部分包括冗余比特,以有助于接收机确定是否正确地解码了数据。这是要做的,因为无线信道可能不可靠,并且有用的数据业务通常有高度的完整性要求。
由于无线系统中的干扰、噪声和/或信道衰落,业务部分的发射可能成功或者失败。在典型系统中,业务部分的接收机发送一个确认,以表示是否正确地接收了该部分。在包括一系列确认部分的确认信道中传输对应于业务信道部分的确认信息。每个业务部分与唯一的确认部分相关。对于下行链路业务部分来说,确认部分位于上行链路中。对于上行链路业务部分来说,确认部分位于下行链路中。确认部分至少传递一比特的信息,例如一个比特,以表示是否正确地接收了相关的业务部分。由于在上行链路业务部分和确认部分之间的预定的关联,可能无需在确认部分中传递其它信息,例如用户标识符或部分索引。确认部分通常是由使用相关业务部分的用户终端,例如无线终端1708、1710,而非其它用户终端使用的。这样,在两种链路(上行链路和下行链路)中,确认信道是共享的资源,因为它可以由多个用户使用。然而,通常没有由使用共用的确认信道而导致的争用,因为通常在哪一个用户终端将使用特定确认部分中没有歧义。图9表示一个下行链路业务部分的图形900,其包括一个表示频率的纵轴902、一个表示时间的横轴904、一个第一业务部分即业务部分(TS)A 906以及一个第二业务部分TS B 908。图9还表示了上行链路确认(ACK)部分的第二图形950,其包括一个表示频率的纵轴952以及一个表示时间的横轴954。图9进一步表示了两个上行链路确认部分,A″956和B″958,其从无线终端1708向基站1702传递下行链路业务部分A906和B 908的确认信息。
如上所述,典型系统1700可以是一个由基站1702在下行链路以及上行链路上动态地分配业务部分的分组交换蜂窝无线数据系统。现在将在蜂窝下行链路的环境中描述典型系统1700的本发明应用。假定基站1702以时隙的方式每次可以分配最多到两个业务部分。在分配信道上广播这些部分将打算供哪个用户使用的选择。进一步不失一般性地假定两个用户中的一个以与另一用户相比较低的SNR运转。关于这一点,两个用户被认为是相互的“较强的”和“较弱的”。
图10的图形表示纵轴1002上的频率相对于横轴1004上的时间。图10还包括一个A(常规)分配部分(ASGr)1006、一个A业务信道部分(TCHa)1008、一个A(高速)确认部分(ACKf)1010、一个B高速分配部分(ASGf)1005、一个B业务信道部分(TCHb)1007以及一个B确认部分(ACKr)1009。ASGf 1005在ASGr 1006的频谱范围之内。ACKf 1010在ACKr 1009的频谱范围之内。
如图10所示,在分配信道上使用常规信号发射用于较强的用户(ASGr)1006的分配信息,而使用闪动信号来传递用于较弱的用户的信息(ASGf)1005。较强的接收机从它的(常规)分配中得知它将接收一个表示为TCHa 1008的业务部分,而相似地,通过闪动信号分配(ASGf)1005,较弱的接收机被告知表示为TCHb 1007的它的对应业务部分。在典型的系统中,移动接收机1708、1710在上行链路上向基站1702提供一个反馈确认,以表示接收的业务部分的状态。
如图10所示,这两个移动用户1708、1710可以使用闪动信号来叠加它们的确认信号。出于这一目的,将在下行链路上的“较强的”接收机假定为在上行链路上的较强的发射机,由此使用闪动信号(ACKf)1010来传递它的确认。较弱的接收机在每个自由度上分配它的确认信号的能量,并将其作为常规信号(ACKr)1009向基站1702传递。
现在针对闪动信令,来讨论蜂窝无线系统的容量影响。蜂窝无线系统通常受干扰的约束,并且它们的容量取决于环境干扰量及其特性。使用闪动信令对干扰水平有非常重要的影响。在能量相同的所有噪声信号当中,高斯噪声产生最低的容量,这是众所周知的信息理论结果。闪动信号,由于它们的结构,是有峰的并且本质上高度地非高斯。因此,给定相同的干扰总量,当无线系统中的一个单元使用闪动信号时,这些信号对其它单元的影响(如干扰)少于如果使用像高斯的信号的情况。这适用于蜂窝无线系统的上行链路以及下行链路路径。
图11表示依照本发明的可以使用一个传输块来发射的两个典型信息组,第一信息组1150和第二信息组1160。第一信息组1150包括信息A11151、信息A21152、信息AN1153;第二信息组1160包括信息B11161、信息B21162、信息BM1163。第一信息组可以是,例如用户数据、分配或确认。第二信息组可以是,例如用户数据、确认或分配。图11还表示最小传输单元(MTU)的图形1100,其中纵轴表示频率音调,横轴1104表示时间。在图11中,每个小方框指的是一个特定的MTU单元,例如区域1112,并表示可用于发射信息的1个自由度。横轴上的每个隙,例如隙1110,表示发射MTU的时间,例如OFDM符号时间。图11中的每个正方形,例如典型正方形1114,表示一个MTU单元。每个MTU对应于一个唯一的用于发射信息的资源组合,所述资源组合包括时间、频率、相位和展频码中的至少两个。在OFDM系统中,MTU可以是随时间的频率或相位,例如在OFDM音调符号中的同相或正交分量。在CDMA系统中,MTU单元可以是,例如分配给时间单元的展频码。图11所示的典型传输块1106是24个MTU的组。在第一组最小传输单元上定义用于第一信息组1150的信息。第一组最小传输单元是由那些有从左向右上升的对角线1116的正方形识别的。典型的第一组MTU包括15个MTU,例如,典型的MTU 1120在第一组MTU中。依照本发明,第一组MTU包括传输块1106中的至少大部分MTU。在一些实施例中,第一组MTU包括传输块1106中的至少75%的MTU。图11的例子是包括15个第一组MTU/20个方框1106的MTU总数=75%这样的实施例。在第二组最小传输单元上定义用于第二组信息1160的信息。第二组最小传输单元是由那些有从左向右下降的对角线1118的正方形识别的。典型的第二组最小传输单元包括3个MTU。依照本发明,第二组MTU包括与第一组MTU相比更少的MTU,并且第一和第二组MTU中的一些MTU是相同的。例如,在图11中,2个MTU,MTU 1122和MTU 1123,被包括在两个组中。在一些实施例中,第二组MTU少于第一组MTU的MTU数量的一半;图11是这种实施例的示例。可以例如,从基站1702向无线终端1708、1710,使用包括在第一和第二组最小传输单元中的最小传输单元,来传递在第一和第二信息组1150、1160中的信息。
图12表示纵轴1202上的最小传输单元(MTU)相对于横轴1204上的时间的图形1200。图12表示一个包括1600个MTU的典型传输块1205。第一信息组可以由包括传输块1205中的1600个MTU的大部分的第一组MTU来表示。依照本发明,传输块1205可被细分为子块。在图12中,MTU的传输块1205被分为16个MTU的子块,每个子集包括100个MTU。每个小正方形,例如典型的正方形1206,包括一个MTU的子块。在一些实施例中,第一组MTU可被细分为小的信息组,每组被一个独立的子块之内的第一组MTU表示。在组合中,所述小的信息组表示在大传输块1205的大部分上编码的第一组信息。典型子块1207表示一个典型子块的100个典型MTU。典型子块1208表示另一子块的100个典型MTU。并未画出传输块1205的其它子块的各个MTU,但可假定每个其它子块与典型子块1207相似。在子块中的每个圆表示一个MTU。从左向右上升而贯穿一个圆的每条对角线表示一个用于表示第一信息组中的信息的独立MTU。从左向右下降而贯穿一个圆的每条对角线表示一个用于表示第二信息组中的信息的独立MTU。在图12中,典型的MTU 1208是用于表示第一信息组的MTU之一;典型的MTU 1211是用于表示第一信息组的另一MTU。在特定情况下,典型的MTU 1209并不用于表示第一或第二信息组中的信息,尽管它在典型的传输块1205的范围之内。也就是说,在所示的特定时间点,MTU 1209并不用于传递对应于第一或第二信息组的信号。典型的MTU 1210用于表示同时在第一信息组和第二信息组中的信息。
在图12的例子中,每个子块,例如子块1207,可用于表示唯一地代表在MTU的小子块上唯一地定义的、第一信息组的一部分的信息。然而,第二信息组可以表示不同的信息组,例如10比特的信息。为了唯一地传递10比特的信息,可能需要210=1024个可能的最小传输单元。可以使用有1600个可用的可能的最小传输单元的传输块1205,并且向单个MTU分配以表示10比特信息的特定值。在本例中,当发射信息时,MTU 1210是唯一的用于传递第二信息组的信息的MTU。图12表示了每个包括在第二组MTU中的MTU同时也被包括在第一组MTU中的情况。
图131301表示一种依照本发明,用于发射两个信息组,例如,图11的信息组1150和1160的方法。图13包括一个第一设备,例如含有一个发射机即发射机1 1304的设备1 1302,以及一个第二设备,例如含有一个发射机即发射机2 1310的设备2 1308。每个设备可以是,例如图17所示类型的基站或无线终端。由从发射机1 1304发射的信号,例如信号1 1306,来传递第一信息组1150。信号1 1306有时被称为基础或常规信号。由从发射机2 1310发射的信号,例如信号2 1312,来传递第二信息组1160。信号2有时被称为闪动信号。在图13的典型情况下,信号1 1306将使用第一组最小传输单元,而信号2 1312将使用第二组最小传输单元。由发射机1 1304发射的第一组MTU中的一些将与第二组MTU中的一些相同,这引起信号1 1306和信号21312的一些叠加。
图14表示两种依照本发明,用于发射两个信息组,例如,图11的信息组1150和1160的方法。在图14中描述的第一种方法中,一种典型的设备3 1402,例如基站或无线终端,包括一个能够发射同时分别对应于第一和第二信息组1150、1160的信号的发射机,即发射机31404。在图14中,信号3 1406对应于第一信息组1150并使用第一组MTU,而信号4 1408对应于第二信息组1160并使用第二组MTU。信号3 1406有时被称为基础信号或常规信号,而信号4 1408有时被称为闪动信号。以每一最小传输单元为基础、以与信号3 1406相比较高的功率水平发射信号4 1408。在一些实施例中,发射信号4 1408的功率水平至少比发射对应于信号3 1406的最小传输单元的功率水平大3db。在一些实施例中,可以改变用于发射信号3 1406的最小传输单元的发射功率水平。还可以改变用于发射信号4 1408的MTU的发射功率水平。
在图14中描述的第二种方法中,一种典型的设备即设备4 1410,例如基站或无线终端,包括一个发射机即发射机4 1412。发射机4 1412包括一个第一信号模块1411和一个第二信号模块1413。第一信号模块1411生成对应于第一信息组1150的信号5 1414。第二信号模块1413生成对应于第二信息组1160的信号6 1416。在发射信号1420中的MTU之前,由组合器模块1418组合信号5 1414和信号6 1416。信号5 1414有时被称为基础或常规信号,而信号6 1416有时被称为闪动信号。组合器模块1418可以执行两个信号,即信号5 1414和信号6 1416的叠加。作为替代地,组合器模块1418可以比较将用于发射信号51414的MTU组与将用于发射信号6 1416的MTU组。组合器模块1418可以将信号6 1416中的信息引导进每个被请求的MTU;然而,模块1418可以将已被分配来传递信号6 1416的那些MTU排除出分配给信号5 1414的MTU组。例如,在图11的例子中,可以使MTU 1122和MTU 1123拒绝传递信号5 1414的信息。这样,信号6 1416中的第二信息组1160击穿或替代(将占用相同的MTU的)信号5 1414中的第一信息组1150。该实施方式假定接收机有足以恢复有些信息未被发射的原始的第一信息组1150的检错及纠错能力。这样,取代使用实际的叠加,可以发射对应于第二组的信号,以在实际发射之前丢弃重叠的第一组信号,而无需将其叠加在第一组的信号上。在这种情况下,用于传递第二信息组的MTU击穿在共用的传输块中被选择来发射第一信息组的MTU组。
图15表示一种典型的设备,即设备5 1502,例如基站或无线终端,依照本发明,其可用于接收合成信号并获得两组接收的信息,即信息A′1516和信息B′1518。信息A′1516是对应于第一组原始的预先发射信息(即图11的信息A 1150)的恢复的信息组。信息B′1518是对应于第一组原始的预先发射信息(即图11的信息B 1160)的恢复的信息组。设备5 1502包括一个含有一个脉冲噪声滤波1510和一个纠错模块1512的第一接收机,即接收机1 1506。含有随时间的流逝一起发射的信号,例如,图13的信号3 1406(常规或基础信号)和图13的信号4 1408(闪动信号)的合成信号,即信号8 1520,由接收机1 1506来处理,其中脉冲噪声滤波1510过滤或拒绝对应于来源于第二信息组1160的MTU单元的信号。对应于第一信息组1150的MTU组中的大部分MTU所对应的剩余信号(常规信号)是通过纠错模块1512处理的,其恢复“丢失的信息”,从而接收的信息组A′1516是预先发射信息组A 1150的好的再现。设备5 1502还包括一个含有一个背景噪声滤波1514的第二接收机,即接收机2 1508。合成信号8 1520还进入接收机2 1508,其中背景噪声滤波1514将对应于第一信息组1150,例如,信号3 1406的信号视为噪声,并除去或拒绝该低电平信号,留下信号(例如闪动信号),由此预先发射的第二信息组B 1160的好的再现可被重现为接收的信息组B′1518。
与设备5 1502相似,如图15所示的第二设备即设备6执行合成信号接收和信息恢复。设备6 1532包括一个第一接收机即接收机11536和一个第二接收机即接收机2 1538。接收机1 1536包括一个含有一个脉冲滤波1544和纠错模块1546的解码器,即解码器1 1540。接收机2 1538包括一个含有一个背景噪声滤波1548的解码器,即解码器2 1542。设备6 1532的操作与关于设备5 1502所描述的相似,除了在设备6 1532中进行额外的解码。在操作期间,接收机1536和1538独立且并行地运转。第一接收机1536将闪动信号视为脉冲噪声并拒绝作为脉冲噪声的高速符号,或执行其它的操作,例如将高速分量作为任何其它脉冲噪声信号可能被处理的饱和操作。在将较低的功率信号视为背景噪声时,接收机2 1538解码闪动信号。合成信号9 1554与同时包括常规和闪动信号的合成信号8 1520相似。接收的信息组A″1550对应于图11的原始的第一预先发射信息组A 1150的好的再现。接收的信息组B″1552对应于图11的原始的第二预先发射信息组B1160的好的再现。
图16表示另一种典型的设备即设备7 1562,例如基站或无线终端,其包括一个第一接收机即接收机1 1563和一个第二接收机即接收机2 1564。接收机1 1563包括一个含有一个丢弃模块1570和一个纠错模块1566的解码器1565。接收机2 1564包括一个含有一个背景噪声滤波1567和一个第二信号MTU标识符模块1568的解码器1566。合成信号10 1573被接收并进入接收机2 1564。在接收机2 1564的解码器1566中,信号可以由背景滤波1567过滤,并且信息被解码并作为信息组B1572,即图11的原始的预先发射信息组B 1160的再现而输出。此外,第二信号MTU标识符模块1568识别一组对应于第二(闪动)信号的MTU 1569,并向接收机1 1563的解码器1565发送所述信息1573。在一些实施例中,识别的MTU组1573是在不同的符号时间的音调的同相和正交分量之一。
接收机1 1563中的解码器1565的丢弃模块1570接收识别的MTU组1573,并在信息进入纠错模块1566之前,拒绝或除去来源于那些MTU单元的信息。作为替代地,可以将识别第二或“闪动”信号的MTU的信息直接传递到纠错模块1566,纠错模块1566可以从那些MTU中除去影响。信息组A1571对应于图11的第一预先发射信息组1150的再现。丢弃识别的MTU以及它们对较低功率信号的影响,与需要在可以恢复基础信号之前从接收的信号单元中精确地消除高功率信号分量的先有技术的叠加解码技术成鲜明的对照。
尽管在OFDM系统的环境下进行了描述,但本发明的方法和装置适用于广泛的通信系统,包括许多非OFDM和/或非蜂窝式的系统。
在不同的实施例中,使用一个或多个模块来实施在此描述的节点,以执行对应于本发明的一个或多个方法的步骤,例如信号处理、报文生成和/或发射步骤。这样,在一些实施例中,本发明的各个特性是使用模块来实施的。这种模块可以使用软件、硬件或者软件和硬件的组合来实施。上文描述的方法或方法步骤中的许多可以使用机器可执行指令,例如,包括在机器可读介质例如存储设备如RAM、软盘等之内的软件来实施,以控制机器,例如有或者没有额外硬件的通用计算机,从而,例如在一个或多个节点中,实施全部或一部分上文描述的方法。因此,其中需要说明的一点是,本发明针对一种包括机器可执行指令以引起机器,例如处理器及相关硬件,执行一个或多个上文所述方法的步骤的机器可读介质。
对于那些熟悉技术的人来说,鉴于本发明的上述描述,上文描述的本发明的方法和装置的许多额外的变化将是显而易见的。这种变化将被认为包括在本发明的范畴之内。本发明的方法和装置可以,并且在不同的实施例中是,与CDMA、正交频分复用(OFDM)和/或各种其它类型的可用于提供接入节点和无线终端之间的无线通信链路的通信技术一起使用。在一些实施例中,基站使用OFDM和/或CDMA与移动节点建立通信链路。在不同的实施例中,将无线终端作为笔记本电脑、个人数字助理(PDA)或其它便携式设备包括接收机/发射机电路和逻辑和/或例行程序来实施,以实现本发明的方法。
本发明的技术可以使用软件、硬件和/或软件和硬件的组合来实施。本发明针对装置,例如实施本发明的无线终端、基站、通信系统。它还针对方法,例如依照本发明,控制和/或操作无线终端、基站和/或通信系统例如主机的方法。本发明还针对机器可读介质,例如ROM、RAM、CD、硬盘等,其包括用于控制机器来实施依照本发明的一个或多个步骤的机器可读指令。
权利要求
1.一种使用一个传输块来发射至少第一和第二组信息的方法,所述传输块包括多个最小传输单元,每个最小传输单元对应于用于发射信息的一个唯一的资源组合,所述资源包括时间、频率、相位以及展频码中的至少两个,该方法包括定义用于传递所述第一组信息的第一组所述最小传输单元,所述第一组至少包括所述传输块的大部分;定义所述最小传输单元的第二组,以用于传递所述第二组信息,所述第二组最小传输单元包括与第一组相比较少的最小传输单元;第一和第二组最小传输单元中的至少一些最小传输单元是相同的;以及使用包含在所述第一和第二组最小传输单元中的最小传输单元,来传输第一和第二组信息。
2.权利要求1的方法,其中所述信息至少是用户数据和包括确认及分配信息的控制信息中的至少之一。
3.权利要求1的方法,其中传递第一和第二组信息包括,从不同的发射机分别发射对应于所述第一和第二组信息的信号。
4.权利要求3的方法,其中所述不同的发射机被放置在不同的设备上。
5.权利要求1的方法,其中对应于所述第一和第二组信息的信号是从同一个发射机发射的。
6.权利要求1的方法,其中所述第一组最小传输单元包括所述传输块中的最小传输单元总数的至少75%。
7.权利要求6的方法,其中所述第二组最小传输单元少于所述第一组最小传输单元的最小传输单元数量的一半。
8.权利要求6的方法,其中包含在第二组最小传输单元中的每个最小传输单元还被包含在所述第一组最小传输单元中。
9.权利要求1的方法,其中传递第一和第二组信息包括使用所述第二组最小传输单元中的每个最小传输单元,来发射所述第二组信息,以及其中传递第一组信息包括发射所述第一组信息,包括发射至少一些所述第一组最小传输单元。
10.权利要求9的方法,其中所述至少一些第一组最小传输单元仅包括未被包括在所述第二组最小传输单元内的最小传输单元。
11.权利要求9的方法,其中所述至少一些所述第一组最小传输单元包括所述第二组中的最小传输单元。
12.权利要求11的方法,其中至少分别使用第一和第二信号来传递第一和第二组信息,并且其中所述方法进一步包括组合第一和第二信号,以在使用包含在所述第一和第二组最小传输单元中的最小传输单元来发射合成信号之前形成所述合成信号。
13.权利要求1的方法,其中以每一最小传输单元为基础、与所述第一信号相比较高的功率水平发射第二信号;以及其中传递第一和第二组信息包括使用最小传输单元包括使用至少一些包含在所述第一组最小传输单元中的最小传输单元来发射一个对应于第一组信息的第一信号;以及使用所述第二组最小传输单元中的最小传输单元来发射一个对应于第二组信息的第二信号。
14.权利要求13的方法,其中发射对应于第二信号的最小传输单元的功率水平至少比发射对应于第一信号的最小传输单元的功率水平大3dB。
15.权利要求13的方法,进一步包括改变用于发射所述第二信号的最小传输单元的发射功率水平。
16.权利要求13的方法,进一步包括改变用于发射所述第一信号的最小传输单元的发射功率水平。
17.一种用于接收包括随时间一起发射的第一和第二信号的合成信号的装置,所述第一和第二信号共用重叠的通信资源组,其中所述重叠的资源包括时间、频率、相位和展频码中的至少两个,所述装置包括一个用于从通信信道中接收所述合成信号的第一接收机,所述第一接收机包括一个用于将所述合成信号中对应于所述第二信号的部分视为脉冲噪声的滤波器;以及一个与所述第一接收机并行设置的第二接收机,用于从所述通信信道中接收所述合成信号,所述第二接收机包括一个用于将所述合成信号中对应于所述第一信号的部分视为背景噪声的滤波器。
18.一个权利要求17的装置,其中所述装置包括纠错装置,用于恢复由于将所述合成信号中对应于所述第二信号的部分视为脉冲噪声而丢失的信息。
19.权利要求17的方法,其中所述第一和第二信号共用相同的频带。
20.一种用于接收包括随时间一起发射的第一和第二信号的合成信号的装置,所述装置包括一个用于接收合成信号的第一接收机,所述第一接收机包括i)一个用于从所述接收的合成信号中过滤脉冲噪声的第一滤波器模块,所述信号中对应于第二信号的部分被所述滤波器模块视为脉冲噪声;以及ii)一个连接到所述第一滤波器模块的用于解码对应于第一信号的信息的第一解码器,所述第一解码器确定在第一组最小传输单元上接收的合成信号值;以及一个第二接收机,其包括i)一个用于从所述接收的合成信号中过滤背景噪声的第二滤波器模块;以及ii)一个连接到所述第二滤波器模块的用于解码对应于第二信号的信息的第二解码器,所述第二解码器确定在第二组最小传输单元上接收的合成信号值,所述第二组最小传输单元中的大部分被包括在所述第一组传输单元中。
21.一种用于接收包括随时间一起发射的第一和第二信号的合成信号的装置,所述装置包括一个用于接收合成信号、并识别在所述合成信号中对应于所述第二信号的最小传输单元的第二接收机,所述第二接收机输出信息以识别所述识别出的对应于第二信号的最小传输单元;以及一个用于接收所述合成信号的第一接收机,所述第一接收机包括一个用于解码所述合成信号中对应于所述第一信号的部分的解码器,所述解码器接收所述信息,以识别所述识别出的对应于第二信号的最小传输单元、并丢弃所述识别出的对应于第二信号的最小传输单元。
22.一个权利要求21的装置,其中所述识别出的对应于第二信号的单元是在不同符号发射时间的音调的同相和正交分量之一。
23.一个权利要求21的装置,其中所述第一接收机包括纠错电路,以用于恢复由于丢弃所述识别出的对应于第二信号的传输单元而丢失的第一信号信息。
全文摘要
使用包括多个最小传输单元(MTU)的相对较大的传输块,来发射第一和第二组信息,其中每个MTU对应于唯一的资源组合。所述MTU的第一组用于传递所述第一组信息,所述第一组MUT包括传输块中的所述MTU的至少大部分。定义例如选择所述MTU的第二组,以用于传递所述第二组信息,所述第二组MTU包括与第一组相比较少的MTU,并且至少一些MTU被包括在第一组中。通过发射包括在所述第一和第二组的MTU中的至少一些MTU且有对应信息调制在其上,来传递第一和第二组信息。可以通过在共用的MTU上叠加第一和第二信息来传递信息。
文档编号H04Q7/20GK1778121SQ200480010439
公开日2006年5月24日 申请日期2004年2月19日 优先权日2003年2月19日
发明者拉吉弗·拉罗拉, 穆拉里·萨利尼瓦森, 厉隽怿 申请人:弗拉里奥恩技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1