发送装置、接收装置、通信系统以及通信方法

文档序号:7948332阅读:129来源:国知局
专利名称:发送装置、接收装置、通信系统以及通信方法
技术领域
本发明涉及发送装置、接收装置、通信系统以及通信方法,例如,涉及在子载波通信系统中自适应调节子载波组速率的发送装置、接收装置、通信系统以及通信方法。
背景技术
目前,随着理论和技术的发展,移动通信中出现了许多新技术和新应用,像正交频分复用(OFDM),MIMO等。这些新技术能够大大提高移动通信系统的性能,满足人们对无线多媒体和高速率数据传输的要求。例如,OFDM在频域把信道分成许多正交的子信道,各子信道的载波频谱相互重叠,提高了频谱利用率。同时每个子信道信号带宽小于信道带宽,即使整个信道是频率选择性,每个子信道也是相对平坦的,这样就大大减小了符号间的干扰(ISI)。OFDM的主要优点有各个信号间不会相互干扰;对多径衰落和多普勒频移不敏感;用户间和相邻小区间无干扰;可实现低成本的单波段接收机等。OFDM的主要缺点是功率效率不高。由于OFDM具有抗多径能力强、频谱利用率高的优点,因此适用于高速率无线传输。
在现有的OFDM系统的发送装置中,包含编码单元101、交织单元102、调制单元103、导频插入单元104、串并变换单元105、傅立叶反变换(以下称为“IFFT”)单元106、加保护间隔和加窗单元107、数模转换(DAC)单元108、以及发送器(RFTX)109等几部分。其中,插入导频是为了进行信道的估计,根据信道估计的结果可以来计算子载波的SIR值。OFDM系统的接收装置除了包括与发送相对应的一些过程外,还包括信道估计和信息的反馈部分等。换言之,接收装置包括接收器(RFRX)111、模数转换(ADC)单元112、去保护间隔单元113、快速傅立叶变换(以下称为“FFT”)单元114、并串变换单元115、信道估计单元116、解调单元117、去交织单元118、以及解码单元119等部分。
在OFDM的所有载波中,通常有1%的子载波的衰减低于平均载波20dB,0.1%载波衰减低于平均载波30dB。这些子载波上的严重衰落降低了系统性能。因此,如果根据子载波信道SIR性能对各个子载波进行自适应速率调节,则可以优化系统性能。
图1为传统的OFDM系统收发机的结构方框图。在图1中的发送装置,编码单元101将用户的信息进行编码,编码后的信息经过交织单元102进行交织,然后在调制单元103进行调制。导频插入单元116在调制后的信息插入导频以便对信道进行估计,然后串并变换单元105进行串并变换,IFFT单元106进行IFFT,加保护间隔和加窗单元107对调制后的信息加保护间隔和加窗以防止子载波间的干扰。然后,插入保护间隔的信息经过数模转换单元108从发送器109进行发送。
在接收装置,接收器111接收到发送器109发来的信息,将其从射频转换为基频。转换后的信息经过数模转换单元112以及去保护间隔单元113,在FFT单元114进行FFT。FFT后的信息经过并串变换单元115送入到信道估计器116。然后,信道估计器116进行信道估计。根据信道估计的结果可以进行信道的补偿,然后是解调单元117进行信息的解调,然后是去交织单元118进行去交织,最后是解码单元119进行解码。解码后恢复原始数据。
然而,在现有的OFDM系统中,一般对所有的子载波都采用相同的传输速率。这种做法的缺点在于没有考虑由于频率选择性衰落而引起的各子载波的传输性能差异。如果某一子载波的传输性能较差,但是仍然采用和其他性能较好的子载波相同的速率,则该子载波抗干扰的性能就会很差,传输的效率就会很低。

发明内容
本发明要解决的问题本发明的目的在于提供一种能够通过有效利用频谱来提高抗干扰的性能以及信号传输的效率的发送装置、接收装置、通信系统以及通信方法。
用于解决所述问题的手段本发明的发送装置采用的结构包括子载波选择单元,根据所接收到的子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;数据分配单元,根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;逆快速傅立叶变换单元,对在所述数据分配单元分配给各个子载波的数据进行逆快速傅立叶变换;以及发送单元,发送逆快速傅立叶变换后的数据。
本发明的接收装置包括接收单元,接收数据;快速傅立叶变换单元,对所述数据进行快速傅立叶变换;第一并串变换单元,根据第一并串变换控制信号对快速傅立叶变换后的所述数据进行第一并串变换,经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出组合后的各个子载波组;多个信道估计单元,对经过第一并串变换的相应子载波组的每一个进行信道估计;子载波组分析器,对信道估计结果进行分析,计算出各个子载波组的SIR值;控制命令生成单元,根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;以及发送单元,发送所述子载波选择反馈信息。
本发明的通信系统的结构为具有用于发送信号的发送装置和用于接收信号的接收装置的通信系统,所述发送装置包括子载波选择单元,根据所接收到的子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;数据分配单元,根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;逆快速傅立叶变换单元,对在所述数据分配单元分配给各个子载波的数据进行逆快速傅立叶变换;以及发送单元,发送逆快速傅立叶变换后的数据,所述接收装置包括接收单元,接收数据;快速傅立叶变换单元,对所述数据进行快速傅立叶变换;第一并串变换单元,根据第一并串变换控制信号对快速傅立叶变换后的所述数据进行第一并串变换,经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出组合后的各个子载波组;多个信道估计单元,对经过第一并串变换的相应子载波组的每一个进行信道估计;子载波组分析器,对信道估计结果进行分析,计算出各个子载波组的SIR值;控制命令生成单元,根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;以及发送单元,发送具有所述子载波选择反馈信息的信号。
本发明的通信方法是使接收装置包括以下步骤接收数据;对所述数据进行快速傅立叶变换;根据第一并串变换控制信号对所述快速傅立叶变换后的所述数据进行第一并串变换,经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出所述组合后的各个子载波组;对所述组合后的子载波组的每一个进行信道估计;对所述信道估计结果进行分析,计算出各个子载波组的SIR值;根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;以及发送所述子载波选择反馈信息,并且使发送装置包括以下步骤接收所述子载波选择反馈信息;根据接收到的所述子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;对分配给各个子载波的数据进行逆快速傅立叶变换;以及由发送装置发送逆快速傅立叶变换后的数据。
本发明的有益效果根据本发明,能够通过有效地利用频谱,提高抗干扰的性能和信息传输的效率。


图1为传统的OFDM系统收发机的结构方框图。
图2示出了本发明的实施方式的频率选择性衰落对各子载波传输性能的影响。
图3为根据本发明的实施方式的载波组的SIR值选择载波组的平均速率的示意图。
图4为根据本发明的实施方式的载波组的SIR值选择各个组的子载波个数的示意图。
图5A示出了本发明的实施方式的频率选择性衰落对各子载波传输性能的影响。
图5B为根据本发明的实施方式的载波组的SIR值选择载波组的平均速率的示意图。
图5C为根据本发明的实施方式的载波组的SIR值选择各个组的子载波个数的示意图。
图6A示出了本发明的实施方式的频率选择性衰落对各子载波传输性能的影响。
图6B为根据本发明的实施方式的载波组的SIR值选择载波组的平均速率的示意图。
图6C为根据本发明的实施方式的载波组的SIR值选择各个组的子载波个数的示意图。
图7A示出了本发明的实施方式的频率选择性衰落对各子载波传输性能的影响。
图7B为根据本发明的实施方式的载波组的SIR值选择载波组的平均速率的示意图。
图7C为根据本发明的实施方式的载波组的SIR值选择各个组的子载波个数的示意图。
图8为本发明实施方式的发送装置的结构方框图。
图9为本发明实施方式的发送方法的流程图。
图10为本发明实施方式的接收装置的结构方框图。
图11为本发明实施方式的接收方法的流程图。
具体实施例方式
下面将结合附图来详细本发明的实施方式。
(实施方式)凿孔(puncture)是一种改变信息传输速率和效率的方法。例如,对编码效率为1/2的卷积码进行凿孔,假设经过交织后卷积码的输出序列为{A1B1A2B2A3B3…},如果在输出的每6个比特中删除2个比特,那么就变成效率为3/4的码了,凿孔后的比特输出为{A1B1A2B3A4B4A5B6A7B7A8B9…};如果在输出的每4个比特中删除2个比特,那么就变成效率为2/3的码了,凿孔后的比特输出为{A1B1A2A3B3A4A5B5A6…}。解码时只需在凿孔位置补0就可仍旧使用1/2码的解码方法。因此,凿孔使编码变得灵活,能够有效地进行速率匹配,使用也就方便的多。在本发明中,先对OFDM系统中所有的子载波进行分组,然后根据每组子载波组的传输性对子载波进行凿孔,同样可以改变各子载波组的传输速率,有效地提高频谱的利用率。例如,假设对某子载波组采用了一个(010110)的凿孔表,其中1表示选择该子载波传输数据;0表示该子载波不用,则该子载波组的传输速率降低了一半。子载波的用与不用是根据子载波所在的子载波组的传输性能来决定的。
图2为频率选择性衰落对各子载波传输性能的影响。其中的粗线为信道的频率选择特性。在图2,子载波f4,f5的传输性能很好,f3,f6,f7,f8较差,f1,f2很差。在这种情况下,如果各载波采用相同的传输方式,则信息的传输效率将会很低。为了充分利用频谱,提高信息传输的效率,本发明提出了把几个子载波合并在一起构成子载波组,在接收装置计算各子载波组的SIR值,根据测得的SIR值来控制子载波组的传输速率,SIR值较高的可以采用较高的速率,选择组内所有的或大部分的子载波进行数据的传输;SIR值较低的可以采用较低的速率,通过对组内的子载波凿孔的方式来选择少数几个子载波进行数据的传输,其余的子载波空闲不用。这样通过对性能好的子载波选用高的数据率,对性能差的子载波选择低的数据率,就可以达到有效利用频谱的目的。
为了能有效的利用子载波的传输性能,可以把几个子载波划分为一个子载波组,根据接收装置反馈回来的子载波组的速率控制信息来自适应地调整子载波组的发送速率。划分子载波组可以按顺序将每N个子载波划分为一组,在每组中子载波的个数N的选择可以有两种方法。
假设总的载波数目N为64,分组数目M为4组,在第一种方法中,每组子载波的个数在整个过程中是固定的,每个载波组中子载波的数目K相等,都包含16个子载波,即第1到第16个子载波为第一组,第17到第32个子载波为第二组,第33到第48个子载波为第三组,第49到第64个子载波为第四组;每个包含16个子载波。
在第二种方法中,每组子载波的个数在整个过程中是可变的,但是每组的数目是相等的,子载波数目的变化可以根据接收装置的多普勒频移fD的大小来改变。如果fD较大,则信道的衰落变化较快,此时可以减少分组中子载波的个数K;如果反馈的fD较小,则信道衰落较慢,此时可以增加分组中子载波的个数K。例如,当fD较大时,可以选择K为8,这样就有8个分组,当fD较小时,可以选择K为16,这样就有4个分组。
第一种方法实现起来比较简单,第二种方法由于考虑了多普勒频移fD的影响,根据信道情况实时调整分组内子载波的个数,因此性能会更好。例如,如果fD较小,则信道的变化就较慢,此时可以选择分组内子载波的个数K较大,这样分组数目M减少,接收装置的反馈信息量就减少,降低了反馈信息处理的复杂度。如果fD较大,则信道的变化较快,此时可以选择分组内子载波的个数K较小,这样分组数目增加,反馈信息量增加,分组内子载波的选择更准确,频带利用率提高,系统的效率也提高。当子载波组的SIR性能较好时,可以利用该载波组内所有的子载波或者是大部分的子载波;当子载波组的性能较差时,根据其性能对该组的子载波进行凿孔,选择其中的几个子载波传输数据,其余的子载波空闲不传输数据。所有子载波的凿孔信息用来控制串并变换的过程。
接收端根据发送装置插入的导频信号可以计算出各子载波组的SIR值,根据这些值可以计算各子载波组的速率控制信息。这些控制信息包括子载波组内子载波使用的数目和使用的子载波的标号。如果计算得到的某子载波组的SIR值较高,则给该组子载波分配较高的传输速率;如果载波组的SIR值较低,则给该组子载波分配较低的传输速率。这些信息被反馈回发送装置,以便于发送装置调整各子载波组的信息速率;这些信息同时也保留在接收装置以便对下一次接收的信息进行相应的控制。在这种情况下,即使是在频率选择性衰落信道中,也可以保持较高的传输效率。
下面将结合附图来详细本发明的优选实施例。在所列举的实施方式中,载波组内子载波的数目选择采用了第二种方法,即简单的固定数目的方法。
图3给出了本发明中,在频率选择性信道下,各载波组的传输速率控制。假设三个子载波构成一个子载波组。在接收装置根据导频信号计算各子载波组的SIR值,根据得到的SIR值来确定各子载波组的传输速率。该信息反馈回发送装置来控制各子载波组的传输速率。对于信道性能好的子载波组采用较高的传输速率,而对于信道性能差的子载波组采用较低的传输速率。图3中,第1到3的子载波构成了一个子载波组,根据其传输性能确定了一个传输速率R1。同样,载波4,5,6组成了另一个载波组,因为其传输性能较好,所以其传输速率R2较高。
图4为本发明中在频率选择性信道下,载波组内子载波的选择情况。为了对载波组的速率进行控制,本发明选择了对载波组内的子载波进行凿孔的方法。通过凿孔表来选择使用哪些子载波进行数据传输。比如,如果组内的载波数目为4,根据从接收装置反馈回来的信息得到其凿孔表为(1010),则该组内第一和第三个子载波会被用来传输数据,而第二和第四个子载波将不会被使用。选择的子载波数目是根据接收装置得到的载波组的SIR值来确定的。如果SIR值较高,则可选的子载波数日就较多,否则选择的子载波数据就较少。选择哪一个子载波则可以参考两侧载波组的情况来进行。如果两侧的载波组的性能都较好,则可以多选择两侧的子载波来传输数据。如果两侧的载波组的性能都很差,则可以选择中间的子载波或者随机选择子载波或者固定地每隔一个或几个子载波选择一个。如果有一侧的载波组性能较好,另一侧的性能较差,则侧重选择靠近性能好的一侧的子载波。在图4中,载波组1选择一个子载波,载波组2选择三个子载波,并且载波组3选择两个子载波。
图5A至图5C为本发明中在两侧的载波组(载波组1和载波组3)性能都较好的情况下,子载波的选择情况。载波(f1,f2,f3),(f4,f5,f6),(f7,f8,f9)分别构成了三个子载波组(载波组1~载波组3)。考虑中间的载波组2(f4,f5,f6)(选择对象的子载波组),根据其SIR值的等级,可以确定在该组内选择两个子载波进行数据的传输。根据图5A和图5B,从信道的频率选择特性可得知载波组2两侧的载波组1、3的性能良好,如图5C所示,选择载波组2两侧的子载波(f4和f6)。其相应的凿孔表为(101)。
图6A~图6C为本发明中在两侧的载波组性能都较差的情况下,子载波的选择情况。载波(f1,f2,f3),(f4,f5,f6),(f7,f8,f9)分别构成了三个子载波组。考虑中间的载波组2(f4,f5,f6),根据其SIR值的等级,可以确定在该组内选择一个子载波进行数据的传输。根据图6A和图6B,从信道的频率选择特性可得知载波组2两侧的载波组1、3的性能较差,如图6C所示,选择载波组2中间的子载波(f5)。其相应的凿孔表为(010)。或者可以随机选择一个子载波,或者还可以采用固定间隔的选择方式。
图7A~图7C为本发明中在一侧的载波组性能较好的情况下,子载波的选择情况。载波(f1,f2,f3),(f4,f5,f6),(f7,f8,f9)分别构成了三个子载波组。考虑中间的载波组2(f4,f5,f6)(选择对象的子载波组),根据其SIR值的等级,可以确定在该组内选择一个子载波进行数据的传输。根据图7A和图7B,从信道的频率选择特性可得知载波组2右侧的载波组3(f7,f8,f9)的性能较好,如图7C所示,选择右侧的靠近载波组3的子载波(f6)。其相应的凿孔表为(001)。
图8为本发明中的OFDM系统发送装置的结构方框图。根据本发明,发装置包括编码单元801、交织单元802、调制单元803、导频插入单元804、串并变换及子载波选择单元805、IFFT单元806、加保护间隔和加窗单元807、数模转换器(DAC)808、发送器(RFTX)809、子载波选择器810。本发明中,为了提高效率,把几个子载波划分为一组进行传输速率控制。不同的子载波组根据其传输的信扰比分配不同的传输速率。
在图8中,原始信息首先经过编码单元801进行编码,编码是在原始信息插入一些冗余信息,以便在接收器中利用这些冗余度来克服信号在信道传输过程中遇到的干扰和噪声的影响。现在较常采用的编码方法一般有Turbo码和卷积码等。
编码后的信息在交织单元802中进行交织,交织打乱了信号的原有传输顺序,使原来相邻的信号分散到不同的时间段中,以便在出现突发干扰或深衰落时,来自源比特中某一块最重要的码位不会被同时扰乱,而且源比特分开后,可以利用差错控制编码来减弱信道干扰对源比特的影响。
交织后的数据在调制单元803中进行调制,使二进制的比特值映射到星座图中的点,形成相应的符号。可以采用QPSK,16QAM等调制方式对数据进行调制。
调制后的数据输入导频插入单元804,以便接收装置进行信道估计和载波组的性能计算,插入导频后的信号接着进入串并变换及子载波选择单元805(数据分配单元),串并变换和子载波选择是在子载波选择器810的控制下进行的。子载波选择器810接收从接收装置反馈回来的子载波组的速率控制信息,该信息中包含了各载波组应该选择的载波数目和应该选择的子载波的标号。在进行串并变换时,在被选择传输数据的子载波上分配数据,而没有被选择的子载波则不分配传输数据,这样,串并变换后只有被选择的那些子载波上才有数据。
在图8中假设每个载波组包含5个子载波,在第一个载波组中根据其传输特性选择了2个子载波,其它的子载波没有被分配数据,在图上显示为断开的状态。在第二个载波组中,因为其SIR值较高,传输性能较好,所以选择了所有的5个子载波都传输数据。在第n个子载波组中,根据其传输性能只选择了一个子载波进行数据的传输,其它的子载波不分配数据,为断开的状态。
串并变换后所有的子载波一起进入IFFT单元806,串并变换中分配了数据的子载波直接传送给IFFT单元806,没有分配数据的子载波在IFFT单元806中被填充0。变换后的信息需要进入加保护间隔和加窗单元807,防止子载波间的干扰,避免影响子载波间的正交性。
然后,插入保护间隔的信息被送到数模转换器808,数模转换器808使信号由数字变成模拟形式,以便于发送。最后,发送器809将信号发送出去。
图9为本发明中的OFDM系统发送装置的发送方法的流程图。在图9中,原始信息经过编码(步骤901),加入冗余信息以便接收装置进行数据纠错,然后进行交织(步骤902),对抗信道中的突发干扰或深衰落。
对交织完后的数据进行调制(步骤903),将二进制比特映射成星座图中的点,形成相应的符号。然后插入导频(步骤904),以便接收装置进行信道估计。插入导频后,进入串并变换及子载波选择的过程(步骤907)。
在串并变换前,需要从接收装置反馈回来的信息(步骤905)中提取出各载波组的子载波选择信息(步骤906),然后进行串并变换和子载波的选择。在串并变换时,根据得到的子载波选择信息来分配数据到不同的子载波上。在处理第N个子载波时,如果从接收装置返回的子载波选择信息中说明该子载波被选择用于传输数据(步骤908),则在该子载波上分配数据(步骤909),否则,该子载波上不分配数据(步骤910)。如果还有子载波没处理完,则继续进行该过程(步骤911)。
所有的子载波的处理结束后,进行IFFT变换(步骤912),然后加保护间隔和加窗,以免子载波间的正交性被破坏。接着进行数模转换(步骤914),将数字信号转换为模拟信号,然后在步骤915中进行信息的发送。
图10为本发明中OFDM系统的接收装置的结构图。所述接收装置包括接收器(RFRX)1001、模数转换器(ADC)1002、去保护间隔单元1003、FFT单元1004、并串变换单元1005、多个信道估计单元1006、并串变换单元1007、解调单元1008、去交织单元1009、解码单元1010、子载波组分析器1011、控制命令生成单元1012、调制单元1013、以及发送器(RFTX)1014。
在图10中,接收器1001接收到信息后,首先将其由射频转换为基频。
经过模数转换器1002将模拟信号转换成数字信号,然后通过去保护间隔单元1003去掉发送时为维护子载波间的正交性而添加的循环前缀,接下来信息进入FFT单元1004。经过FFT后形成了多个子载波,其中某些子载波可能因为传输性能较差而没有传输数据。
在并串变换单元1005中对所有的子载波先进行第一次并串变换,该并串变换是在控制命令生成单元1012的控制下进行的。控制命令包括了所有载波组中子载波的选择情况。经过第一次并串变换,同一载波组的所有传输数据的子载波合并在一起,去掉了没有携带信息的子载波。
然后在信道估计单元1006中,对各子载波组分别进行信道的估计,估计的结果一方面输入到子载波组分析器1011,另一方面用于信道的补偿。
信道估计完成后,各载波组再一次进入并串变换单元1007合成一路信号。
合成信号被传输给解调单元1008对信号进行解调,恢复出原始的二进制信号。进行完这些工作后,再进入去交织单元1009,恢复信号的原有顺序,然后在解码单元1010中进行解码,纠正信号中可纠正的错误,去掉冗余信息,恢复原始数据。
另外,信道估计的信息传给子载波组信能分析器1011,该分析器根据估计结果计算出各子载波组的SIR值。
计算出的SIR值传送给控制命令生成单元1012,在这里生成各个载波组的速率和凿孔信息。然后,控制命令生成单元102存储生成的速率和凿孔信息,以使下一个接收的信息能在串并变换单元1005进行串并变换时进行相应的处理。另外,生成的速率和凿孔信息经过调制单元1013的调制后,由发送器1014回馈到发送装置。
图11为本发明中OFDM系统的接收装置的接收方法的流程图。在图11中,接收装置首先接收发送装置发来的信息(步骤1101),然后进行模数转换(步骤1102),将模拟信号转换为数字信号。
得到的数字信号先去掉在发送装置为维护子载波的正交性而添加的保护间隔(步骤1103),然后进行FFT(步骤1104)。
FFT后形成的多个子载波在步骤1105中进行第一次并串变换,合并同一载波组内的多个子载波,然后根据信号中插入的导频信号进行信道估计(步骤1106)。
根据信道估计的结果进行子载波组的性能分析(步骤1111),然后生成关于子载波选择方面的控制信息(步骤1112)。该控制信息包含了根据信道估计得到的下一次传输时子载波的分组情况和分组中子载波的选择信息。这些信息用于控制接收下一个信息时的串并变换(ST1105),使并串变换时能够区分子载波组的分组情况及分组内的子载波是否包含有数据信息。另一方面,这些信息经过调制,转换成易于发送的信号形式(步骤1113),然后通过步骤1114将这些控制信息反馈给发送装置,以便控制发送装置的载波组的速率。
信道估计后的信号另一方面在步骤1107进行第二次并串变换,合并所有载波组的信息。对合并后的信息进行解调,恢复原始的二进制信号(步骤1108),然后再去交织(步骤1109),恢复信号的原始顺序。最后进行解码(步骤1110),得到原始信息。
应该注意到,尽管以上针对OFDM通信系统的结构对本发明进行了描述,但是本发明还可以适用于其他任何利用子载波进行信号通信的子载波通信系统。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员就会意识到,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不被上述实施方式限定。
工业利用性本发明的发送装置、接收装置、通信系统以及通信方法例如适合在子载波通信系统中用于子载波组的速率的自适应调节。
权利要求
1.一种发送装置,包括子载波选择单元,根据接收到的子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;数据分配单元,根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;逆快速傅立叶变换单元,对在所述数据分配单元分配给各个子载波的数据进行逆快速傅立叶变换;以及发送单元,发送逆快速傅立叶变换后的数据。
2.根据权利要求1所述的发送装置,其中,所述各个子载波组具有相等的子载波数。
3.根据权利要求2所述的发送装置,其中,根据接收端的多普勒频移的大小来确定子载波组中的子载波数。
4.根据权利要求1所述的发送装置,其中,所述子载波选择反馈信息为凿孔信息表,所述凿孔信息表表示各个子载波组中可用子载波数目和可用子载波标号。
5.一种接收装置,包括接收单元,接收数据;快速傅立叶变换单元,对所述数据进行快速傅立叶变换;第一并串变换单元,根据第一并串变换控制信号对快速傅立叶变换后的所述数据进行第一并串变换,经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出组合后的各个子载波组;多个信道估计单元,对经过第一并串变换的相应子载波组的每一个进行信道估计;子载波组分析器,对信道估计结果进行分析,计算出各个子载波组的SIR值;控制命令生成单元,根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;以及发送单元,发送所述子载波选择反馈信息。
6.根据权利要求5所述的接收装置,其中,还包括第二并串变换单元,对所述信道估计后的各子载波组进行第二并串变换,经过第二并串变换后,将各子载波组的数据组合成一路数据。
7.根据权利要求5所述的接收装置,其中,所述各个子载波组具有相等的子载波数。
8.根据权利要求7所述的接收装置,其中,根据多普勒频移的大小来确定子载波组中的子载波数。
9.根据权利要求5所述的接收装置,其中,所述子载波选择反馈信息为凿孔信息表,所述凿孔信息表表示各个子载波组中可用子载波数目和可用子载波标号。
10.根据权利要求9所述的接收装置,其中,所述控制命令生成单元由以下方式设定所述凿孔信息表生成所述子载波选择反馈信息时,在选择对象的子载波组的SIR值大于所述选择对象的子载波组的两侧的子载波组的SIR值时,在所述选择对象的子载波组设置较大的可用子载波数目,同时,根据所述两侧的子载波组的性能来确定可用子载波标号;而选择对象的子载波组的SIR值小于所述选择对象的子载波组的两侧的子载波组的SIR值时,在所述选择对象的子载波组设置较小的可用子载波数目,同时,根据所述两侧的子载波组的性能来确定可用子载波标号。
11.根据权利要求10所述的接收装置,其中,在根据所述两侧的子载波组的性能进行的可用子载波标号的所述确定中,在所述两侧的子载波组的SIR值小于选择对象的子载波组的SIR值时,在所述选择对象的子载波组内随机选择数量等于所确定的可用子载波数目的可用子载波,确定可用子载波标号;在所述两侧的两个子载波组之一的SIR值大于选择对象的子载波组的SIR值时,在所述选择对象的子载波组中离所述两侧的子载波组中具有较大SIR的子载波组较近的位置处选择相对较多的子载波,而在所述选择对象的子载波组中离所述两侧的子载波组中具有较小SIR的子载波组较近的位置处选择相对较少的子载波;在所述两侧的两个子载波组的SIR值均大于选择对象的子载波组的SIR值时,在所述选择对象的子载波组中离所述两侧的子载波组中较近的位置处选择相对较多的子载波,而在所述选择对象的子载波组的中间位置处选择相对较少的子载波,或者在所述选择对象的子载波组随机地或以固定间隔来选择子载波。
12.一种具有用于发送信号的发送装置和用于接收信号的接收装置的通信系统,所述发送装置包括子载波选择单元,根据接收到的子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;数据分配单元,根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;逆快速傅立叶变换单元,对在所述数据分配单元分配给各个子载波的数据进行逆快速傅立叶变换;以及发送单元,发送逆快速傅立叶变换后的数据,所述接收装置包括接收单元,接收数据;快速傅立叶变换单元,对所述数据进行快速傅立叶变换;第一并串变换单元,根据第一并串变换控制信号对快速傅立叶变换后的所述数据进行第一并串变换,经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出组合后的各个子载波组;多个信道估计单元,对经过第一并串变换的相应子载波组的每一个进行信道估计;子载波组分析器,对信道估计结果进行分析,计算出各个子载波组的SIR值;控制命令生成单元,根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;以及发送单元,发送具有所述子载波选择反馈信息的信号。
13.根据权利要求12所述的通信系统,其中,还包括第二并串变换单元,对所述信道估计后的各子载波组进行第二并串变换,经过第二并串变换后,将各子载波组的数据组合成一路数据。
14.一种通信方法,包括以下步骤接收装置接收数据;对所述数据进行快速傅立叶变换;根据第一并串变换控制信号对所述快速傅立叶变换后的所述数据进行第一并串变换;经过所述第一并串变换后,将同一载波组中的所有数据的子载波组合在一起,并且输出所述组合后的各个子载波组;对所述组合后的子载波组的每一个进行信道估计;对所述信道估计结果进行分析,计算出各个子载波组的SIR值;根据各个子载波组的SIR值生成子载波选择反馈信息,并根据生成的所述子载波选择反馈信息中各个载波组中对子载波的选择信息,生成所述第一并串变换控制信号;发送所述子载波选择反馈信息;发送装置接收所述子载波选择反馈信息;根据接收到的所述子载波选择反馈信息,生成并输出各个子载波组的子载波选择信号;根据各个子载波组的子载波选择信号,选择各个子载波组中所需的子载波,同时,对所选的子载波上分配数据;对分配给各个子载波的数据进行逆快速傅立叶变换;以及由发送装置发送逆快速傅立叶变换后的数据。
15.根据权利要求14所述的通信方法,其中,还包括以下步骤对所述信道估计后的各子载波组进行第二并串变换,经过第二并串变换,将各子载波组的数据组合成一路数据。
16.根据权利要求14所述的通信方法,其中,所述各个子载波组具有相等的子载波数。
17.根据权利要求16所述的通信方法,其中,根据所述接收装置的多普勒频移的大小来确定子载波组中的子载波数。
18.根据权利要求17所述的通信方法,其中,所述子载波选择反馈信息为凿孔信息表,所述凿孔信息表表示各个子载波组中可用子载波数目和可用子载波标号。
19.根据权利要求18所述的通信方法,其中,所述凿孔信息表由以下方式设定在生成所述子载波选择反馈信息时,在选择对象的子载波组的SIR值大于所述选择对象的子载波组的两侧的子载波组的SIR值时,在所述选择对象的子载波组设置较大的可用子载波数目,同时,根据所述两侧的子载波组的性能来确定可用子载波标号;而选择对象的子载波组的SIR值小于所述选择对象的子载波组的两侧的子载波组的SIR值时,在所述选择对象的子载波组设置较小的可用子载波数目,同时,根据所述两侧的子载波组的性能来确定可用子载波标号。
20.根据权利要求19所述的通信方法,其中,在根据所述两侧的子载波组的性能进行的可用子载波标号的所述确定中,在所述两侧的子载波组的SIR值小于选择对象的子载波组的SIR值时,在所述选择对象的子载波组内随机选择数量等于所确定的可用子载波数目的可用子载波,确定可用子载波标号;在所述两侧的两个子载波组之一的SIR值大于选择对象的子载波组的SIR值时,在所述选择对象的子载波组中离所述两侧的子载波组中具有较大SIR的子载波组较近的位置处选择相对较多的子载波,而在所述选择对象的子载波组中离所述两侧的子载波组中具有较小SIR的子载波组较近的位置处选择相对较少的子载波;在所述两侧的两个子载波组的SIR值均大于选择对象的子载波组的SIR值时,在所述选择对象的子载波组中离所述两侧的子载波组中较近的位置处选择相对较多的子载波,而在所述选择对象的子载波组的中间位置处选择相对较少的子载波,或者在所述选择对象的子载波组随机地或以固定间隔来选择子载波。
全文摘要
一种能够通过有效地利用频谱,提高抗干扰的性能和信息传输的效率的接收装置。在本装置中,信道估计单元(1006)使用从发送端发送来的导频对各个子载波组进行信道估计。子载波组性能分析器(1011)根据信道估计结果计算各个子载波组的SIR值。控制命令生成单元(1012)使用各个子载波组的SIR值生成载波组的速率和凿孔信息,并存储所生成的速率和凿孔信息,以便在串并变换单元(1005)对下一个接收的信息进行串并变换时能够进行相应的处理,同时将生成的速率和凿孔信息反馈到发送装置。
文档编号H04J11/00GK101032105SQ20058003311
公开日2007年9月5日 申请日期2005年9月28日 优先权日2004年9月29日
发明者李继峰, 于小红 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1