用于减少多波束通信系统中呼叫丢失率的系统和方法

文档序号:7960482阅读:244来源:国知局
专利名称:用于减少多波束通信系统中呼叫丢失率的系统和方法
技术领域
本发明一般涉及无线通信领域。更具体地说,本发明涉及用于减少具有多束通信链路的无线通信系统中呼叫丢失率的方法。
背景技术
有各种具有多波束通信链路的无线通信系统。基于卫星的通信系统就是其中的一个例子。另一个例子是蜂窝通信系统,基于卫星的通信系统包括一个或多个卫星用来对网关(也称为“通信站”或“基站”)和用户终端之间的通信信号进行中继。网关提供的通信链路用于把一个用户终端连接到其它用户终端或其它通信系统(诸如公共电话交换网)的用户。用户终端可以是固定的或移动的(例如移动电话)并且可位于网关附近或处于远处。
倘若用户终端处在卫星的“照射区”(foot print)内,则卫星能够向用户终端接收和发送信号。卫星的照射区就是被卫星通信系统所复盖的地球表面上的地理区域。在某些卫星系统中,通过使用波束形成天线将卫星照射区地理上划分为“波束区”。每个波束区复盖卫星照射区的一个特定的地理区域。
某些卫星通信系统使用码分多址(CDMA)扩展频谱信号,如1990年2月13日发表的美国专利号4,901,307题为“使用卫星或陆地转发器的扩频多路访问系统”以及1997年11月25日发表的美国专利号5,691,174题为“在扩频通信系统中利用全频谱发送功率用于跟综个别接收者相位时间和能量的方法和设备”中所披露的那样。此两篇专利已转让给本发明的受让人并通过引用加入于此。
在使用CDMA的通信系统中,使用分开的各通信链路向蜂窝系统中的网关或基站发送信号或从该网关或基站发送信号。前向通信链路是指始发于网关或基站并向用户终端发送的通信信号。反向通信链路是指始发于用户终端并向网关或基站发送的通信信号。在希望卫星分集的情况下,网关为某个特定用户终端建立两个或更多个前向链路,其中每个前向链路建立在来自不同卫星的一个波束上。例如。在一个有两颗卫星的分集结构中,第一个前向链路建立在由第一个卫星投射出的波束上而第二个前向链路建立在由第二颗卫星投射出的波束上。在上述例子中,用户终端可从第一和第二波束区上的网关接收信息或数据。卫星分集提高了系统性能,因为通信链路或呼叫可能会丢失得更少。例如,携带第一前向链路的波束被障碍物(例高层建筑)阻挡,用户终端和网关间的连接将在第二前向链路上继续不受中断。用户将不会了解波束受阻。因而,在多波束通信系统中通常希望用波束源分集。
在基于卫星的通信系统中,卫星相对于地球表面上的某点不是静止的,由给定卫星复盖的地理区域经常在改变。结果,在某一时间位于特定卫星的某一特定波束区内的用户终端在稍后的时刻可位于同一卫星的不同波束区内和/或位于不同卫星的不同波束区内。而且,因为卫星通信是无线的,用户终端可自由地到处移动。因此,即使在卫星相对于地球表面某点是静止的系统中,经过一段时间用户终端可能会被不同的波束区所复盖。因此,如果用户终端和网关间的通信链路建立在第一波束区上且在用户终端不再被第一波束区复盖前尚未在其它波束区上建立通信链路,则在某点上该用户终端将不再能利用所建立的通信链路与网关通信。结果。在用户终端和网关间的活动呼叫将丢失。对于力争提供不间断通信服务的服务提供商来说,在通信系统中丢失呼叫是一种严重的问题。在陆地通信系统中对于在扇区化小区内到处移动的移动用户也可能出现类似的呼叫丢失问题。亦即,这时小区被再细分成二个或多个更小的服务区,它们用不同的频率复盖或使用不同的编码空间。这里,移动用户可以在小区内沿着扇区边界移动或重复地穿越扇区边界,这和小区及扇区大小以及当地物理环境有关。
因此,需要一种用于减少多波束通信系统中呼叫丢失率的系统和方法。该系统和方法应保持波束源分集所要求的程度以进一步增强通信系统的可靠性。

发明内容
在具有一个用户终端,一个用于向用户终端发送和接收信息的通信站,以及多个波束源的多波束通信系统中,其中每个波束源投射出多个波束,而用户终端和通信站间的通信链路建立在一个或多个波束上,本发明提供了一种系统和方法用于减少呼叫丢失率。而且,本发明的系统和方法保持了所需的波束源分集的水平。
按照本发明的方法依赖于通信站和用户终端间的消息形成协议。根据从用户终端向通信站发送的消息,通信站可以确定出最希望的波束,在该波束上向用户终端发送信息或数据。从用户终端向通信站发送的消息包含了在用户终端处测得的代表波束强度的值。通信站使用这些值选择应该用作通信站和用户终端间通信链路的最希望的波束。应该使用的波束就是指这些波束,如果它们被使用的话将减少呼叫丢失率并提供所需的波束源分集的水平。
按照本发明的一个实施例的方法包括如下步骤(1)从通信站向用户终端发送包含多个波束标识符的波束掩码消息(BMM),其中每个波束标识符标识了当前可供通信站使用的波束;(2)在用户终端处周期性地测量在BMM中标识的每一波束的强度;(3)周期性地从用户终端向通信站发送一包含多个波束强度值的导频强度测量消息(PSMM),其中每个波束强度值是在BMM中标识的波束之一所测得的强度的函数;(4)根据PSMM中的波束强度值,在通信站处选择一个或多个应该用作通信站和用户终端间的通信链路的波束(即通信站选择一新的活动波束集);(5)在通信站处,在该新活动波束集中的所有波束上发送信息;(6)如果在步骤(4)中选中的一个或多个波束不是在当前水平波束集中的一个或多个波束,则从通信站向用户终端发送一个切换方向消息(HDM),其中当前活动波束集是由在其上已建立了通信站和用户终端间的通信链路的一个或多个波束;以及(7)用户终端在新活动波束集的每个波束上接收信息之后在通信站处接收从用户终端发送的切换完成消息(HCM)。
根据HDM,用户终端可以确定通信站在步骤(4)选中的应该用作通信站和用户终端间的通信链路的一个或多个波束。在一个实施例中,HDM包括了与由通信站在步骤(4)选中的每个波束相对应的波束识别符。在另一实施例中,HDM包括了一个加入波束集和一个丢弃波束集。加入波束集对于不在当前活动波束集内的新活动波束集中的每个波束都加入一个波束标识符。丢弃波束集对于不在新活动波束集内的当前活动波束中的每个波束都包括一个波束标识符。
根据一个实施例,包括在PSMM中的多个波束强度值包含了与BMM中标识的每个卫星中的一个最强波束相对应的多个值。在另一实施例中,在PSMM中的波束强度值是经调整的波束强度值。
在一个实施例中,在通信站处选择一个或多个应该用作通信站和用户终端间的通信链路的波束的步骤包括如下步骤(1)选择在PSMM中的最强的波束;(2)确定在PSMM中最强的另一波束,其中另一波束是除了投射出步骤(1)中所选波束的卫星外的某个卫星投射出的一个波束;以及(3)如果PSMM中的最强波束的强度减去PSMM中的最强的另一波束后小于一阈值量则选中PSMM中该最强的另一波束。
在另一实施例中,选择一个或多个在其上建立通信链路的波束的步骤包括如下步骤(1)选择在PSMM中的最强波束;(2)确定在PSMM中的最强的另一波束;(3)如果PSMM中的最强波束的强度减去PSMM中的最强的另一波束的强度后小于或等于一第一阈值量则选中PSMM中的最强另一波束;(4)如果PSMM中的最强波束的强度减去PSMM中的最强另一波束后大于该第一阈值量,确定在当前活动集中的最强另一波束,其中在当前活动集中的另一波束就是由除了投射出在步骤(1)中选中的波束的卫星以外的某个卫星投射出的在当前活动集中的一个波束;以及(5)如果PSMM中的最强波束的强度减去在当前活动集中最强另一波束的强度后小于或等于第二阈值量则选中在当前活动集中的最强另一波束。在本发明的一个实施例中该第二阈值量大于第一阈值量。
在另一实施例中,用户终端连续测量当前活动中每一波束的波束强度。如果在当前活动集中的波束强度小于先前PSMM中由预定量所报告的波束波束强度并且在规定的时间间隔内保此如此,则用户终端将向通信站发送一新的PSMM。
本发明的进一步的特性和优点,以及本发明的各种实施例的结构和操作将参考附图详细描述如下。


这里加入的并构成部分说明的附图解释了本发明,并且与说明书一起进一步用作对本发明原理的解释,以及使相关领域内的熟练技术人员能制作和使用本发明。附图中相同的标号表示同一元件或功能相似的元件。此外,标号的最左边数字标示了该标号首次出现的附图。
图1示出了按照本发明的一个实施例构造和操作的一个示例无线通信系统。
图2A示出了按照本发明的一个实施例的示例卫星照射区域。
图2B示出了图1的基站和地球表面间的信号波束区图案的透视图。
图2C示出了对于图1中的基站的具有典型理论扇区边界和扇区变化的示例信号图案;图3A和3B分别示出了在第一和第二时间点上卫星相对于一用户的位置;图3C和3D分别示出了在第一第二时间点上图3A和图3B中的用户在卫星照射区中的位置。
图4A和4B分别示出了在第一和第二时间点上第一卫星和第二卫星相对于一用户的位置。
图4C和4D分别示出了第一和第二时间点上图4A和图4B中的用户在第一和第二卫星照射区中的位置。
图5A和5B示出了按照本发明的较佳实施例的波束切换过程。
图6A示出了一示例波束掩码消息。
图6B示出了测得的波束强度值例子。
图6C示出了示例的导频调整消息。
图6D示出了经调整的波束强度值例子。
图6E示出了一示例导频强度测量消息(PSMM)。
图7示出了由一用户终端用于建立PSMM内容的一示例过程。
图8示出了按照第一实施例由网关用于为一新活动集选择波束的步骤。
图9示出了按照第二实施例由网关用于为一新活动集选择波束的步骤。
图10示出了在网关和用户终端间的示例消息流。
图11示出了一示例用户终端收发信机。
图12示出了一用户终端的示例控制单元。
图13示出了在执行波束切换算法中使用的示例网关组成部分。
图14示出了一示例网关选择选择器。
具体实施例方式
I.引言本发明适用于多波束通信系统。这种通信系统包括利用地球轨道卫星或高度扇区化小区的通信系统。然而,对于相关领域内的熟练技术人员来说,显然本发明可用于各种不同的卫星系统,即使不是用于通信目的也如此。本发明也可用于使用各种不同小区扇区化方案的小区,同样,即使不用于用户通信亦如此。
下面详细讨论本发明的一个较佳实施例。当讨论具体步骤,配置和结构时,应理解这些仅用作说明的目的。相关领域熟练技术人员将认识到也能使用其它步骤,配置和结构而不脱离本发明的精神和范围、本发明可在各种不同无线信息和通信系统中找到应用,包括用于位置确定的这些系统以及卫星和陆地蜂窝电话系统。一个较佳的应用是在CDMA无线扩频通信系统中用于移动或便携式电话服务。
II.一个典型的通信系统图1描述了使用本发明的一个示例无线通信系统。该通信系统计划使用CDMA型通信信号,但这不是本发明所要求的。在图1所示通信系统的一部分100,示出的一个基站112,两个卫星116和118以及二个相关的网关或汇集站120和122用于实行与两个远程用户终端124,126和128的通信。通常,基站和卫星/网关是独立的通信系统的组成单元,称为基于陆地和卫星的,虽然这并不必要。在这类系统中基站、网关或卫星的总数取决于所需的系统容量和本领域熟知的其它因素。
术语基站和网关有时也可以互换使用,每一个都是一个固定的中央通信站但在本领域内网关被理解为高度专用的基站,它通过卫星转发器进行通信而基端(有时也称为小区站)使用陆地天线在周围地理区域内进行通信。为了维持卫星链路,网关有更多的与装置有关的“家务管理任务”,而任何中央控制中心当与网关和移动卫星交互作用时通常也有更多的个功能要执行。然而本发明发觉在系统应用中可把网关或者基站用作通信站。
用户终端124、126和128每一个都包括一个无线通信装置,例如蜂窝电话,数据收发信机或寻呼或位置确定接收机(但不限于这些),而且根据需要也可以是手持式、车载式或固定式。这里用户终端分别被描述为手持式、车载式或固定式电话124、126和128。根据所好,在某通信系统中,用户终端有时也称之为定户单元,移动站,或简称为“用户”或“移动用户”。
一般来讲,来自波束源(如基站112或卫星116和118)的波束以预定的图案复盖不同的地理区域。在不同频率上的波束(也称为CDMA信道或子波束)可以用来指向重叠复盖同一区域。在本领域的熟练技术人员也容易理解,根据通信系统的设计和提供的服务类型以及是否要取得空间分集,对于多个卫星或多个的天线方向图的各波束复盖区或服务区在某个给定范围内可以设计成完全重叠或部分重叠。
虽然为了清楚起见只示出了二个卫星,已提出了种种多卫星通信系统,其中一个示例的系统使用了48或更多数量级的卫星,在低地轨道(LEO)的8个不同轨道平面上运行用来向大量用户终端提供服务。然而,本领域的技术人员将容易理解如何能将本发明所讲授的原理用于各种卫星系统和网关的配置上。例如,这包括其它轨道距离和星座图,使用地球静止卫星的系统,其中波束切换多半是因终端用户移动造成的。此外还可使用各种基站配置。
图1示出了用于建立在用户终端124、126和128与基站112之间(或通过卫星116和118,用网关120和122)通信的一些可能的信号路径。基站—用户终端的通信链路用线130、132和134表示。在卫星116和118以及用户终端124、126和128间的卫星—用户终端的通信链路用线138、140、142和144表示。在网关120和122以及卫星116和118之间的网关—卫星通信链路用线146、148、150和152表示。网关120和122以及基站112可以用作单向或双向通信系统的一部分或简单地只向用户终端124、126和128传送消息/信息或数据。
图2A示出了一示例的卫星波束区图案202,也所谓照射区。如图2A所示,示例的卫星照射区202包括16个波束区。每个波束区复盖一指定的地理区域,虽然通常波束区有些重叠。图2所示的卫星照射区包括一个内波束区(波束区1),中间波束区(波束区2-7)和外波束区(波束区8-16)。这一波束图案是一特别的预先定义的图案,用于到达处于照射区外面部分内的用户而不产生附加的干扰,在这部分内的信号强度由于地球表面产生的自然“滚降”效应而较弱。只是为了说明目的,这些波束区图示为具有不重叠的几何形状。然而,本领域的技术人员将很容易理解其他波束区图案和形状也可用于不同的通信系统设计中。
如图2B所示,在这样的包括基站112的通信系统(100)内的基站或小区站根据信号强度和当地的地形在复盖地球表面的预定服务区的小区200内投射波束或信号。小区200由通过一系列单独的波束或信号形成的一个总体复盖区域组成,这些波束或信号一般投影成楔形图案而建立扇区222。这里,小区220有了一系列6个扇区222形成,它们不都具有相同的面积或大小。然而正如本领域技术人员所知的,可使用各种不同的图案,扇区和扇区大小。正如下面还要讨论的,一个用户可以从一个扇区222中的位置X沿由线224所示的路径移动到相邻扇区222中的位置Y。这一情况的出现是用户终端移动或改变扇区复盖的结果,或者是两者组合的结果。
一个示例扇区图案进一步详细示于图2C中。图2C中,在通常是圆形图案或小区220中示出了一系统的扇区S1-S6.正如本领域所知的,作为发送应答器或天线系统如何投射信号和当地地形或结构影响的结果,这一小区图示为具有不规则的边缘。正如所示,扇区不必大小均匀,并且甚至可以在通信系统操作期间调整它们各自的复盖面积。扇区波束或信号还在相邻的扇区间产生重叠的扇区边界线或重叠的复盖区域,一般通过在发送时调整波束的能量,在接近边缘或边界处减少得更快以减小重叠信号复盖。对于相邻的扇区边界重叠的边界用实线和虚线表示。这一例子中的相邻的每一条边界以类似于卫星子波束的方式使用了不同的PN编码或编码编置。本领域的技术人员熟悉这些图案类型以及用于形成这种图案的频率和PN码的分配。
图3A-4D最好地说明了由本发明者指出的、本发明设计所要克服的问题。图3A示出了在第一时间点上卫星118相对于用户302的位置,而图3B示出了在第二时间点上卫星118相对于用户302的位置。图3C是在第一时间点上用户302的顶视图和卫星的波束区图案,而图3D是在第二时间点上用户302的顶视图和卫星波束区图案。如图3C和3D所示,在第一时间点上,用户302主要由卫星118的波束区6所复盖,而在第二时间点上,用户302主要由卫星1118的波束区3所复盖。在第一时间点,用户终端124检测到波束6与其它波束相比具有最强的信号。在第二时间点,用户终端124检测到波束3具有最强信号。因此,如果在波束6上建立的有效呼叫到第二时间点时不“切换”(转移)到波束3,呼叫可能会丢失。
图4A-4D说明了波束源分集。图4A示出了在第一时间点上卫星118和116相对于用户302的位置,而图4B则示出了在第二时间点上卫星118和116相对于用户302的位置。图4C是在第一时间点时用户302的顶视图和卫星波束区图案,而图4D是在第二时间点时用户302的顶视图和卫星波束区图案。正如图4C和4D所示,在第一时间点,用户主要由卫星118的波束区1所复盖,而在第二时间点用于302主要由卫星116的波束区15和卫星118的波束区11所复盖。
由本发明者所认识的问题是如果你确切知道关于用户终端在卫星照射区中哪里,这就容易确定在其上建立通信链路所最希望的一个或多个波束。但是选择在哪个(些)波束上建立通信链路的网关不知道该用户终端的位置在哪里。而且,即使知道用户的位置,由树木,建筑物等物体造成的阻挡也可能使“最佳波束”不能使用。结果,在给定用户位置未知及可能有波束阻挡的情况下,本发明者已设计了选择最希望的一个或多个波束的切换过程,用于使用户终端在这个(些)波束上接收话务。
该过程的目的是在维持波束源分集所要求的水平时减少切换率和呼叫丢失率。该过程依赖于网关和用户终端间的报文形成协议。根据从用户终端向网关发送的消息,网关可确定用于向用户终端发送信息的最希望的一个或一些波束。从用户终端向网关发送的消息包含了代表在用户终端处测得的波束强度的一些测量值。
III.波束切换过程的描述参考图5A和5B的原理图500来说明波束的切换过程。该过程假定在用户终端和网关之间已经为此波束建立了至少一个通信链路。就是说,网关已选取了一束波束用以把数据和信息发送到用户终端。
波束的切换过程开始于步骤504,网关通过所建立的通信链路发送一个波束掩码信息(BMM)到用户终端。BMM含有一系列波束标识符。序列中每一个波束标识符标识一束波束,通过该波束,网关可以发送数据或信息。网关除向用户终端发送BMM外,还向用户终端发送导频调整信息(PAM)。PAM含有一个或多个导频调整值。导频调整信息被用来实现负载平衡,将在步骤508中对此详加讨论。
网关周期性地执行步骤504。例如,网关可能每分钟发送一个更新过的BMM。之所以选择周期为1分钟是因为大约每过一分钟网关上会得到一个或更多的新的波束可供使用。
图6A表示了一个BMM600的示例。如图6A所示,BMM600由一波束标识符602-614的列表组成。波束602-614中每个标识了一个卫星/波束对。例如,BMM600中的第一个波束标识符602标识从卫星1发出的波束1,第二个波束标识符604标识从卫星1发出的波束3.
用户终端测量从网关接收到的最新的BMM(步骤506)中的波束标识符的波束强度。图6B示出了BMM600中的标识的示例的波束强度的测量值。在一种实施例中,用户终端是通过测量与波束相应的导频信号的能量大小来测量该波束的强度。用户终端利用引导频信号以求取初始系统同步和时间,频率,以及网关发送的其他信号的相位跟踪。典型地由每个网关,为每个频率发送单个导频信号,称为CDMA信道或子波束,由所有在那个频率上从那个网关接收信号的用户终端共享。已有几种成熟的技术来测量导频信号的强度。例如,有一种技术已由美国专利申请号08/722,330,1996年9月27日申请,题为“通信系统中用于相邻服务区域切换的方法与装置”,该专利已通过引用加入本文。
测量了波束强度以后,用户终端可以利用一个或多个导频调整值来调整一个或多个所测的波束强度值,导频调整值内网关可根据需要在PAM(步骤508)中发送。导频调整值用来实现负载平衡。导频调整值补偿一个特定的卫星投射出的波束的波束强度间的差异。例如,有这样一种情况,外波束的强度大于内波束和中间波束的强度。如果没有导频调整值,网关选取外波束来建立通信链接的可能性比其他波束的可能性大得多。这会引起负载平衡的问题。因此,为在波束间均衡地平衡负载,网关向用户终端发送PAM以调整正被使用的波束强度。
图6C表示一个典型的PAM。如图6C所示,PAM650含有一个或多个调整值,对应于一个或多个在BMM600中列出的波束。例如,PAM650含有卫星1的波束11的调整值和卫星2的波束16的调整值。PAM可由网关在任何时刻发送。在大多数的情况下,PAM是作为BMMD一部分发出的。用户终端把调整值加到相应的波束强度值上。图6D表示了基于PAM650,对于在BMM600中标出的波束的经调整的波束强度值。
步骤508以后,过程进至步骤510,用户终端向网关发送导频强度调整信息(PSMM)。应该注意,用户终端周期性地执行步骤506-510。选择适当的周期是有益的。如果用户终端测量或报告得太频繁,用户终端仍处在同一个(或几个)波束中,即报告的是同一个信号电平。这造成了话务信道中系统开销的浪费,因为此时报告已完成而用户终端正在传送的信息没有变化。此外,用户终端及网关的处理能力也被白白地浪费了。另一方面,如果用户终端经过太长的时间间隔或太长的周期才作报告,那么用户终端有可能错过了一个刚经过的所需的波束。
在一个实施例中,通过为一具体的系统建立参数和对所得的波束和运动的仿真及模拟而完成参数的选择。因此,根据一个给定的卫星星座(编号)及星历表(运动和位置),可以预测波束的运动和变化率。据此,人们可以达到关于合适周期的合理的预测。根据需要,一个系统使用后取得的历史数据也可以用来调整周期。在一个实施例中,周期是10秒钟。就是说,每过10秒钟,用户终端向网关发送一个PSMM。
用户终端发往网关的PSMM包含来自BMM600的一个或多个波束标识符以及相应的波束强度值。相应的波束强度值可以是经调整的或未经调整的波束强度值。在本发明的一个实施例中,PSMM至多包含6个波束标识符及它们相应的强度值。然而,基于众所周知的因素,如系统的复杂性,处理能力,存储量等等,也可以使用其它的波束数。一个示例的PSMM660的内容示于图6E。
图7的流程图表示了在用户终端上使用的一个较佳过程,该过程用于选取一个或多个波束(来自BMM600的一个或多个波束标识符及相应的波束强度值),并把它们包含进PSMM。过程700的目的是达到所需的卫星分集程度。因而,从每个用户终端可见的卫星发出的在BMM中被识别的至少一个波束被加到PSMM中。例如,如果BMM识别了3个不同的卫星均对用户终端可见,则PSMM包含有至少3个波束标识符及至少3个相应的波束强度值,这里每个标识符标识了3个卫星中的一个。
过程700开始于步骤704。在步骤704中,用户终端利用经调整的波束的测量强度确定在BMM中标出的每个卫星所投射的“最强”的波束。“最强”的波束是指具有最大的经调整的波束强度值的波束。内步骤704所确定的每个波束,用户终端将每个波束的标识符及其相应的波束强度包含进PSMM中(步骤706)。下一步,用户终端决定是否可在PSMM中加入更多的值(步骤708)。用户终端将可以允许加入进PSMM中的最大波束数减去在PSMM中现存的波束数以求得此值。在一个较佳实施例中,最大可允许包含在PSMM中的波束数是6.如果可在PSMM中加入更多的波束,控制转到步骤710,否则过程终止。在步骤710和712中,用户终端选取尚未被加入到PSMM中的最强的波束,并把它的标识符及相应的波束强度值加进PSMM。步骤712以后,控制转回到步骤708。在另一实施例中,用户终端在执行过程700时使用的是未经调整的波束强度值。因而,PSMM可以包括未经调整的或已经调整的波束强度值。
在接到来自用户终端的PSMM后,网关确定一个新的活动波束集(步骤512)。新活动波束集是应该被用作在网关和用户终端间通信链路的波束的集合。图8和图9表示两个过程(800和900),网关使用这两过程以执行步骤512(即确定新活动波束集)。过程800称为单阈值法(STS),过程900称为双阈值滞迟回线法(DTHS)。将先介绍STS(过程800),然后介绍DTHS(过程900)。
过程800开始于步骤804。在步骤804中,网关选取PSMM中最强的波束并把它加入新活动波束集。就是该网关从PSMM中选取强的波束强度值,找出对应该选中值的波束,并把它加进新的活动波束集中。在步骤804以前,新的活动波束集设置为“无波束”。即初始在新活动波束集且不含有任何波束。
在步骤806中,网关确定一个在PSMM中的最强的“另一”波束,如果有的话。一个“另一”波束是由除了在新活动集中投射了一个波束的卫星以外的一个卫星投射的在PSMM中的任何一个卫星波束。所谓PSMM中最强的“另一”波束是指该波束的强度相对于其他的另一波束为大。为了确定PSMM中的最强的另一波束,网关首先从PSMM中选取一个值的子集,该子集包括在PSMM中的相应于除了投射的一个波束中已包括在新活动集中的那个卫星以外的一个卫星所投射的波束的所有值。其次,网关选取子集中的最大值。最后,网关确定在前一步骤中所选取的强度值所对应的波束。
如果存在最强的另一波束,则执行步骤808,否则过程终止。在步骤808中,网关比较在PSMM中的最强的波束(即步骤804所选取的波束)的强度(SSB)和最强的另一波束(SSAB)(即步骤806所选取的波束)的强度。如果SSB减去SSAB后小于或等于第一阈值(T-1),则网关将把PSMM中的最强的另一波束加入到新活动波束集中(步骤810),否则过程终止而新的活动波束集只包含PSMM中最强的波束。在一个较佳的实施例中,T一1的数量级为4dB。但也可有其他的实施例,例如T-1为0dB或T-1为无穷大,在后者的情况下,最强的另一波束总被加入到新活动集中,而不管它本身的强度有多大。
步骤810后,过程进到步骤812。在步骤812中,网关确定是否应把附加的另一波束加入新活动波束集。加入到新活动波束集的另一波束的数目由所需的卫星分集的值所确定。例如,如果只要求有两个卫星分集的配置,网关会试图只将一个另一波束加到新活动波束集中。然而,如果要求有N个卫星分集的配置,网关将试图把N-1个另一波束加到新活动波束集中。
DTHS类似于STS。例如过程900的前四个步骤和过程800的前四个步骤相同。过程800和过程900的不同之处在于在过程900中,如果SSB减去SSAB后不小于或等于T-1就执行步骤902,而在过程800中,如果SSB减去SSAB后不小于或等于T-1,过程终止。
在步骤902中,网关在当前活动集中选取一个最强的另一波束,如果有的话。当前活动集指的是活动波束的集合,其中,一个活动波束是在其上已建立了网关和用户终端间的通信链路的一个波束。当前活动集中的一个另一波束是在当前活动集中的由除了在新活动波束集中投射了一个波束的卫星以外的一个卫星所投射的波束为了确定当前活动集中的最强的另一波束,网关首先从PSMM的值中选取一个子集,这个集的子集包括了在PSMM集中的除了由在新活动中投射了一个或多个波束的一个卫星以外的一个卫星投射的波束相对应的所有值。
其次,网关选取子集中的最大值。最后,网关确定在前面步骤中所选取的这个值所对应的波束。
如果步骤902成功,然后执行步骤904,否则,过程终止。在步骤904中,网关确定PSMM中的最强的波束强度(SSB)和当前活动集中的最强的另一卫星波束的强度(SSAB-CAS)之差是否小于或等于第二阈值(T-2)。如果该差值小于或等于T-2,则把当前活动集中最强的另一波束加入新的活动集(步骤906),否则,过程终止。
步骤906以后,过程继续至步骤908。在步骤908中,网关决定是否应把附加的另一波束加到新活动集中。加到新活动波束集的另一波束的数目由所需的卫星分集程度所确定。例如,如果只需两个卫星分集的配置,则网关只试图把一个另一波束加到新活动波束集中。然而,如果需要一个N个卫星的分集配置,网关将试图把N-1个另一波束加到新活动波束集中。
较佳的是,T-2大于T-1,且当T-1是4dB时,T-2为6dB。然而。也可把其它值用于这些阈值。当T-2大于T-1时,网关将优先权给于当前活动波束集中的波束,因而减少了包括镜面反射等原因造成的临时波束信号强度波动而引起的切换。阈值T-1和T-2的选取部分是基于已知的卫星轨道距离(离地面的高度)及速度,这两者决定了镜面反射的角度和变化率。
单阈值法(STS)的优点是较之双阈值滞迟回线法(DTHS)实现起来较简单。然而DTHS的切换率较之STS为低。DTHS之所以有较低的切换率是因为把由于镜面反射而造成的波束信号强度波动引起的突变效应光滑化了。突变效应产生于这样一种情况,网关在短时间内交替地加入和丢弃一个特定的波束。在过程800或过程900的结束处,新活动波束集将包含这些波束,它们应该被用作连接网关和用户终端的通信链路。
在步骤512后执行步骤514。在步骤514中,网关确定新的活动波束集是否等于当前活动波束集。当前活动波束集包含了所有在其上已建立了网关和用户终端通信链路的波束。如果新活动波束集和当前活动波束集相同,网关不启动切换,因而允许用户终端继续使用当前活动波束集中的波束(步骤515)。如果新波束集不相当于活动波束集,网关将启动切换(步骤516-530)。
在一较佳实施例中,波束切换是一种“软”波束切换。就是说,网关从用户终端收到该用户终端正在新活动波束集中的一个或多个波束上成功地接收信息的确认信号前将不会断开当前活动波束集中的连接。因此作为启动软切换的第一步,网关在不在当前活动波束集中的新的活动波束集内的波束(如果这种波束存在的话)上开始发送话务(步骤516)。下一步,网关发送一个切换方向消息(HDM)给用户终端(步骤518)。在一个实施例中,HDM可以含有两个波束标识符的集合,加入波束集和丢弃波束集。加入波束集对于新活动波束集中的每个不在当前活动波束集中的波束包含了一个波束识别符。有可能加入波束集为空,这样的话HDM只包含丢弃波束集。丢弃波束集对于当前活动波束集中的每个不在新活动波束集中的波束包含一个波束标识符。就象新加入波束集那样,丢弃波束集也可以为空,在这种情况下HDM将只包含加入波束集。在一个第二实施例中,HDM包含与新活动波束集中的每个波束相应的一个标识符。根据第二实施例,当收到HDM后,用户终端可以确定加入波束集和丢弃波束集,因为用户终端已知哪些波束是在当前波束集内。
无论是在第一种,还是第二实施例中,用户终端在收到HDM后,开始通过加入波束集中所标出的波束接收话务(步骤520)。一旦用户终端开始在加入波束集中所标出波束上接收信息,该用户终端将停止在丢弃集中所标出的波束上接收信息(步骤522)。用户终端然后向网关发送一条切换完成消息(HCM)(步骤524)。一旦收到了用户终端发来的HCM,网关停止在由丢弃集中标出的波束上发送话务(步骤526)。以这种方式完成了软波束切换。
网关和用户终端间的消息流程的例子示于图10。如图10所示,切换过程起始于网关周期性地(例如,每60秒)向用户终端发送一BMM/PAM。一旦收到BMM,用户终端周期性地(例如,每10秒)向网关发送一PSMM。一旦从用户终端收到PSMM,网关确定了要用的最希望的波束(即,确定一个新活动波束集)。如果新活动波束前等于当前活动波束集,则网关将不启动波束切换。但是,如果新活动波束集不同于当前活动波束集,网关将向用户终端发送HDM。而用户终端将用HDM作出应答。
如图10所示,用户终端通常只在前一个PSMM发送后经过了预定的时间间隔后才发送一个新的PSMM。但至少有这样一种情况,这时建议用户终端向网关发送一个“额外”的PSMM。当卫星阻塞发生时,不管前一个PSMM是何时发生的,用户终端要向网关发送一个PSMM,该PSMM就称为“额外”PSMM。卫星阻塞的条件定义为活动波束的当前强度小于在最新发送的PSMM中的报告的活动波束强度减去阈值(T_Loss),并且还如此保持了一个特定的时间间隔(T-Tloss)。当这种情况发生时,用户终端将执行步骤506-510,由此发送一个额外的PSMM。举例来说,假定活动波束的当前强度在T-Tloss的时间间隔中为7或更小,并假定在前一个PSMM中所报告的活动波束的强度为10。如果7<(10-T_Loss),则用户终端将执行一个额外的PSMM。网关将执行如上所述的步骤512。就是说,网关利用PSMM来确定应使用哪个(些)波束向用户终端发送话务。
IV.用户终端收发信器描述图11所示为一个用于用户终端124上的示例的收发信器1100。这种收发信器在本领域内都知道并在美国专利号5,109,390,题为“用于CDMA蜂窜电话系统中的分集接收机”的专利上有所讨论,并通过引用而加入于此。收发信器1100使用至少一个天线1100以接收通信信号,该信号传送至模拟接收机1114,在那里进行下变频,放大和数字化。通常使用一个双工器元件1112以允许把同一个天线用于发送和接收两种功能。然而,有些系统使用分开的天线工作于不同的发送和接收频率。
由模拟接收机1114输出的数字通信信号传送到至少一个数字数据接收机1116A,并且最好还要传送到至少一个搜索接收机1118。附加的数字数据接收机1116B-1116N可以用来获取信号分集水平或用以接收分路信号,这取决于收发信器1100可接受的复杂程度,这对于相关技术领域中的熟练技术人员是显而易见的。附加的搜索接收机可用于实现更复杂的信号搜索技术。
至少有一个用户终端控制单元1120耦合到数字数据接收机1116A-1116N和搜索接收机1118。控制单元1120除提供其他功能外还提供基本的信号处理,定时,电源和波束切换控制或协调,以及用于信号载波的频率选择。由控制单元1120经常执行的另一个基本控制功能是选择或处理PN码的序列或用于处理通信信号波形的正交函数。控制单元1120的信号处理可以包括确定相对的信号强度和对各种相关的信号参数的计算。信号参数,如定时和频率的这种计算可以包括使用附加的或分离的专用电路以提高测量效率和速度或改进对控制处理源的分配。例如,可以连接一个信号强度测量元件到模拟接收机以使用可资利用的某种信息来确定所接收到的模拟信号的总的信号强度或功率。也可以连接这个测量元件以接收数字数据接收机和搜索接收机的输出,或从它们接收可用的数据以测量正被接收的或正被解调的某特定信号的能量或功率。
数字数据接收机1116A-1116N的输出被耦合到用户终端内的基带电路122。用户数字基带电路1122含有处理和表示元件用于向或从用户终端的使用者传送信息。就是说,信号和数据存储元件,比如暂时的和长期的数字存储器,输入/输出装置,如显示屏,扬声器,键盘终端,以及手机;A/D器件,声音编码和其他声音及模拟信号处理元件,等等,都用本技术领域中的所熟识的元件构成了定户基带电路。如果使用分集信号处理,用户数字基带电路1122还要包含有一个或多个分集组合器和解码器。这些元件中的某些元件是在控制器1120的控制下,或与控制器1120进行通信的情况下工作的。
如果把声音或其他数据准备作为由用户终端始发的输出消息或通信信号,用户数字基带电路1122可用来接收,存储和处理,否则就准备所需的发送数据。用户数字基带电路1122在控制单元1120的控制之下向发送调制器1126提供这些数据。发送调制器1126的输出传送至功率控制器1128,它向发送功率放大器1130提供输出功率控制,以便最后将输出信号从天线1130发射至网关,或基站。
用户终端1100还可以在发射途径中使用一个预校正元件1132,以调整发出的信号的频率。这可以通过使用熟知的对发送波形上变频或下变频技术来完成。用户终端100还可以在发射途径中使用一个预校正器件132以调整发出的信号的定时。这可以通过使用熟知的在发送波形中增加或减去延时来实现。
可以使用本领域所知的种种技术将对应于一个或多个用于所接收的通信信号的所测得的信号参数的信息和数据,或者一个或多个共享资源信号送至网关。例如,可以将信号作为单独的信息信号传送,或可以把它附加到由用户数字基带电路1122所准备的其它消息后被传送。另一种方法是,可以将该信息作为预定的控制位由发送调制器1126或发送功率控制1128在控制单元1120的控制下使用成熟的技术而被插入。
将数字接收器1116A-N和搜索接收机1118配置有信号相关元件以便对特定的信号进行解码和跟踪。搜索接收机1118用来搜索导频信号或其他有相对固定图案的强信号。导频信道只是一种不被数据调制的信号,可能使用定值(图案)或音调类型的输入,能有效地只发送PN扩展码。数字接收机1116A-N用于解调与检测到的一导频信号相关的其它信号。然而,为了确定信号强度可在得到要精确地确定信号码片能量对信号噪声的比值的请求后,指定数据接收机对导频信号进行处理。一般来说,对导频信号码片的能量在一个预定的时间间隔,(如符号周期上进行积分,以求取导频信号强度。因此,可以监视接收机116A-N的输出以确定在导频信号或其他信号中的能量或它们的频率。这些接收机也可以使用频率跟踪元件,监控这些元件以为正被解调的信号向控制处理器或单元1120提供当前的频率和定时信息。
如前所述,控制单元1120除具有其他功能外,还提供波束切换控制功能。例如,控制单元接收来自网关的BMM,通过监视导频信号的能量来测量波束强度,并向网关发送PSMM。控制单元1120的一个例子示于图12。控制单元1120含有一个或多个处理器,例如处理器1124。处理器1124连接到通信总线1202。
控制单元1120可以采用软件控制的处理器,通过编程以执行这里所描述的功能。就是说,采用熟知的标准元件或通用功能或通用硬件,包括各种数字信号处理器,可编程电子器件,或计算机,这些计算机的运行受到有特定功能的软件控制,或受到执行特定功能的固化软件的控制。
控制单元1120也包括主存储器1206,最好是随机访问存储器(RAM),也可以包括辅助存储器1208。辅助存储器1208包括例如,可允许计算机程序或其他指令加载到控制单元1120的装置。这些装置,例如,可以包括存储器件1222及接口1220。这些器件可以包括存储器芯片(如EPROM,或PROM)及相应的插座,其他的存储器件1222和接口1220,接口1220允许将软件和数据从存储器1222传送至控制单元1120。
控制单元1120还可以包括通信接口1224。通信接口1224例如允许在控制单元1120和数字数据接收机1116之间传送软件和数据。
在本文中,术语“计算机程序介质”和“计算机可用介质”一般指诸如可移动存储器1222及主存1206之类介质。这些计算机程序产品是用来向控制单元1120提供载软件的手段。
控制或计算机程序(也称作计算机控制逻辑)存储在主存储器和/或辅助存储1208,当这些计算机和程序执行时,能使控制单元120实现本发明在这里所讨论的各种特性。特别地,例如计算机程序,在执行时可以让处理1204执行测得的波束强度值的比较。因而,这些计算机程序代表了控制单元1120的各种控制器。
在另一实施例中,控制单元1120主要因为这一功能配置的特殊硬件来实现,例如使用了应用专用集成电路(ASIC)或一个或多个电路卡组件等硬件元件。对于本领域的技术人员来说,显然可以用硬件状态机来实现这里所描述的功能。
在还有的另一个实施例中,控制单元由硬件和软件的组合来实现。
V.网关图13表示网关120的各种元件,这些元件能使网关120使网关完成本发明的各种特性。如图13所示,网关120包括连接到公共交换电话网(PTSN)1390的网关交换子系统(GSS)1301,选择器组子系统(SBS)1302,时间和频率单元(TFU)1318,网关控制器(GC)1320,CDMA互连子系统(CIS)1312,网关传输系统(GTS)1304,网关RF子系统(GRS)1310。GTS包括前向链路发送系统(FLGTS)1306和反向链路发送系统(RLGTS)1308。FLGTS1306从SBS1302取得分组化数据,加以调制,把数据变频为IF频率(800-1000MHz),然后送到网关RF子系统(GRS)1310,由它送到天线1312发射到卫星上。卫星再将信号中继至用户终端。在FLGTS1306处从SBS1302接收的分组化数据包括话务帧,报文头消息帧,及功率控制信息。话务帧可能含有BMM,PAM,及HDM。以这种方式,网关将BMM,PAM,及HDM发送到用户终端。
RLGTS1308从GRS1310接收IF信号,对它进行下变频及调制,然后把分组化数据送到SBS1302进行进一步的处理。在SBS1302处收到的分组化数据包括发自用户终端的话务帧,报头消息帧。PSMM和HCM放在话务帧中从用户终端发向网关。以这种方式,在网关处接收PSMM和HCM。
SBS1302包括一个或多个选择器1314,用以处理语音呼叫以及为完成波束切换所必需执行的动作。例如,选择器1314计算从用户终端发送的PSMM以确定哪一个新波束(如果有的话)要被加入,以及确定哪一个波束(如果有的话)要被丢弃。在加入波束以前,SBS1302向GC1320发出一个前向链路资源请求,如果资源请求被接受,选择器1314向FLGTS1306发出信号开始在新的波束上发射前向话务。一旦FLGTS1306开始发送话务,选择器1314就向用户终端发送一个HDM。当用户终端在新波束上接收话务信息后,即向选择器1314发送HDM。在选择器1314接收该HCM后,即通知FLGTS1306停止在已丢弃的波束(如果有的话)上发送信息。
正如控制单元1120的情况,选择器1314可以由软件控制的处理器构成,经编程后执行这里所描述的功能。就是说,使用熟知的标准元件,或通用功能或通用的硬件,包括各种数字信号处理器,可编程电子器件,或由特定功能的软件或编有为执行所需功能程序的固化软件控制下的计算机。
图14表示选择器1314的一个例子。选择器1314包括一个或多个处理器,诸如处理器1404。处理器1404连接到通信总线1402。选择器1314还包括主存储器1406,最好是随机访问存储(RAM),也可以包括辅助存储器1408。辅助存储器1408可以包括例如能允许将计算机程序和其他指令加载到选择器1314的装置。这些装置可以包括例如可移动的存储单元1422和接口1420。这类装置的例子可以包括一个可移动存储器芯片(如EPROM,或PROM)以及相应的插座,硬盘驱动器,磁带,微型光盘和其它光学存储器件,以及其它可移动的存储单元1422及接口1420,接口1420可以允许将软件和数据从可移动的存储单元1422加载到选择器1314。选择1314也包括通信接口1424。通信接口1424例如允许数据在选择器1314和FLGT间传输。
计算机程序(也叫作计算机控制逻辑)存放在主存储器及/或辅劫存储器1408中,这些计算机程序执行时,使选择器1314能执行本发明在这里所描述的一些特性。特别地,例如当执行计算机程序时,能使处理器1404进行测得的波束强度值的比较。因而,这些计算机程序代表了选择器1314的控制器。在另一个实施例中,选择器1314主要用为这一功能配置的硬件来实现,例如,使用了硬件元件如应用专用集成电路(ASIC),或一个或多个电路卡组件。对于在相关领域的技术人员来说。显然可以用硬件状态机来实现执行这里所描述的功能。
在再一个实施例中,选择器1314用硬件和软件的组合而实现。
VI.结论本文对较佳的几种实施例给出了如前的描述,使在本技术领域中的熟练技术人员能制作或使用本发明。参照本发明的较佳实施例已特定地展示和描述了本发明,在本领域中的技术人员应该懂得,可以对其形式和细节作种种修改,而不脱离该发明的精神和范围。
权利要求
1.在具有用户终端、通信站和波束源的多波束通信系统中用来减少呼叫丢失率的用户终端内的系统,其中,所述波束源投射多个波束,并且在至少一个波束上建立起所述用户终端和通信站之间的通信线路,其特征在于,所述系统包含接收从所述通信站发送的多个波束标识符的装置,其中,所述波束标识符标识当前由所述通信站使用的多个波束;测量由所述多个波束标识符标识的每一波束的强度的装置;将多个波束强度值发送到所述通信站的发送装置,其中,所述多个波束强度值之一是所述多个波束标识符之一所标识的波束的测得的波束强度的函数;接收所述通信站所发送的波束强度调节值的装置;以及按照所述接收的波束强度调节值调节所述多个波束强度值的调节装置,其中,在所述发送装置将所述多个波束强度值发送到所述通信站之前,所述调节装置按照所述接收的波束强度调节值,调节所述多个波束强度值,从而所述通信站将接收经调节后的波束强度值。
全文摘要
在包括一个用户终端,一个网和多个投射多个波束的波束源的多波束通信系统中减少呼叫丢失率的方法,其中用户终端和网关间的链路建立在一个或多个波束上。该方法依赖干网关和用户间的消息形成协议。最好根据预先选定的周期性X用户发送给网关的消息,网关确定最希望的波束向用户发送。从用户向网关发送的消息包含了在用户处测得的表示波束强度的值。网关使用用户测得的波束强度来为用户选择应使用的波束。要被使用的波束是那些将减少呼叫丢失率和提供所需波束分集程度的波束。
文档编号H04L9/32GK1845492SQ20061007765
公开日2006年10月11日 申请日期1999年7月21日 优先权日1998年7月21日
发明者F·P·安东尼奥, G·W·马什, R·A·斯图尔特, M·M·比耶雷德, A·乔卡林根, A·S·克恩斯, B·巴特勒, M·S·格罗布, J·T·德特曼, D·格罗弗, L·N·希夫, W·G·埃姆斯 申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1