基于信息度量的移动传感器网络主动定位方法

文档序号:7925581阅读:111来源:国知局
专利名称:基于信息度量的移动传感器网络主动定位方法
技术领域
本发明涉及一种利用移动传感器节点可控的移动性实现移动传感器网络定位的方法,属于无线传感器网络定位技术领域。
背景技术
微机电技术、数字电子技术以及无线通信技术的迅猛发展,使得部署传感器网络完成信息的获取成为可能。与单个传感器相比,传感器网络具有明显的优势,如传感信息互补、鲁棒性更强、覆盖范围更大、及成本相对低,而且,移动传感平台,如无人驾驶飞机、水下机器人和无人驾驶车辆等,能够在人类无法到达的恶劣环境下自主移动,收集感兴趣的信息。对于许多应用场合,如废墟搜救、环境检测、目标检测/跟踪、军事侦察系统等,‘移动性’ 使得传感器网络的能力大大加强,‘移动性’能够大大地改善传感器网络信息收集的能力、 提高对于动态环境和网络本身不可预知变化的自适应性、并能够提供对于故障的鲁棒响应能力。定位是无线传感器网络的一个基本问题,只有当传感器节点的位置信息已知时, 它所收集的信息才有意义。而且,传感器节点的位置信息可以节省路由的花费并能够增强网络的安全性。在每一个传感器节点上安装一个GPS接收器可以解决无线传感器网络的定位问题,但是,对于大规模无线传感器网络,花费巨大;并且,GPS设备要求额外的空间和能量消耗,对于传感器节点而言,空间和能量是非常宝贵的资源;在许多应用场合,可能只有有限数目的传感器节点配置有GPS接收器或其他定位设备,或者整个网络根本没有任何特殊的定位设备。研究者们已经研究出了许多定位算法,获得不同应用场合下传感器节点的位置 fn息ο基于种子节点(配置有定位设备的传感器节点,定位设备一般指GPS接收器)的定位算法根据少量的种子节点的位置信息计算大量的普通传感器节点(没有配置有定位设备的传感器节点)的绝对位置信息;无种子节点的定位算法应用于网络中没有种子节点的情况,应用节点间的距离信息或者跳数获得传感器节点之间的相对位置信息。基于距离的定位算法依赖特殊的硬件设备获得的距离或角度观测,利用三边测量法、三角测量法或多边测量法计算传感器节点的位置信息;无距离信息的定位算法只利用来自种子节点的信息(如种子节点的位置或跳数),对普通传感器节点的位置进行估计。无线传感器网络的定位算法有集中式和分布式的结构体系,集中式能够提供更精确的位置估计,但是计算复杂性和通讯量大;分布式对于大规模的传感器网络更易于扩展,灵活性更强。研究者们已使用移动种子节点帮助普通传感器节点获得位置估计,2004年 ((Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems》(IEEE移动传感器系统国际会议论文集)在174-183页发表的论文《Localization of wireless sensor networks with a mobile beacon》(应用移动禾中子节点实现无线传感器网络定位)禾口 2005 年〈〈Proceedings of the 24th Annual Joint Conference of theIEEE Computer and Communications Societies)) (IEEE 计算机和通讯协会年会论文集) 在 172-183 页发表的《Mobile-assisted localization in wireless sensor networks》 提到,移动性可以帮助普通传感器节点获得更多的信息;移动种子节点在环境中移动,同时定期性地广播当前的位置信息,一个移动种子节点可以起到多个静止种子节点的作用, 降低了用于种子节点的花费。2007年《Computer Communications》(计算机通讯)在 30 (13) :2577-2592 1 ^ ((Path planning of mobile landmarks for localization in wireless sensor networks》(用于无线传感器网络定位的移动种子节点的路径规划) 发现移动种子节点的运动轨迹会影响到传感器网络的定位精度,然而并没有考虑如何直接面向提高定位精度和定位效率的目的设计移动种子节点的运动轨迹。另一方面,移动性会增加传感器节点位置的不确定性,并且使得来自种子节点的信息或者观测值失效。移动传感器网络定位算法所面临的挑战是如何利用移动性,提高定位精度和定位效率,而不仅仅是克服移动性所带来的不利影响。2004年《Proceedings of the 10th Annual International Conference on Mobile Computing and Networking》 (第十届移动计算与网络国际会议论文集)在45-57页发表的《Localization for mobile sensor networks》(移动传感器网络定位)一文中专门针对移动传感器网络定位提出的蒙特卡洛定位算法(Monte Carlo Localization :MCL)利用移动性帮助传感器节点实现定位。 用一非线性离散运动模型得到传感器节点移动后的位置预测估计,MCL算法一般假设传感器节点做随机运动,随机运动会消耗掉很多宝贵的能源,并且,高的定位精度要求高的种子节点密度。近年,许多学者对MCL方法进行了改进,以提高定位效率和提高低种子节点密度下的定位精度。2008年《Ad Hoc Networks》(自组网)6(5) :718-733页发表的《Monte Carlo localization for mobile wireless sensor networks》(用于移动传感器网络的蒙特卡洛定位)提出盒式的蒙特卡洛定位方法(Monte Carlo Localization Boxed :MCB)方法将采样区域限制在种子节点通讯范围重叠区域,提高效率。2010年《IEEE Transactions on Mobile Computing》(IEEE 期刊移动计算)9 (6) :897-910 页发表的《Accurate and energy-efficient range-free localization for mobile sensor networks))(精石角白勺、 能源有效的移动传感器网络不需距离信息的定位方法)提出的加权的MCL方法(Weighted MCL =WMCL)利用两跳种子邻居节点的负效应和邻居传感器节点的位置估计信息进一步约束米样区域。2007 年((Proceedings of the 6th International Conference on Information Processing in Sensor Networks》(第六届传感器网络中的信息处理国际会议论文集)51-60页发表的《Localization in wireless sensor networks》(无线传感器网络的定位)提出的 MSL* 和 MSL (Mobile and Static sensor network Localization)算法以正比于权重值的概率保留上一时刻的采样,提高采样效率。MCL方法仅利用两跳之内的邻居种子节点的位置信息作为观测量,高定位精度依赖于高的种子密度,WMCL、MSL*和MSL 除了利用邻居种子节点的位置信息,还利用所有邻居普通传感器节点的位置估计信息作为观测信息改善定位精度。上述的定位算法都假设传感器节点做随机运动,只有传感器节点最大的运动速度已知,而实际上,可以获得移动传感器节点更多的移动性信息,利用这些信息可以提高定位效率禾口定位精度。2007 年〈〈Proceedings of the 3rd IEEE International Conference on Distributed Computing in Sensor Systems》(第三届 IEEE 传感器系统中的分布式计算国际会议论文集)96-109页发表的《Mobile anchor-free localization for wireless sensor networks》(无种子节点的移动传感器网络定位算法)提出应用加速度计检测传感器节点的运动,只有当检测到传感器移动时,才执行定位算法进行重新定位。 2005 年〈〈Proceedings of the 24th IEEE International Conference on Performance, Computing,and Communications))(第M届IEEE性能、计算和通讯国际会议论文集)587-592 页发表的〈〈Dynamic localization control for mobile sensor networks)) (移动传感器网络的动态定位控制)提出检测传感器节点的运动速度,根据其速度大小确定定位算法的实施频率,从而在保证定位精度的基础上减少能量的花费。上述研究是通过观测或预测传感器节点的移动行为,来辅助定位。然而,移动传感器网络定位问题的解决还没有考虑移动传感器节点的“主动的移动性”,即没有涉及直接面向提高定位精度和定位效率的目的,如何设计移动传感器节点的运动策略。目前的移动传感器网络定位算法的应用场合一般是指,传感器安装到野生动物、 车辆或者消防员等上面,完成动物跟踪、车辆跟踪或环境监测的任务,几乎没有研究者考虑可控移动性在移动传感器网络定位方面的应用。虽然2004年《Proceedings of the 10th Annual International Conference on Mobile Computing and Networking》(第十届移动计算与网络国际会议论文集)在45-57页发表的《Localization for mobile sensor networks》(移动传感器网络定位)一文中提到,如果移动种子节点的轨迹能够覆盖所有的感测区域,会改善普通传感器节点的定位精度和减少收敛时间;他们还发现,如果传感器节点的群集运动相对于个体运动占有主导地位,传感器网络的定位精度会降低。然而,他们也没有研究直接面向提高定位精度和定位效率,如何控制移动传感器节点的运动。实际上,在一些应用场合,传感器节点具有可控制的移动性,即可以控制传感器节点移动平台的运动方向和运动速度。本发明希望借助于可控制的移动性,移动传感器网络能够执行主动定位,也就是,传感器节点有目的地和自适应地确定移动平台的运动轨迹,以最有效的资源利用率获得最可靠、最精确的位置信息。

发明内容
本发明针对现有移动传感器网络定位技术存在的不足,提供一种基于信息度量的移动传感器网络主动定位方法,该方法能够在种子节点密度很少的情况下,以较少的能量消耗,获得足够精确的大量普通传感器节点的位置估计。本发明针对下述应用场合随机分散在环境区域中的传感器节点的移动性是可控的,允许有一部分的能量消耗在移动上,其中只有少部分的种子节点,传感器节点所获得的环境感测信息只有标有相应节点的位置信息时才有意义,要求传感器节点以尽可能少的能量消耗尽快地获得足够精确的位置估计。本发明的基于信息度量的移动传感器网络主动定位方法,包括以下步骤(1)使所有的传感器节点都具有数据处理、数据存储和通讯能力,使所有的传感器节点都配置有指南针,并使所有的传感器节点都配置有运动控制器,该运动控制器能够控制传感器节点按照一定的速度、一定的方向移动;选取部分传感器节点配置GPS接收器,这些配置GPS接收器、位置信息已知的传感器节点为种子节点,选取的种子节点的数量占全部传感器节点的比例不大于10% ;(2)种子节点的滤波器选择种子节点周围邻居普通传感器节点进行位置估计,将感测得到的周围邻居普通传感器节点相对于种子节点运动方向的角度作为观测量,用卡尔曼滤波迭代估计周围邻居普通传感器节点的位置,根据种子节点的感知半径在种子节点的感知范围内随机设置种子节点周围邻居普通传感器节点的初始位置,将种子节点的周围邻居普通传感器节点的初始位置估计标准差的大小定义为种子节点的感知半径;(3)每一个种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息,种子节点的运动控制器通过使基于信息度量的目标函数最大化为种子节点选择最优的移动方向,主动地确定种子节点下一步的移动方向,使得种子节点在下一步移动到的位置上所获得角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计的不确定性, 帮助周围邻居普通传感器节点获得位置估计,一旦种子节点的滤波器得到周围邻居普通传感器节点的估计误差小于初始位置估计标准差的10%,该种子节点停止移动,并将位置估计发送给与该种子节点相应的邻居普通传感器节点;(4)步骤(3)中的相应的邻居普通传感器节点在得到种子节点发送过来的位置估计信息后,作为第一级伪种子节点(伪种子节点没有配置GPS接收器,但已获得位置估计), 第一级伪种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息和伪种子节点自身的位置信息,第一级伪种子节点通过使基于信息度量的目标函数最大化主动选择伪种子节点的运动方向,使得第一级伪种子节点在下一步移动到的位置上所获得的角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计和第一级伪种子节点自身位置估计的不确定性,帮助第一级伪种子节点周围邻居普通传感器节点获得位置估计,在第一级伪种子节点获得周围邻居普通传感器节点的位置估计误差小于初始位置估计标准差的20%的的位置估计后,该第一级伪种子节点停止移动,并将位置估计发送给该第一级伪种子节点相应的邻居普通传感器节点;(5)步骤中的相应的邻居普通传感器节点在得到第一级伪种子节点发送过来的位置估计信息后作为第二级伪种子节点,按照与步骤同样的方法,进一步帮助第二级伪种子节点周围邻居普通传感器节点获得位置估计信息;以此类推,最终,所有需要位置估计的普通传感器节点都能够获得估计误差小于初始位置估计标准差的20%的位置估计, 此时,所有的传感器节点停止移动。整个传感器网络为接下来的环境感知任务做好了准备。本发明通过定义基于信息度量的目标函数,利用种子节点和伪种子节点的可控的移动性,使得种子节点和伪种子节点主动地、目标明确地直接面向提高定位精度的目标,选择种子节点和伪种子节点的移动方向,利用最少的移动、最短时间、最少的能量消耗实现移动传感器网络的定位问题。这一问题的解决,具有实际意义,如传感器网络的种子节点数目非常有限的情况;传感器节点的能量非常有限,不允许在随机运动上花费宝贵能量的情况。 此时,利用本发明可以实现移动传感器网络的主动定位,将宝贵的能量留给接下来的环境感测任务。本发明利用移动传感器节点可控制的移动性实现快速高效的移动传感器网络的定位,通过使基于信息度量的目标函数最大化,获得能够使位置估计不确定性降低最快的角度观测的最优运动方向,使得传感器节点做目的明确的、直接面向提高定位精度的主动运动,以最大程度地减少邻居普通传感器节点的位置估计不确定性,实现以较少的运动、较少的能量花费、较短的时间的移动传感器网络中传感器节点的定位,能够在种子节点密度很少的情况下,以较少的能量消耗,获得足够精确的大量传感器节点的位置估计。


图1是本发明基于信息度量的移动传感器网络主动定位方法的原理示意图。图2是种子节点与周围邻居普通传感器节点几何关系图。图3是本发明与基于随机移动的定位方法的位置估计误差比较图。图4是选择邻居普通传感器节点进行位置估计的策略对于定位误差的影响示意图。图5是邻居普通传感器节点数目对定位误差的影响示意图。图6是种子节点和伪种子节点所获得的普通传感器节点位置估计误差示意图。图7是种子节点速度对邻居普通传感器节点定位误差的影响示意图。图8是伪种子节点速度对于其自身定位误差和邻居普通传感器节点定位误差的影响示意图。
具体实施例方式本发明提出的基于信息度量的移动传感器网络主动定位方法,基于信息效用值度量定义了直接面向提高普通传感器节点位置估计精度的目标函数,通过使此基于信息度量的目标函数最大化,种子节点和伪种子节点的运动控制器主动地选择种子节点和伪种子节点的运动方向,使得种子节点和伪种子节点在下一步移动到的位置上所获得的邻居普通传感器节点的角度观测能够最大程度地减少邻居普通传感器节点位置估计的不确定性。本发明所提出的基于信息度量的移动传感器网络定位方法,基于以下假设(1)所有传感器节点都具有一定的数据处理和存储能力和通讯能力;(2)所有传感器节点都配置有一指南针;(3)所有传感器节点都配置有运动控制器,可以控制传感器节点按照一定的速度、 一定的方向移动。将配置有GPS接收器的已知位置信息的种子节点按照基于信息度量的目标函数优化其运动方向,以较短时间和较少的运动(仅需要少于10步的移动)获得邻居普通传感器节点的位置估计,当位置估计收敛到某一阈值(该阈值设置为初始位置估计标准差的 10% ),种子节点停止移动,并将位置估计发送给相应的普通传感器节点;接着,已获得位置估计信息的普通传感器节点作为伪种子节点,利用基于信息度量的目标函数优化伪种子节点自身运动方向,帮助伪种子节点周围的邻居普通传感器节点获得位置估计。具体实现步骤如下初始时刻,所有的传感器节点随机散布在环境区域中,在它们执行任何感测任务之前,移动传感器网络根据本发明所提出的基于信息度量的移动传感器网络主动定位方法估计所有的普通传感器节点的位置信息。本发明的基于信息度量的移动传感器网络主动定位方法,如图1所示,具体包括以下实现步骤(1)使所有的传感器节点都具有数据处理、数据存储和通讯能力,使所有的传感器节点都配置有指南针,并使所有的传感器节点都配置有运动控制器,该运动控制器能够控制传感器节点按照一定的速度、一定的方向移动;选取部分传感器节点配置GPS接收器,这些配置GPS接收器、位置信息已知的传感器节点为种子节点,选取的种子节点的数量占全部传感器节点的比例不大于10% ;(2)种子节点的滤波器选择种子节点周围邻居普通传感器节点进行位置估计,将感测得到的周围邻居普通传感器节点相对于种子节点运动方向的角度作为观测量,用卡尔曼滤波迭代估计周围邻居普通传感器节点的位置,根据种子节点的感知半径在种子节点的感知范围内随机设置种子节点周围邻居普通传感器节点的初始位置,将种子节点的周围邻居普通传感器节点的初始位置估计标准差的大小定义为种子节点的感知半径;(3)每一个种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息,种子节点的运动控制器通过使基于信息度量的目标函数最大化为种子节点选择最优的移动方向,主动地确定种子节点下一步的移动方向,使得种子节点在下一步移动到的位置上所获得角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计的不确定性, 帮助周围邻居普通传感器节点获得位置估计,一旦种子节点的滤波器得到周围邻居普通传感器节点的估计误差小于初始位置估计标准差的10%,该种子节点停止移动,并将位置估计发送给与该种子节点相应的邻居普通传感器节点;(4)步骤(3)中的相应的邻居普通传感器节点在得到种子节点发送过来的位置估计信息后,作为第一级伪种子节点(伪种子节点没有配置GPS接收器,但已获得位置估计), 第一级伪种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息和伪种子节点自身的位置信息,第一级伪种子节点通过使基于信息度量的目标函数最大化主动选择伪种子节点的运动方向,使得第一级伪种子节点在下一步移动到的位置上所获得的角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计和第一级伪种子节点自身位置估计的不确定性,帮助第一级伪种子节点周围邻居普通传感器节点获得位置估计,在第一级伪种子节点获得周围邻居普通传感器节点的位置估计误差小于初始位置估计标准差的20%的的位置估计后,该第一级伪种子节点停止移动,并将位置估计发送给该第一级伪种子节点相应的邻居普通传感器节点;(5)步骤中的相应的邻居普通传感器节点在得到第一级伪种子节点发送过来的位置估计信息后作为第二级伪种子节点,按照与步骤同样的方法,进一步帮助第二级伪种子节点周围邻居普通传感器节点获得位置估计信息;以此类推,最终,所有需要位置估计的普通传感器节点都能够获得估计误差小于初始位置估计标准差的20%的位置估计, 此时,所有的传感器节点停止移动。整个传感器网络为接下来的环境感知任务做好了准备。运动控制器主动地确定种子节点或伪种子节点的下一步的运动方向,以改善邻居普通传感器节点的位置估计的精度。1.系统构成考虑到大量的传感器节点随机地分布在二维平面内,只有少量的传感器节点配置有GPS接收器(在仿真中,发现如果种子节点的密度为5%,最后所有传感器节点的位置估计精度可以达到20%的感知半径;如果种子节点的密度选为10%,最后所有传感器节点的位置估计精度可以达到10%的感知半径。因此,本发明中种子节点的密度定为不大于 10% ),这些节点称为种子节点。那些通过种子节点获得位置估计信息的传感器节点可以帮助周围的其他普通传感器节点获得位置估计信息,这些节点称为伪种子节点(没有配置 GPS接收器,但已获得位置估计的普通传感器节点)。定义状态矢量)(s(k) = [xs(k) ys(k) = [xps(k) yps(k) ΦΡ3(10]Τ,Xs (k)表示 k 时刻种子节点在二维坐标平面内的χ方向坐标,ys(k)表示k时刻种子节点在二维坐标平面内的y方向坐标,Φ3(10表示 k时刻种子节点在二维坐标平面内的方向角,xps (k)表示k时刻伪种子节点在二维坐标平面内的χ方向坐标,yps(k)表示k时刻伪种子节点在二维坐标平面内的y方向坐标,ΦΡ300表示k时刻伪种子节点在二维坐标平面内的方向角。在种子节点或伪种子节点定位过程中, 待定位的邻居普通传感器节点保持静止不动,状态矢量Κ」=[X。,i y。,i]T,i = 1,…,Nc, 表示待位置估计的普通传感器节点在二维坐标平面内的坐标。N。是待估计位置信息的邻居普通传感器节点的数目,它们之间的几何关系如图2所示。施加到种子节点或伪种子节点的控制是已预先定义大小的速度Vs(k)、Vps(k)和可控制的运动方向Vs(k)、Vps(k),分别为 Us(k) = [Vs(k) vs(k)]T,ups(k) = [Vps(k) Vps(k)]T。种子节点和伪种子节点的运动可以用非线性、离散状态方程表示Xs (k) = fs (Xs (k_l),Us (k),k) +Ws (k),Xps (k) = fps (Xps (k_l),Ups (k),k) +Wps (k)。其中,Ws (k),Wps (k)是由于建模误差和控制不确定性所引起的过程噪声,假设为白噪声。普通传感器节点在定位过程中,保持静止不动,表示为二维平面内的点(χ。,” yc, i),i = 1,…,N。。种子节点和伪种子节点可以通过摄像头获得周围邻居普通传感器节点相对于种子节点和伪种子节点本身运动方向的角度观测,非线性的观测方程如下zSjCi (k) = hs(Xs,xCji)+vs(k), _ ] Zps, ci (k) = hps (Xps,xCj》+Vps (k)。其中,Vs (k)和Vps (k)表示观测噪声,假设为白噪声。由于种子节点的位置信息始终已知,种子节点的滤波器仅需要估计其邻居普通传感器节点的位置信息;然而,伪种子的的滤波器不仅需要估计邻居普通传感器节点的位置信息,还需估计其本身的位置信息。因此,种子节点和伪种子节点的基于信息度量的目标函数的定义不同。2.种子节点的定位方法因为种子节点的位置信息始终已知,因此,种子节点的滤波器对于各个普通传感器节点的位置估计是不相关的,假设G I Α)是根据直到k时刻的观测得到的第i个普通传感器节点的位置估计,其相应的估计方差为P。, i (k I k)。在估计之前,种子节点首先对角度观测执行数据关联处理,接着N。个信息形式的卡尔曼滤波器分别处理关于N。个邻居普通传感器节点的角度观测,分别对这N。个普通传感器节点的位置进行估计。种子节点的每一个信息形式的卡尔曼滤波器可以得到相应邻居普通传感器节点的信息状态矢量夂,沴I M和信息矩阵Y。, i (k I k),它们和位置估计I, & I Α)及估计方差P。, “k|k)的关系如下yca{k\k) = V-cl{k\k)ica{k\k),
权利要求
1. 一种基于信息度量的移动传感器网络主动定位方法,其特征是(1)使所有的传感器节点都具有数据处理、数据存储和通讯能力,使所有的传感器节点都配置有指南针,并使所有的传感器节点都配置有运动控制器,该运动控制器能够控制传感器节点按照一定的速度、一定的方向移动;选取部分传感器节点配置GPS接收器,这些配置GPS接收器、位置信息已知的传感器节点为种子节点,选取的种子节点的数量占全部传感器节点的比例不大于10% ;(2)种子节点的滤波器选择种子节点周围邻居普通传感器节点进行位置估计,将感测得到的周围邻居普通传感器节点相对于种子节点运动方向的角度作为观测量,用卡尔曼滤波迭代估计周围邻居普通传感器节点的位置,根据种子节点的感知半径在种子节点的感知范围内随机设置种子节点周围邻居普通传感器节点的初始位置,将种子节点的周围邻居普通传感器节点的初始位置估计标准差的大小定义为种子节点的感知半径;(3)每一个种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息,种子节点的运动控制器通过使基于信息度量的目标函数最大化为种子节点选择最优的移动方向,主动地确定种子节点下一步的移动方向,使得种子节点在下一步移动到的位置上所获得角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计的不确定性,帮助周围邻居普通传感器节点获得位置估计,一旦种子节点的滤波器得到周围邻居普通传感器节点的估计误差小于初始位置估计标准差的10%,该种子节点停止移动,并将位置估计发送给与该种子节点相应的邻居普通传感器节点;(4)步骤(3)中的相应的邻居普通传感器节点在得到种子节点发送过来的位置估计信息后,作为第一级伪种子节点,第一级伪种子节点利用卡尔曼滤波器估计周围邻居普通传感器节点的位置信息和伪种子节点自身的位置信息,第一级伪种子节点通过使基于信息度量的目标函数最大化主动选择伪种子节点的运动方向,使得第一级伪种子节点在下一步移动到的位置上所获得的角度观测量能够最大程度地减少周围邻居普通传感器节点位置估计和第一级伪种子节点自身位置估计的不确定性,帮助第一级伪种子节点周围邻居普通传感器节点获得位置估计,在第一级伪种子节点获得周围邻居普通传感器节点的位置估计误差小于初始位置估计标准差的20%的的位置估计后,该第一级伪种子节点停止移动,并将位置估计发送给该第一级伪种子节点相应的邻居普通传感器节点;(5)步骤中的相应的邻居普通传感器节点在得到第一级伪种子节点发送过来的位置估计信息后作为第二级伪种子节点,按照与步骤同样的方法,进一步帮助第二级伪种子节点周围邻居普通传感器节点获得位置估计信息;以此类推,最终,所有需要位置估计的普通传感器节点都能够获得估计误差小于初始位置估计标准差的20%的位置估计,此时,所有的传感器节点停止移动。
全文摘要
本发明提供了一种基于信息度量的移动传感器网络主动定位方法,分别定义了种子节点和伪种子节点(已获得精确位置估计的普通传感器节点)的基于信息度量的目标函数,在此目标函数作用下,种子节点和伪种子节点直接面向提高邻居普通传感器节点位置估计精度,主动地选择其下一步的运动方向,从而使得种子节点和伪种子节点在下一步移动到的位置上获得的邻居普通传感器节点相对于种子节点和伪种子节点运动方向的角度观测可以使得邻居普通传感器节点的位置估计的不确定性最大程度地减少。本发明能够使得种子节点和伪种子节点做尽可能少的移动,尽可能快地获得周围邻居普通传感器节点的位置估计信息,减少了能量花费,为接下来的环境感测任务保留宝贵的能量。
文档编号H04W16/18GK102307358SQ20111029533
公开日2012年1月4日 申请日期2011年9月27日 优先权日2011年9月27日
发明者周民刚, 宋锐, 李贻斌, 荣学文, 马昕 申请人:山东大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1