用于提升光接收器灵敏度的检光装置制造方法

文档序号:7988167阅读:238来源:国知局
用于提升光接收器灵敏度的检光装置制造方法
【专利摘要】本发明提供一种用于光接收器的检光装置,包含:PIN二极管,用以接收光信号,产生对应该光信号的第一电流信号;一低噪声电流放大器,耦接该PIN二极管,用以放大第一电流信号以产生低噪声的第二电流信号;以及一转阻放大模块,耦接该低噪声电流放大器,该转阻放大模块包含一转阻放大器,转阻放大该第二电流信号,以产生一单端电压信号,该转阻放大模块并包含自动增益控制放大电路以及单端转差动放大器,以放大该单端电压信号,以产生一振幅受到控制的差动电压信号。本发明系藉由增加一低噪声电流放大器以提升光接收器整体的灵敏度。
【专利说明】用于提升光接收器灵敏度的检光装置
【技术领域】
[0001]本发明系关于检光装置;特别是一种用于光接收器的检光装置。
【背景技术】
[0002]近年来随着网络的应用蓬勃发展,人们对频宽的需求也愈来愈大,因而光纤到家的布建也愈来愈普及,其中又以被动式光纤网络(PON)最受青睐。和点对点的光纤网络相t匕,点对多点的被动式光纤网络需要更多的连结预算(Link Budget)来满足系统的需求。例如,I对32用户的被动式光纤网络与点对点的光纤网络相比,至少需要额外的15dB连结预算。一般,为了增加连结预算,主要有两种方式,一是增加发射端的输出功率;另一种则为增加光接收器的灵敏度;增加发射端雷射的发射功率,除了会增加雷射的成本,也会耗费较多的能源,并且造成安全上的疑虑(eye safty),所以改善光接收器的灵敏度会是系统设计的优先选择。
[0003]关于增加光接收器灵敏度方面,目前在最新一代宽频被动式光纤网络标准GPON(Gigabit-Capable PON)中,最普遍的类别Class B+光接收器的灵敏度规格是_28dBm,而Class C更需要-30dBm灵敏度的光接收器。为了达此规格,只有使用复杂、脆弱且昂贵的雪崩式检光二极管(Avalanche Photo Diode, APD)来提高光接收器灵敏度。然而雪崩式检光二极管需要在30?50V的高压下操作,其操作电压需要随温度变化而设定,且雪崩式检光二极管较容易受静电或较高的操作电流(>3mA)而损坏,均增加其使用难度及提高其使用成本。
[0004]另一方面,使用P型-本质-N型二极管(PIN 二极管)的光接收器,具有低成本和容易操作的优点,此类光接收器在应用上的限制,主要来自于较低的灵敏度。近年来为了改善使用PIN 二极管光接收器灵敏度的研究,多集中在改良接收器后端硅材质转阻放大模块低噪声的特性,虽近年来已有长足的进步,但目前此类接收器,尚未能应用在GPON ClassB+或更高规格的标准,因此对于进一步改良此类接收器灵敏度,目前市场仍持续有其需求。

【发明内容】

[0005]为改良使用PIN 二极管的光接收器,本发明提供一种检光装置,藉由一低噪声放大器以压抑光接收器中,低噪声放大器之后所有电路所产生的噪声,以提升光接收器整体的灵敏度。
[0006]本发明提供一种用于光接收器的检光装置,检光装置包含:
[0007]— PIN 二极管,用以接收光信号,产生对应光信号的一第一电流信号;
[0008]—低噪声电流放大器,I禹接PIN 二极管,用以放大第一电流信号以产生一第二电流信号,以提升光接收器整体的灵敏度;以及
[0009]一转阻放大模块,耦接低噪声电流放大器,转阻放大模块包含一转阻放大器,转阻放大第二电流信号,以产生一单端电压信号,转阻放大模块并包含自动增益控制放大电路以及单端转差动放大器,以放大单端电压信号,以产生一振幅受到控制的差动电压信号。[0010]图1所示,为一习知使用PIN 二极管的检光装置100,该检光装置系为整个光接收器的前级。该检光装置包含一 PIN 二极管101以及一转阻放大模块102,该PIN 二极管为检光元件,接收一光信号并将其转换为一电流信号;该转阻放大模块包含一转阻放大器103,该转阻放大器将该电流信号放大转换成一电压信号;该转阻放大模块,尚包含自动增益控制电路104、放大器105、以及单端转差动放大器106等电路,以处理该电压信号,产生一信号强度受到监控的差动电压信号,以供光接收器后级的其他电路所使用。
[0011]为标定一系统中,噪声劣化的程度,我们使用噪声指数(NF, Noise Factor),其定义如下:
[0012]NF=SNRin/SNR0Ut
[0013]其中SNRin为该系统输入信号的讯噪比(信号功率与噪声功率的比值),而SNRwt为该系统输出信号的讯噪比。以上述使用PIN 二极管的检光装置为例,将PIN 二极管的信号电流定义为系统的输入,则该检光装置的整体噪声指数定义如下:
[0014]NFtotal=SNRpin/SNRdiff
[0015]其中SNRpin为PIN 二极管输出的讯噪比,而SNRdiff为输出差动信号的讯噪比,由图1可知,在此定义下,该检光装置的整体噪声指数NFtrtal即为该转阻放大模块的噪声指数
NFtia:
[0016]NFtotal=NFm[I]
[0017]根据习知技术,为降低制造成本,该转阻放大模块通常为硅半导体所制成,而由硅半导体所制成的电路,通常较三五族化合物(II1-V compound)所制成的电路,引入更多的噪声,因而有着较高的噪声指数。此外如图1所示,该转阻放大模块包含多级放大器,每一级放大器,都将贡献额外的噪声,因而增加整体的噪声指数。综合上述两个因素,由硅半导体所制成的转阻放大模块,具有相当大的噪声指数NFtia,因而劣化光接收器的灵敏度。
[0018]本发明首先提出一种检光装置的新架构,请参照图2。考量与现有技术的相容性,在不更动既有转阻放大模块的前提下,在PIN 二极管201与转阻放大模块202间,加入一低噪声电流放大器 208 (Current-to-current Low Noise Amplifier, LNA),其功率增益为GMA,则根据Friss Equation,整体噪声指数将成为:
[0019]NFtotal=NFLNA+ (NFtia-1)/Glna[2]
[0020]其中,NFm为该低噪声电流放大器的噪声指数、NFtia为该转阻放大模块的噪声指数,由第[2]式中可明显看出,在本发明所提出的架构下,为了与APD的输出电流相仿,该低噪声电流放大器的电流增益设计在10~20倍左右,将大幅压抑转阻放大模块噪声指数NFtia对整体噪声指数NFtotal的影响,因此,使用此架构检光装置的噪声指数NFtotal将低于习知架构的NFtrtal,整体光接受器的灵敏度因而得到提升。在灵敏度要求更高的光接收器中,更可考虑使用三五族化合物来制作该低噪声放大器,以得到一较小的NFm值,以进一步降低整体检光装置的噪声指数,提升光接收器的灵敏度。
[0021]本发明复提出另一种检光装置的架构,其不受既有转阻放大器的限制,使得低噪声放大器以及检光装置中其他放大器的设计具有更高弹性,各级放大器的增益可重新分配,做到检光装置整体噪声指数最佳化的设计;该架构如图3所示,系将图1中的转阻放大器,由转阻放大模块中独立出来,设计为一低噪声转阻放大器,并可进一步利用三五族化合物,设计制造此一低噪声转阻放大器,以更进一步降低整体检光装置的噪声指数。本架构的优点不但在于制程上所带来的低噪声优势,另一方面,在电路设计方面,也具有更高的弹性;本发明可以针对低噪声转阻放大器的噪声指数做最佳化设计,使其不受增益值大小的限制;且该低噪声转阻放大器的电压输出,也可设计成适合硅材质的CMOS制程,此架构的缺点在于不能重复利用既有的转阻放大模块。此外在该低噪声转阻放大器的架构上,该低噪声转阻放大器可以为一单级转阻放大器,亦可以为一电流放大器耦接一转阻放大器的两级架构;电路架构的选择,或是电流放大器的增益,均可视所欲达成的噪声指数、使用的制程、以及制造成本(半导体晶片的面积),作一全面性的考量。
[0022]本发明在光接收器的检光装置中,使用低噪声放大器,以达到降低检光装置噪声指数的效果,整体光接收器的灵敏度因而得到提升,且随着低噪声放大器的技术演进,本发明的架构可以低成本的方式,持续改善光接收器的灵敏度;由于此改良,可扩大PIN 二极管于光接收器的应用,因而可避免使用需要高压且脆弱的APD元件,降低检光装置的制造成本。
【专利附图】

【附图说明】
[0023]图1系一习知使用PIN 二极管的检光装置。
[0024]图2系本发明所提出使用PIN 二极管的检光装置的一架构。
[0025]图3系本发明所提出使用PIN 二极管的检光装置的另一架构。
[0026]图4为一电流放大器,用以实现本发明第一实施例中的低噪声电流放大器。
[0027]图5例示将本发明检光放大装置的PIN 二极管晶片、低噪声电流放大器晶片以及转阻放大模块以常用的TO-CAN方式封装。
[0028]图6例示将本发明检光放大装置的PIN 二极管与低噪声电流放大器整合单晶片以及转阻放大模块以常用的TO-CAN方式封装。
[0029]主要元件符号说明:
[0030]100检光装置

101PIN 二极管
102转阻放大模块
103转阻放大器
104自动增益控制电路
105放大器
106单端转差动放大器
200检光装置
201PIN 二极管
202转阻放大模块
203转阻放大器
204自动增益控制电路
205放大器
206单端转差动放大器
207检光模块
208低噪声电流放大器
209第一电流信号
210第二电流信号
[0031]300检光装置

301PIN 二极管
302放大模块
303低噪声转阻放大器
304自动增益控制电路
305放大器
306单端转差动放大器
309 电流信号
400电流放大器
401输入电流
500电晶体外框罐

501PIN 二极管晶片
502低噪声电流放大器晶片
503转阻放大模块
600电晶体外框罐
601整合晶片
602转阻放大模块
【具体实施方式】
[0032]以下将配合图示详细叙述例示实施例。然而,这些实施例可以包含于不同的形式中,且不应被解释为用以限制本发明。这些实施例的提供使得本发明的揭露完整与完全,熟知此技术的人将能经由该些实施例了解本发明的范畴。
[0033]本发明第一实施例请参阅图2,在本实施例中,用于被动式光纤网络的检光装置200,包含一 PIN 二极管201,用以接收光信号,产生对应该光信号的一第一电流信号209 ;一低噪声电流放大器208,耦接该PIN 二极管,用以放大该第一电流信号以产生一低噪声的第二电流信号210,以提升光接收器整体的灵敏度,该PIN 二极管及该低噪声电流放大器,组成一检光模块207 ;该检光装置尚包含一转阻放大模块202,稱接该低噪声电流放大器,该转阻放大模块的第一级为一转阻放大器203,用以转阻放大该第二电流信号,以产生一单端电压信号,该转阻放大模块并包含自动增益控制放大电路204、放大器205以及单端转差动放大器206,以放大该单端电压信号,以产生一振幅受到控制的差动电压信号,基于成本的考量,该转阻放大模块202系以硅半导体所制成;在本实施例中,该自动增益控制放大电路、该放大器以及该单端转差动放大器等电路,仅用以例示说明该转阻放大模块产生一振幅受到控制差动电压信号的功能,并非将本发明中的转阻放大模块,限制如图2的架构,而本实施例中的低噪声电流放大器,除上述放大信号电流,以提升光接收器灵敏度的主要功能外,尚可提供监测PIN 二极管信号电流强度的功能,避免该检光装置200中的电路饱和。
[0034]在本实施例中,该低噪声电流放大器,可在电路噪声、偏压方式、频宽以及制程等考量下,选择适当的架构来实现该低噪声电流放大器。在一较具体的实施态样中,为实现本发明检光装置在被动式光纤网络(PON)的应用,该低噪声电流放大器的电流增益设计在10~20倍,频宽为30kHz~1.8GHz。在灵敏度需求较高的系统中,可使用三五族化合物来制作该低噪声电流放大器,一方面是基于三五族化合物较佳的噪声特性,另一方面,三五族化合物的电路元件,具有较高的频宽,可以增加电路设计时的弹性,又因为异质接面双极电晶体(Heterojunction Bipolar Transistor, HBT)具有电流介面直接放大的特性以及元件低闪变噪声(flicker noise)的优点,特别适合用以制作本实施例中的低噪声电流放大器。在本发明所提供的检光装置中,使用三五族化合物来制作该低噪声电流放大器,提供了将检光装置中的PIN 二极管与该低噪声电流放大器整合于一单晶片的可能性,上述HBT制程,即可提供此种整合能力(Kyounghoon Yang, AugustoL.Gutierrez-Aitken, Xiangkun Zhang, George 1.Haddad, Pallab Bhattacharya, “Design,modeling, and characterization of monolithically integrated InP-based(1.55 μ m)high-speed(24Gb/s)p-1-n/HBT front-end photoreceivers, ^Journal of lightwave technology, Vol.14, N0.8, pp.1831—1839,1996.)。
[0035]本实施例中 ,低噪声电流放大器的设计可参考文献而有多种可能性,不同的电路架构分别有其优缺点,而应以宽频以及低噪声为优先考量,图4即例示一种可用以实现本实施例中低噪声电流放大器的电路架构;其中输入电流401系由PIN 二极管所产生。
[0036]承上所述,本发明检光装置中的PIN 二极管与低噪声电流放大器,可由两独立的晶片分别实现,亦可整合于一单晶片之中。图5则例示将一 PIN 二极管晶片501、一低噪声电流放大器晶片502以及一转阻放大模块503以常用的电晶体外框封装(TransistorOutline Package, TO Package)封装于一电晶体外框罐(T0-CAN) 500 ;图6则例不将一包含PIN 二极管与低噪声电流放大器的整合晶片601以及一转阻放大模块602以常用的电晶体外框封装(Transistor Outline Package, TO Package)封装于一电晶体外框罐(TO-CAN)600 ο
[0037]本发明第二实施例请参阅图3,在本实施例中,用于被动式光纤网络的检光装置300,包含一 PIN 二极管301,用以接收光信号,产生对应该光信号的一电流信号309 ;—低噪声转阻放大器303,耦接该PIN 二极管,用以转阻放大该电流信号以产生一单端电压信号,该单端电压信号再通过一放大模块302,以产生一振幅受到控制的差动电压信号,基于成本的考量,该放大模块302系以硅半导体所制成,本实施例系藉由该低噪声转阻放大器较佳的噪声指数,以降低整体检光装置的噪声指数。在图3中,该放大模块包含自动增益控制放大电路304、放大器305以及单端转差动放大器306,该等电路,系用以例示说明该放大模块产生一振幅受到控制差动电压信号的功能,并非将本发明中的放大模块,限制如图3的架构。在本实施例中,该低噪声转阻放大器,可由三五族化合物所制成,以透过三五族化合物元件低噪声的特性,降低光接受器检光装置中,转阻放大器的噪声,藉以提升光接受器整体的灵敏度。该低噪声转阻放大器,可为一低噪声电流放大器耦接一转阻放大器所构成,亦可单纯为一对噪声特性最佳化的转阻放大器。本实施例检光装置中的PIN 二极管与低噪声转阻放大器,可为两独立的晶片,亦可整合为单一晶片;本发明第一实施例中的HBT元件制程,亦可应用在本实施例中,其中,若使用单一晶片的架构,PIN与低噪声转阻放大器的连接,可使用直流耦合(DC coupling)的方式,透过转阻放大器电路输入端偏压调整方式来给予PIN 二极管适当的偏压,而无需使用需要多余的直流阻隔电容(dc decouplingcapacitor)的交流I禹合(AC coupling)方式。本实施例中的检光装置,通常系以常用的TOpackage方式封装于T0-CAN。
【权利要求】
1.一种用于光接收器的检光装置,其特征在于,所述的检光装置包含: 一 PIN 二极管,用以接收光信号,产生对应所述的光信号的一第一电流信号; 一低噪声电流放大器,耦接所述的PIN 二极管,用以放大所述的第一电流信号以产生一第二电流信号,以提升光接收器整体的灵敏度;以及 一转阻放大模块,耦接所述的低噪声电流放大器,所述的转阻放大模块包含一转阻放大器,转阻放大所述的第二电流信号,以产生一单端电压信号,所述的转阻放大模块并包含自动增益控制放大电路以及单端转差动放大器,以放大所述的单端电压信号,以产生一振幅受到控制的差动电压信号。
2.如权利要求1所述的检光装置,其特征在于,所述的转阻放大器为所述的转阻放大模块的第一级。
3.如权利要求1所述的检光装置,其特征在于,所述的检光装置系封装于电晶体外框罐,主要用于被动式光纤网络的光接收器。
4.如权利要求1所述的检光装置,其特征在于,所述的转阻放大模块系由硅半导体所制成。
5.如权利要求1、2、3、4任一权利要求所述的检光装置,其特征在于,所述的低噪声电流放大器为一独立单晶片。
6.如权利要求1、2、3、4任一权利要求所述的检光装置,其特征在于,所述的低噪声电流放大器与所述的PIN 二极管集成于一单晶片。
7.一种用于光接收器的检光装置,其特征在于,所述的检光装置包含: 一 PIN 二极管,用以接收光信号,产生对应所述的光信号的一第一电流信号; 一低噪声转阻放大器,耦接所述的PIN 二极管,用以转阻放大所述的第一电流信号以产生一单端电压信号;以及 一放大模块,耦接所述的低噪声转阻放大器,所述的放大模块包含自动增益控制放大电路以及单端转差动放大器,以放大所述的单端电压信号,以产生一振幅受到控制的差动电压信号。
8.如权利要求7所述的检光装置,其特征在于,所述的检光装置系封装于电晶体外框罐,主要用于被动式光纤网络的光接收器。
9.如权利要求7所述的检光装置,其特征在于,所述的放大模块系由硅半导体所制成。
10.如权利要求7、8、9任一权利要求所述的检光装置,其特征在于,所述的低噪声转阻放大器为一独立单晶片。
11.如权利要求7、8、9任一权利要求所述的检光装置,其特征在于,所述的低噪声转阻放大器与所述的PIN 二极管集成于一单晶片。
【文档编号】H04B10/60GK103840887SQ201210574289
【公开日】2014年6月4日 申请日期:2012年12月21日 优先权日:2012年11月20日
【发明者】吴永顺 申请人:吴永顺
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1