用于改进集成的多无线电接入技术异构网络的按时吞吐量的方法和装置制造方法

文档序号:7793027阅读:203来源:国知局
用于改进集成的多无线电接入技术异构网络的按时吞吐量的方法和装置制造方法
【专利摘要】用于优化无线网络中的按时吞吐量的方法和设备。集成了两个或更多个空中接口的增强节点B(eNodeB)在两个或更多个空中接口中的至少一个空中接口上在测量时间段内调度传输。eNodeB基于传输来为小区内的用户设备(UE)估计按时吞吐量的度量,其中按时吞吐量是在已达到延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量。然后,eNodeB将小区内的UE分配给两个或更多个空中接口中的一个空中接口以便使小区内UE的按时吞吐量的度量最大化。
【专利说明】用于改进集成的多无线电接入技术异构网络的按时吞吐量的方法和装置
[0001]优先权申请
[0002]本申请要求2012年9月28日提交的序号为13/631,137的美国申请的优先权权益,该美国申请要求2012年5月11日提交的第61/646,223号美国临时专利申请的优先权,这两个美国申请通过引用全部结合于此。

【技术领域】
[0003]多个实施例涉及无线通信。一些实施例涉及集成了多个无线电介入技术(RAT)的异构网络。

【背景技术】
[0004]多层次的多RAT(无线电接入技术)异构网络(Het-Net)是网络体系结构中用于成本有效地添加蜂窝容量和覆盖的新方向。该体系结构包括覆盖于宏蜂窝网络上的一层小型小区(例如,微微小区、毫微微小区或中继站)以扩大网络容量。最近的Het-Net体系结构也支持基于W1-Fi的小型小区,利用未许可的频谱来扩大蜂窝容量。将W1-Fi和蜂窝空中接口两者集成在单个基础设施设备中的多RAT小区也是新兴的趋势。在用于多RAT客户机设备或用户设备(UE)时,集成的多RAT基础设施提供了附加的“虚拟W1-Fi”载体,该载体可用于改进多层次Het-Net布局的容量和服务质量(QoS)性能。
[0005]在多层次多RAT系统中,可以分配UE以使用集成系统所支持的RAT中的一个或另一个来进行发送和接收。算法可用于基于例如使用不同RAT的链路上的吞吐量来执行该分配。然而,用于该分配的算法不会说明用户业务或应用是否是时间敏感的。因而,即使在吞吐量本身处在可接受的级别时,在时间敏感的应用的延迟限制之后到达的数据分组可能被丢弃,导致用户体验降级。
[0006]因此,通常需要考虑与“按时”吞吐量有关的度量、将多个UE分配给集成基站所支持的多个RAT中的一个RAT的方法和系统。然后,时间敏感的用户应用可以以及时的方式获得数据分组,而不会降低延时敏感的业务的服务质量(QoS)。而且,尽管可以通过检查例如质量反馈指示符和UE负载来为一些RAT准确地确定按时吞吐量度量,但是对于其他RAT可能更难获得按时吞吐量度量。因此,通常进一步需要一种基于测量的方法来确定使用那些RAT的链路上的按时度量,其中,可以根据从实际传输导出的测量来估计按时吞吐量,传输由集成基站根据各种标准来调度。

【专利附图】

【附图说明】
[0007]图1说明根据一些实施例的网络的示例部分。
[0008]图2说明根据一些实施例的用户设备(UE)和基站的硬件组件。
[0009]图3说明用于在集成基站所支持的多个RAT之间分割与该集成基站相关联的UE的不例算法。
[0010]图4说明根据示例实施例用于估计按时吞吐量的算法。
[0011]图5说明用于对由集成基站所支持的多个RAT中的一个RAT的基于UE和基于eNodeB的选择的示例算法。
[0012]图6说明至少接收对于各种基站RAT配置和分割算法的给定的有效吞吐量的UE百分比。

【具体实施方式】
[0013]给出以下描述以使本领域的任何技术人员能创建和使用增强节点B(eN0deB)、用户设备(UE)及相关的方法以在eNodeB内集成的多个无线电接入技术(RAT)之间分割UE。这里描述的方法和系统结合基于UE和基于eNodeB的技术来选择RAT,使得按时吞吐量被最大化。在以下描述的示例实施例的上下文中,按时吞吐量是在已到达延时阈值之前以及以大于或等于目标比特率的比特率到达目的地的数据量的度量。所描述的系统和方法可以估计eNodeB所服务的小区内支持的多个RAT上的按时吞吐量。eNodeB可以调度多个度量时间段,且UE或eNodeB可以基于在那些度量时间段内出现的传输来生成按时吞吐量的估计。
[0014]考虑了集成的W1-F1-LTE(长期演进)小型小区的具体情况,但所公开的技术也可应用于其他RAT。作为非限制性的示例,所公开的技术可应用于蓝牙、毫米波或60GHz的RAT0而且,所公开的技术可以在诸如宏基站和W1-Fi接入点等其他体系结构上实现。
[0015]对实施例的各种修改对于本领域技术人员来说显而易见,这里定义的一般原理可应用于其他实施例和应用,而不背离本公开案的范围。此外,在以下描述中,为说明目的提出了许多细节。然而,本领域的普通技术人员将认识到,可以无需使用这些具体细节而实现实施例。在其他情况下,公知的结构和过程未以框图形式示出,以便以不必要的细节混淆实施例的描述。因此,本公开案不意图受限于所示的实施例,而应符合这里所公开的原理和特征的最广范围。
[0016]图1示出Het-Net的示例,Het-Net包括:具有覆盖区120的宏基站110、具有覆盖区140的微微基站(PBS) 130、具有覆盖区160的PBS 150、以及在位于适当的覆盖区中时与宏基站110或PBS 130和150相关联的用户设备(UE) 170和180。
[0017]W1-Fi频谱也可以在集成的多RAT小型小区中利用。示例实施例实现UE分割技术以便在集成的小型小区上的W1-Fi和LTE接口之间优化地分割UE。示例实施例可以在W1-Fi和LTE接口之间分割UE,使得在PBS 130、150服务的地理区域或小区内优化按时吞吐量,或“有效吞吐量(goodput)”。然而,示例实施例不限于按时吞吐量的微微小区级最大化。相反,对于其中RAT是分布式的情况,例如在多个RAT经由光纤或其他手段连接时,可以扩展参照示例实施例描述的方法。因此,这里描述的方法可由在较大地理区域上工作的中央代理来实现。例如,方法可以在宏基站110中实现。
[0018]用于在W1-Fi和LTE接口间分割UE的方法可由PBS和UE的适当编程和/或硬件配置来实现。除非由上下文相反指出,否则这里应采用术语“微微小区”和“微微基站”来指常规的微微小区、毫微微小区、微小区或任何其他类型的小型小区。这里称为UE的移动设备应被理解为是指可以变得与小区的基站相关联的任何类型的移动设备或站。例如,PBS可以是根据LTE规范的eNodeB,并且为被指定为UE的相关用户提供LTE空中接口。除了用于与宏基站通信的空中接口之外,PBS可额外地为相关用户提供W1-Fi接口或其他类型的空中接口。
[0019]图2示出UE 170和集成的PBS 130的基本组成部分,UE 170能够在多个模式中操作,例如在蜂窝接口和W1-Fi接口上操作,集成的PBS 130提供蜂窝和W1-Fi接口两者。UE 170具有处理器200和LTE RF收发机210以及一个或多个天线260。PBS 130也具有处理器220和LTE RF收发机230。PBS 130和UE 170分别另外配置有W1-Fi RF收发机240和250。PBS 130也具有到核心网络300的通信链路,相关联的UE通过该通信链路连接到核心网络。
[0020]图3和5分别说明了在PBS和UE控制的场景中、用于RAT分割或分配以及RAT选择的操作。这里描述的示例实施例涉及对与集成的多RAT小型小区相关联的UE的RAT选择/分割,集成的多RAT小型小区例如是PBS 130、150。示例实施例是假定UE已经与PBS130、150相关联并且从例如宏基站110被卸载而描述的。
[0021]如以下参照示例实施例将更详细描述的,RAT选择决定可以或由PBS 130,150控制(通过无线电资源控制器(RRC)的操作)或由UE 170、180控制。类似地,测量的调度可以或由PBS 130、150发起,或由UE 170、180请求。而且,尽管参照下行链路传输描述了示例实施例,但是可以理解,以下描述的方法还可以使用上行链路传输来实现,在该情况下,按时吞吐量测量由PBS 130、150作出,RAT分割或选择可分别由PBS 130、150或者UE 170、180执行。
[0022]参照图3,在操作300,PBS 130在PBS 130内集成的两个或更多个空中接口之一上在测量时间段内调度传输。在说明性的示例中,PBS 130通过PBS 130的无线电资源控制器(RRC)组件(未示出)来执行操作300。在说明性的示例中,对于具有LTE RF收发机230和W1-Fi RF收发机250的PBS 130,PBS 130在与测量时间段对应的持续期内,在W1-Fi和LTE空中接口两者上调度传输。测试数据可以在该测量时间段内被发送,或者“进展中的会话”的正常数据传输可用于下述的进一步操作,用于估计“按时”吞吐量。在其他示例实施例中,PBS130仅可以在蜂窝(LTE)空中接口上调度信道质量指示符(CQI)反馈。
[0023]活动地使用特定空中接口的UE 170作出周期性的测量以测量每空中接口的按时吞吐量。然而,如果UE 170未活动地使用特定的空中接口,则PBS 130可以在允许UE 170估计按时吞吐量的两个空中接口上发起周期性的测量时间段。PBS 130可以发送包括测试数据的测试流,或者PBS 130可以在两个空中接口上分割或复制来自现有会话的业务以允许估计。
[0024]在至少一个实施例中,PBS 130可以通过调度来自UE 170的CQI报告来为LTE空中接口估计按时吞吐量。在该实施例中,PBS 130于是可以基于LTE空中接口上的计划负载以及PBS 130的调度策略来估计按时吞吐量。在这个及其他实施例中,PBS 130可以基于接收到的确认/非确认(ACK/NACK)为W1-Fi空中接口估计按时吞吐量。在其他示例实施例中,PBS 130可以通过自UE 170调度适当的传输来为上行链路估计按时吞吐量。
[0025]在操作310中,UE 170估计W1-Fi和蜂窝链路上的按时吞吐量。如上参照操作300所述,如果UE 170正在活动地使用特定空中接口,则UE 170可以作出周期性的测量以测量每空中接口的按时吞吐量。然而,如果UE 170未活动地使用特定的空中接口,则PBS 130可以在允许UE 170估计按时吞吐量的两个空中接口上发起周期性的测量时间段。PBS 130可以基于预期的持续时间来为这些测量确定周期,宏规模的环境对于该预期持续时间保持静止,一般是以秒或分钟为单位来进行测量。
[0026]可以理解,由于W1-Fi空中接口链路上使用的媒体访问控制(MAC)协议的基于竞争的性质,可能难以估计W1-Fi空中接口链路上的按时吞吐量。然而,可以为活动的W1-Fi空中接口链路相对容易地估计按时吞吐量。因此,在一些示例实施例中,如果当前没有为W1-Fi空中接口调度传输,则测量时间段可能仅应用于W1-Fi空中接口。
[0027]在一些示例实施例中,小区140内的UE 170可以触发更新后的所估计的测量过程。在示例实施例中,UE 170可以基于按时吞吐量已降级的确定,触发上述的测量过程。确定可以基于预定的降级阈值。在其他示例实施例中,PBS 130可以基于按时吞吐量已降级超过阈值的确定,触发UE 170估计的按时吞吐量测量。
[0028]参照图4,UE 170通过将测量时间段M分成两个或更多个分段或“时段” i来生成按时吞吐量估计,分段或时段i的持续期对应于给定的延时敏感的用户应用的及时吞吐量所需的延时约束条件D。对于每个时段i,UE 170测量所实现的吞吐量并且将该持续期期间所实现的吞吐量㈧与目标比特率R相比较。基于该比较,UE将值分配给时段。如果所实现的吞吐量A超过目标比特率RJUUE 170将为该时段实现按时吞吐量的概率设为1,否贝U,实现按时吞吐量的概率被设为零,设置是根据:
[0029]Ti = I (Ai ^ R), i = I,...m, m = M/D
[0030]其中I是指示符函数。
[0031]然后,UE 170计算所有时段上的估计平均值以确定实现目标比特率的概率T:

S -JJ
一I一
[0032]T=h
W JZ
[0033]在示例实施例中,UE 170可以将按时概率估计为实现目标比特率的所估计概率T乘以目标比特率R。
[0034]在示例实施例中,测量时间段M根据在两个或更多个空中接口的至少一个上发送的应用所能容忍的延时量来确定。例如,如查看图4所注意到,测量时间段M取决于用于传输的目标延时D。作为说明性的示例,对于以每秒30帧的速率发送的实时视频而言,用于在延时阈值内接收帧的延时约束条件D为33毫秒。PBS 130基于按时吞吐量的目标概率T来计算总测量时间段M,目标概率在实时视频的情况下应被设为相对高以便维持UE QoS0对于相对高的目标概率,PBS 130将D设为相应的小值。一般而言,应选择M以使足够的样本可用于估计。而且,在示例实施例中,如果几个用户应用被被作为目标,PBS 130应将D设为与具有最进取或严格的按时吞吐量要求的应用相对应的值。
[0035]再次参照图3,在操作320中,UE 170将按时吞吐量度量的估计报告给PBS 130。然而,在一些示例实施例中,如上所述,PBS 130自身可以计算按时吞吐量度量。在一些示例实施例中,度量是对于小区140内的UE的按时吞吐量的聚集。
[0036]在操作330中,PBS 130将小区140内的UE分配给小区的两个或更多个空中接口中的一个空中接口,以便使小区140内的UE的按时吞吐量的度量最大化。在示例实施例中,如果小区140内UE 170的数量相对小,则PBS 130可以详尽地使用小区140内的每一 UE170提供的估计,来提供对跨W1-Fi和LTE空中接口的UE的最优或近最优的分割。在示例实施例,当小区140内UE 170的数目相对大时,PBS 130可以对用户进行分割以便对小区140内UE 170上的吞吐量的和或积进行优化。
[0037]在操作340中,PBS 130向UE 170通知所得到的RAT分配。在操作350中,在RAT分配完成之后,PBS 130可以监视按时吞吐量,且小区140的UE 170可以监视它们所分配的空中接口以监视按时吞吐量。在操作360中,如果UE 170的链路吞吐量降级超过一阈值,则UE 170可以触发测量更新过程。PBS 130也可以在两个RAT上均调度规则的测量时间段,并且触发按时吞吐量的度量的估计的UE 170报告。PBS 130还可以周期性地更新RAT分配。
[0038]图5说明UE控制的情况下用于RAT选择的操作。这些操作类似于以上参照图3描述的那些操作。
[0039]在操作300中,PBS 130在PBS 130内集成的两个或更多个空中接口中的至少一个空中接口上在测量时间段内调度传输。在说明性的示例中,PBS 130通过PBS 130的无线电资源控制器(RRC)组件(未示出)来执行操作300。在说明性的示例中,对于具有LTERF收发机230和W1-Fi RF收发机250的PBS 130, PBS 130在W1-Fi和LTE两个空中接口上在与测量时间段相对应的持续期内调度传输。
[0040]在操作510中,UE 170在测量时间段上估计小区140内的按时吞吐量的度量。在说明性的示例中,UE 170估计W1-Fi和蜂窝链路两者上的按时吞吐量。在操作520中,UE170选择两个或更多个空中接口中的一个空中接口来使小区140内的按时吞吐量度量最大化。在示例实施例中,UE 170比较两个空中接口上的按时吞吐量估计,并且选择具有最大按时吞吐量的空中接口。在UE 170作出空中接口的选择之前,UE 170可以向选择决定施加滞后,其中,UE 170可以等待预定数量的测量时间段,在该预定数量的测量时间段上,空中接口保持最高吞吐量。UE 170也可以控制或限制对不同空中接口的变化。
[0041]在操作530中,UE 170向PBS 130通知优选的RAT。
[0042]在操作540中,在RAT分配完成之后,PBS 130可以监视按时吞吐量,且小区140的UE 170可以监视它们所分配的空中接口以监视按时吞吐量。如果UE 170的链路吞吐量降级超过一阈值,则UE 170可以触发测量更新过程。PBS130也可以在两个RAT上均调度规则的测量时间段,并且触发按时吞吐量的度量的估计的UE 170报告。PBS 130还可以周期性地更新RAT分配。
[0043]图6说明了当延时约束条件D为33毫秒时实现按时吞吐量的不同值的UE的百分比对应于每秒30帧下的实时视频应用。应当注意,在0.2兆比特/帧(?6Mbps/秒)的目标按时率下,基于最大化按时吞吐量的基于网络的方案比基于用户的方案好50%。换言之,在目标按时率下可以支持多50%的额外用户。
[0044]如上所述,根据示例实施例的方法可应用于上行链路和下行链路通信两者。
[0045]以上描述聚焦于跨多个用户的按时吞吐量之和作为用于优化的目标度量。进一步的跨Rat分割方案可以基于最大化其他度量,诸如小区内多个用户上的按时吞吐量的乘积或最小值。此外,测量调度和估计过程以及跨RAT的分割算法可等价地应用于其他度量,包括与QoS有关的任何其他度量。
[0046]已经参照包括无线接入的无线电链路描述了示例实施例。然而应当理解,上述的方法可以扩展为覆盖端到端的链路上的测量,其中一个或多个链路一般处在不活动状态。
[0047]而且,如以上讨论的,关于示例实施例描述了经由集成的W1-F1-LTE小型小区布局启用的集成的W1-F1-LTE(长期演进)的具体情况。然而,类似技术可应用于其他多RAT布局,其中两个多无线电链路可用于用户选择以及/或者不同无线电链路间的充分协调也可用于网络侧。例如,也可以使用诸如蜂窝宏基站和W1-Fi接入点这样的体系结构来实现根据示例实施例的方法,其中,允许基础设施节点间的一些协调来调度测量。也可以使用除了 W1-Fi和LTE以外的其他RAT组合,例如蓝牙、毫米波及60GHz。
[0048]上述实施例可以以各种硬件配置实现,所述硬件配置可以包括用于执行指令的处理器,指令用于执行所述的技术。这种指令可以被包含在适当的存储介质中,指令从该适当的存储介质被传输至存储器或其他处理器可执行的介质。
[0049]上述实施例可以在多个环境中实现,诸如以下的一部分:无线局域网(WLAN)、第三代合伙人计划(3GPP)通用地面无线电接入网(UTRAN)或长期演进(LTE)通信系统,尽管本公开案的范围不限于此。示例LTE系统包括与基站通信的多个移动站,移动站由LTE规范定义为用户设备(UE),基站由LTE规范定义为eNodeB。
[0050]这里所称的天线可以包括一个或多个定向天线或全向天线,包括例如偶极天线、单极天线、贴片天线、环形天线、微带天线或适用于传输RG信号的其他类型的天线。在一些实施例中,可以使用具有多孔径的单个天线,而不是两个或更多个天线。在这些实施例中,每个孔径可以被视为一个分开的天线。在一些多输入多输出(MIMO)实施例中,可以利用空间分集以及会在每个所述天线和发送站的天线之间得到的不同信道特征来有效地分隔多个天线。在一些MMO实施例中,天线可按高达波长的1/10或更多来分隔。
[0051]在一些实施例中,这里所述的接收机可以被配置成按照具体的通信标准来接收信号,通信标准诸如电气与电子工程师协会(IEEE)标准以及为WAN提出的规范,IEEE标准包括IEEE 802.11-2007和/或802.11 (η)标准,尽管本公开案的范围不限于此,因为它们也可适用于根据其他技术和标准发送和/或接收通信。在一些实施例中,接收机可以被配置成根据用于无线城域网(WMAN)的 IEEE 802.16-2004、IEEE 802.16(e)和 / 或 802.16 (m)标准(包括它们的变化和演进)来接收信号,尽管本公开案的范围不限于此,因为它们也可适用于根据其他技术和标准发送和/或接收通信。在一些实施例中,接收机可以被配置成根据通用地面无线电接入网(UTRAN)LTE通信标准来接收信号。
[0052]可以理解,为清楚目的,以上描述参照不同的功能单元或处理器描述了一些实施例。然而显而易见的是,可以使用不同功能单元、处理器或域间的任何适当的功能分布,而不背离这些实施例。例如,所图示的要由分开的处理器或控制器执行的功能可由同一个处理器或控制器执行。因此,对特定功能单元的引用仅被视为对用于提供所述功能的适当装置的引用,而不是表示严格的逻辑或物理的结构或组织。
[0053]尽管已经结合一些实施例描述了本发明的主题,但本发明的主题不限于这里提出的具体形式。本领域的技术人员会认识到,所述实施例的各种特征可以根据本公开案被组合。此外将会理解,本领域的技术人员可以作出各种修改和改变,而不背离本公开案的范围。
[0054]提供摘要以符合37C.F.R第1.72 (b)节,该节要求摘要,使读者确认技术公开案的性质和要点。可以理解,它不会用于限制或解释权利要求的范围或含义。以下权利要求在此结合到详细描述中,每个权利要求依靠自己成为一个独立的实施例。
【权利要求】
1.一种由服务小区的增强节点B(eN0deB)在所述小区内集成的两个或更多个空中接口之间分割所述小区内的用户设备(UE)的方法,所述方法包括: 在所述两个或更多个空中接口中的至少一个空中接口上,在测量时间段内,调度传输; 基于所述传输为所述小区内的UE估计按时吞吐量的度量,所述按时吞吐量是在已达至IJ延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量;以及将所述小区内的UE分配给所述小区的所述两个或更多个空中接口中的一个空中接口以便使所述度量最大化。
2.如权利要求1所述的方法,其特征在于,所述度量是所述小区内的用户的按时吞吐量的聚集。
3.如权利要求1所述的方法,其特征在于, 所述传输包括用户数据;以及 所述eNodeB在所述两个或更多个空中接口之间分割所述传输。
4.如权利要求1所述的方法,其特征在于,所述度量的估计从所述小区内的用户接收到。
5.如权利要求1所述的方法,其特征在于,所述度量的估计由所述eNodeB通过在所述测量时间段期间监视所述小区内UE的传输来确定。
6.如权利要求1所述的方法,其特征在于,已更新的所估计的测量过程由来自所述小区内的UE的请求触发。
7.如权利要求6所述的方法,其特征在于,所述UE基于所述UE作出的按时吞吐量已降级超过一阈值的确定,触发所述测量时间段。
8.如权利要求1所述的方法,其特征在于,所述测量时间段由所述eNodeB周期性地触发。
9.如权利要求1所述的方法,其特征在于,所述测量时间段由所述eNodeB基于所述eNodeB作出的按时吞吐量已降级超过一阈值的确定来触发。
10.如权利要求1所述的方法,其特征在于,所述估计还包括: 将所述测量时间段分割成两个或更多个分段; 将所述两个或更多个分段的测得的吞吐量与所述目标比特率相比较;以及 基于所述比较将多个值分配给所述两个或更多个分段;以及 基于与所述两个或更多个分段相对应的值来估计按时吞吐量的度量。
11.如权利要求1所述的方法,其特征在于,所述测量时间段基于在所述两个或更多个空中接口中的至少一个空中接口上发送的应用所能容忍的延时量来确定。
12.如权利要求1所述的方法,其特征在于,所述两个或更多个空中接口包括W1-Fi空中接口、LTE空中接口或WiMax接口。
13.—种包括指令的计算机可读介质,所述指令在由机器执行时使所述机器: 在测量时间段上估计小区内按时吞吐量的度量,所述按时吞吐量是在已达到延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量; 选择在所述小区内集成的两个或更多个空中接口中的一个空中接口以使所述小区内的度量最大化;以及 向服务所述小区的增强节点B(eN0deB)通知所述选择。
14.如权利要求13所述的计算机可读介质,包括在由所述机器执行时使所述机器执行以下操作的指令:选择所述两个或更多个空中接口中具有最高按时吞吐量的空中接口。
15.如权利要求13所述的计算机可读介质,包括在由所述机器执行时使所述机器执行以下操作的指令: 评估为两个或更多个测量时间段估计的按时吞吐量;以及 在所述两个或更多个测量时间段的每一个上选择具有所述最高按时吞吐量的空中接□。
16.一种增强节点B(eNodeB),包括: 第一接口,用于与所述eNodeB所服务的小区内的用户进行通信并将相关联的用户连接至核心网络; 第二空中接口,用于与所述eNodeB所服务的小区内的用户进行通信并将相关联的用户连接至核心网络;以及 一个或多个处理器,被安排用于: 在所述两个或更多个空中接口的至少一个上调度传输;以及 将所述小区内的多个UE分配给所述小区的所述两个或更多个空中接口中的一个空中接口以使所述小区内的按时吞吐量最大化,所述按时吞吐量是在已达到延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量。
17.如权利要求16所述的eNodeB,其特征在于,所述处理器还被安排用于在测量时间段上且基于所述传输来为所述小区内的UE估计按时吞吐量的度量,所述按时吞吐量是在已达到延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量。
18.如权利要求16所述的eNodeB,其特征在于,所述第一空中接口和所述第二空中接口之一被安排用于从所述小区内的UE接收所述按时吞吐量度量的估计。
19.如权利要求16所述的eNodeB,其特征在于,所述处理器还被安排用于: 分割数据用于在所述两个或更多个空中接口之间传输,所述数据是测试数据或用户数据。
20.如权利要求16所述的eNodeB,其特征在于,已更新的所估计的测量过程由来自所述小区内的UE的请求触发,所述触发基于所述UE作出的按时吞吐量已降级超过阈值的确定。
21.如权利要求16所述的eNodeB,其特征在于,所述处理器还被安排用于: 将所述测量时间段分割成两个或更多个分段; 将所述两个或更多个分段的测量的吞吐量与所述目标比特率相比较; 基于所述比较将多个值分配给所述两个或更多个分段;以及 基于与所述两个或更多个分段相对应的值来估计按时吞吐量的度量。
22.如权利要求16所述的eNodeB,其特征在于,所述处理器还被安排用于基于在所述第一空中接口和所述第二空中接口的至少一个上进行发送的应用所能容忍的延时量,来设置所述测量时间段。
23.一种在无线通信网络的小区内操作的用户设备(UE),所述UE包括: 第一通信模块,被安排用于在第一空中接口上通信; 第二通信模块,被安排用于在第二空中接口上通信; 处理器,被安排用于: 选择所述两个或更多个接口中的一个空中接口以使所述小区内的按时吞吐量最大化,所述按时吞吐量是在已达到延时阈值之前并且以大于或等于目标比特率的比特率到达目的地的数据量的测量; 向服务所述小区的增强节点B (eNodeB)通知所述选择;以及 基于按时吞吐量已降级的确定,请求在所述两个或更多个空中接口的至少一个上调度测试传输。
24.如权利要求23所述的UE,其特征在于,所述处理器还被安排用于: 估计所述小区内的按时吞吐量的度量;以及 将所述度量发送至所述eNodeB。
25.如权利要求23所述的UE,其特征在于,所述处理器还被安排用于:选择所述两个或更多个空中接口中在至少两个测量时间段上具有最高按时吞吐量的一个空中接口。
26.包括指令的至少一个机器可读存储介质,所述指令在增强节点B(eNodeB)上执行时使所述eNodeB根据权利要求1 一 12的任一项执行功能。
27.一种由用户设备(UE)为了在无线通信网络的小区内操作而执行的方法,包括权利要求13 - 15的任一项的操作。
【文档编号】H04W92/10GK104285494SQ201380024786
【公开日】2015年1月14日 申请日期:2013年5月9日 优先权日:2012年5月11日
【发明者】A·亚兹丹潘纳, 叶书苹, N·希玛亚特, S·塔尔沃 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1