一种低功耗的恒流与稳压控制电路及电视的制造方法

文档序号:7814590阅读:290来源:国知局
一种低功耗的恒流与稳压控制电路及电视的制造方法
【专利摘要】本发明公开了一种低功耗的恒流与稳压控制电路,包括:前端电源电路、DC-DC电压调节电路和后端线性恒流电路;前端电源电路包括供电电路、第一供电输出端、第二供电输出端和反馈电路;反馈电路根据控制信号输入端的电压值向供电电路输出反馈信号,以控制所述供电电路对第一供电输出端和第二供电输出端的电压值进行调整;DC-DC电压调节电路将第二供电输出端所输出的电压信号调节为固定的电压信号;后端线性恒流电路引出一路电压采集输出端,本发明提供的低功耗的恒流与稳压控制电路可以根据待供电LED灯串的电压变化,调整控制信号输入端的电压值,从而控制所述第一供电输出端、第二供电输出端的输出电压。
【专利说明】一种低功耗的恒流与稳压控制电路及电视机

【技术领域】
[0001]本发明涉及电源控制【技术领域】,尤其涉及一种低功耗的恒流与稳压控制电路及包括该低功耗的恒流与稳压控制电路的自适应供电调节的电视机。

【背景技术】
[0002]线性恒流调制电路是模拟集成电路中广泛使用的一种单元电路,在实际中有着广泛的应用。其中,在LED电视机的电源控制【技术领域】中,往往利用前端电路输出恒压、后端电路实现升压或降压恒流来实现对主板和LED背光的供电。
[0003]在对电视机部件进行整合过程中,主板和背光灯条通常需要配套生产,而数量不同的背光LED灯条将需要线性恒流调制电路适应性输出不同的电压值。现有技术中采用一与电视机主板供电输出端连接的反馈回路,及时监控电视机主板供电输出端的电压变化。
[0004]如图1所示,是现有技术提供的一种线性恒流调制电路的原理图,通过电源电路10提供LED供电信号和主板供电信号。当主板供电输出端的输出电压升高时,通过电阻RB 135与电阻RB134分压后的电压信号接入到稳压管UB102的参考输入端RO中,并将该电压信号与稳压管UB102内部的基准参考电压(如2.5V)作比较,使得稳压管UB102阴阳极之间电压降低,进而光耦二极管PCB101A的电流变大,集电极与发射极之间的动态电阻变小,集电极与发射极之间的电压变低;通过输出端ADJ/Vs-ON将电压信号的变化量反馈至电源电路10中的内部变压器;随之电源电路10中的内部变压器输出电压降低至设定的电压。因此,随着电阻RB134阻值的增大,LED供电输出端和主板供电输出端的输出电压减小,反之电压升高。
[0005]由于应用场合的不同,在实际生产过程中往往需要线性恒流电路输出不同的电压值,而现有技术为了满足不同场合需要,需要对硬件电路中的电阻RB134的阻值进行调整或更换电阻RB134。因此,该技术方案存在操作繁杂、精度低、功耗高和成本高的缺陷。此外,由于线性恒流电路的LED供电输出端和主板供电输出端的电压值同步变化,不同数量LED灯条所需要供电电压并不相同,而电视机主板的供电电压相对固定,因此,现有技术无法满足在调整LED供电输出端的输出电压值的同时,适应性地保持供给电视机主板的电压稳定的需求。


【发明内容】

[0006]本发明所要解决的技术问题是,提供一种低功耗的恒流与稳压控制电路,自适应地调整LED供电输出端的电压值和稳定供给主板的电压值,无需对硬件电路进行调整。
[0007]为解决以上技术问题,一方面,本发明提供一种低功耗的恒流与稳压控制电路,包括:前端电源电路、DC-DC电压调节电路和后端线性恒流电路;
[0008]所述前端电源电路包括供电电路、第一供电输出端、第二供电输出端和反馈电路;
[0009]所述反馈电路包括反馈输入端、控制信号输入端和反馈信号输出端;所述反馈输入端与所述第二供电输出端连接,所述反馈信号输出端与所述供电电路连接;所述反馈电路根据所述控制信号输入端的电压值,向所述供电电路输出反馈信号,以控制所述供电电路对所述第一供电输出端和所述第二供电输出端的电压值进行调整;
[0010]所述DC-DC电压调节电路的输入端与所述第二供电输出端连接,用于将所述第二供电输出端所输出的电压信号调节为固定的电压信号后,输出至主板进行供电;
[0011]所述后端线性恒流电路包括比较电路和恒流控制电路;所述比较电路设有参考信号输入端,以接入恒流参考电压;所述恒流控制电路在所述比较电路的调节下与待供电LED灯串的一端连接,所述待供电LED灯串的另一端与所述第一供电输出端连接;
[0012]在所述恒流控制电路与所述待供电LED灯串连接处引出一路电压采集输出端,以根据所述待供电LED灯串的电压变化,调整所述控制信号输入端的电压值,从而控制所述前端电源电路调整所述第一供电输出端、第二供电输出端的输出电压。
[0013]进一步地,所述的低功耗的恒流与稳压控制电路还包括一控制主芯片;
[0014]所述控制主芯片与所述控制信号输入端、所述参考信号输入端以及所述电压采集输出端分别连接;
[0015]所述控制主芯片根据所述电压采集输出端的电压变化,调节输出至所述控制信号输入端的信号大小,以控制所述前端电源电路的第一供电输出端、第二供电输出端的输出电压值;并通过所述参考信号输入端向所述后端线性恒流电路输入所述恒流参考电压。
[0016]进一步地,当所述控制主芯片检测到所述电压采集输出端与所述参考信号输入端的电压差值大于预设的阈值时,所述控制主芯片将输出至所述控制信号输入端的电压信号占空比减小。
[0017]进一步地,所述控制主芯片包括模数转换器,用于将所述控制主芯片接入的电压信号转换为数字信号。
[0018]优选地,所述供电电路包括电源输入电路、开关电源电路、多路输出变压器、LED供电输出电路和主板供电输出电路;
[0019]所述电源输入电路在所述开关电源电路的控制下将接入的电源信号传输至所述多路输出变压器;
[0020]所述多路输出变压器包括主绕组和副绕组;所述主绕组将所述电源信号变压后传输至所述主板供电输出电路,并通过所述第二供电输出端进行输出;所述副绕组将所述电源信号同步变压后传输至所述LED供电输出电路,并通过所述第一供电输出端进行输出;所述主绕组与所述副绕组的线圈匝数比为1:N,N > O。
[0021]优选地,在所述前端电源电路中,所述反馈电路还设有光耦(PCBlOl)、稳压器(UB102);
[0022]所述光耦(PCBlOl)包括位于原边的发光二极管和位于副边的光信号转换器;
[0023]所述稳压器(UB102)将所述控制信号输入端输入的控制信号接入至所述光耦(PCBlOl)的位于原边的发光二极管;所述发光二极管将控制信号转换为光信号后传递至所述光耦(PCBlOl)的位于副边的光信号转换器;所述光信号转换器将光信号转换为电信号后输出至所述反馈信号输出端。
[0024]优选地,所述稳压器(UB102)采用可调试精密并联稳压器,包括阴极(K)、阳极(A)和参考输入端(R),并内建有基准电压;
[0025]其中,所述可调试精密并联稳压器的阳极(A)接地,阴极(K)与所述光耦(PCBlOl)的位于原边的发光二极管连接;参考输入端(R)用于接入所述控制信号输入端的控制信号。
[0026]进一步地,所述反馈电路还设有稳压反馈电路。
[0027]另一方面,本发明还提供了一种自适应供电调节的电视机,包括:电视机主板、背光LED灯串,以及以上任一项所述的低功耗的恒流与稳压控制电路;
[0028]所述低功耗的恒流与稳压控制电路与所述电视机主板和所述背光LED灯串分别连接,用于根据所述背光LED灯串的工作电压通过接入控制信号,自适应调节供给所述背光LED灯串的电压信号,并稳定输出至所述电视机主板的供电电压信号。
[0029]实施本发明提供技术方案,通过在线性恒流与稳压控制电路中设置前端电源电路、DC-DC电压调节电路和后端线性恒流电路,利用前端电源电路调节两路输出的供电电压,并在前端电源电路中建立反馈电路,以及在反馈电路中设有控制信号输入端,以实现对前端电源电路的第一供电输出端和第二供电输出端的电压的自动控制。由于控制信号输入端的电压信号将会同时影响第一供电输出端和第二输出端的输出电压,因此本发明进一步通过DC-DC电压调节电路来保证输出至主板的电压信号的稳定;并通过设立后端线性恒流电路自动适应串联的LED背光灯数量的变化,可以根据LED背光灯串联后的电压值调整所述控制信号输入端的电压值,从而通过前端电源电路及其反馈电路控制所述第一供电输出端、第二供电输出端的输出电压,而第一供电输出端连接至LED背光灯进行供电,实现了与LED背光灯数量相适应的电压自动化调节,降低电路开关元件的功耗,并保证了主板电路的供电电压的稳定性。进一步地,在电视机【技术领域】中,可以利用所述低功耗的恒流与稳压控制电路对电视机主板、背光LED灯串进行控制,实现一种自适应供电调节的电视机。

【专利附图】

【附图说明】
[0030]图1是现有技术提供的一种线性恒流调制电路的原理图。
[0031]图2是本发明提供的低功耗的恒流与稳压控制电路的一个实施例的结构示意图。
[0032]图3是本发明提供的前端电源电路的一种可实现方式的原理图。
[0033]图4是本发明提供的前端电源电路的一种具体电路原理图。
[0034]图5是本发明提供的DC-DC电压调节电路为升压调节电路时的一种电路原理图。
[0035]图6是本发明提供的后端线性恒流电路的一种可实现方式的电路原理图。
[0036]图7是本发明提供的低功耗的恒流与稳压控制电路的又一实施例的结构示意图。

【具体实施方式】
[0037]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
[0038]参见图2,是本发明提供的低功耗的恒流与稳压控制电路的一个实施例的结构示意图。
[0039]在本实施例中,所述的低功耗的恒流与稳压控制电路包括前端电源电路101、DC-DC电压调节电路102和后端线性恒流电路103。
[0040]所述前端电源电路101包括供电电路1011、第一供电输出端0UT1、第二供电输出端0UT2和反馈电路1012 ;
[0041]其中,所述反馈电路1012包括反馈输入端八_化、控制信号输入端Cont和反馈信号输出端8_0机;所述反馈输入端八_111与所述第二供电输出端0UT2连接,所述反馈信号输出端B_out与所述供电电路1011连接;所述反馈电路1012根据所述控制信号输入端Cont的电压值,向所述供电电路1011输出反馈信号,以控制所述供电电路1011对所述第一供电输出端OUTl和所述第二供电输出端0UT2的电压值进行调整。
[0042]参看图3,是本发明提供的前端电源电路的一种可实现方式的电路原理图。
[0043]在一种可实现方式中,如图3所示,反馈电路1012可设有光耦PCB101、稳压器UB102及其外围电路。其中,所述光耦PCBlOl包括位于原边的发光二极管(即光耦PCBlOl的脚I和脚2的组件)和位于副边的光信号转换器(即光耦PCBlOl的脚3和脚4的组件)。
[0044]稳压器UB102将所述控制信号输入端输入的控制信号接入至光稱PCBlOl的位于原边的发光二极管;所述发光二极管将控制信号转换为光信号后传递至所述光耦PCBlOl的位于副边的光信号转换器;所述光信号转换器将光信号转换为电信号后输出至所述反馈信号输出端。
[0045]进一步地,所述反馈电路1012还设有电阻RB131和电阻RB132 ;所述电阻RB131的一端为所述反馈输入端,另一端与光耦PCBlOl的位于原边的发光二极管的阳极连接;所述电阻RB132的一端连接在所述发光二极管的阳极,另一端连接在所述发光二极管的阴极上。
[0046]其中,位于原边的发光二极管的输入端(脚I)通过电阻RB131作为反馈输入端八_in与第二供电输出端OUT连接,且光耦PCBlOl的原边两端(脚I和脚2)与电阻RB132并联;位于光耦PCBlOl的副边的光信号转换器的输出端(脚4)连接作为反馈信号输出端B_out与供电电路1011的反馈控制端feedback连接,光信号转换器的另一端(脚3)接地。需要说明的是,电阻RB132并非本实施例中的反馈电路中的必要电子元件。
[0047]稳压器UB102优选采用可调试精密并联稳压器,包括阴极K、阳极A和参考输入端R,并内建2.5V(伏)的基准电压,优选地,可采用型号为TL431的稳压器进行实现。其中,所述可调试精密并联稳压器的阳极A接地,阴极K与所述光耦PCBlOl的位于原边的发光二极管连接;参考输入端R用于接入所述控制信号输入端Cont的控制信号。
[0048]进一步地,所述反馈电路1012还设有稳压反馈电路。
[0049]在一种可实现的方式中,所述稳压反馈电路包括电容CB109和电阻RB133 ;所述电容CB109的一端连接在所述可调试精密并联稳压器的阴极K上,另一端与电阻RB133的一端串联;电阻RB133的另一端连接在所述可调试精密并联稳压器的参考输入端R上。
[0050]在另一种可实现的方式中,所述稳压反馈电路包括电容CBllO ;所述电容CBllO的一端连接在所述可调试精密并联稳压器的阴极K上,另一端连接在所述可调试精密并联稳压器的参考输入端R上。
[0051]进一步地,本实施例可以将以上两种实现方式进行结合,以实现所述稳压反馈电路。即所述稳压反馈电路同时设有电容CB109、电阻RB133和电容CB110。
[0052]如图3所示,稳压器UB102的阴极K与光耦PCBlOl原边的发光二极管2脚连接,稳压器UB102的阳极A接地;电阻RB134的一端与稳压器UB102的参考输入端R连接,另一端接地;电容CB109的一端连接在所述可调试精密并联稳压器的阴极K上,另一端与电阻RB133的一端串联;电阻RB133的另一端连接在所述可调试精密并联稳压器的参考输入端R上;所述电容CBllO的一端连接在所述可调试精密并联稳压器的阴极K上,另一端连接在所述可调试精密并联稳压器的参考输入端R上。
[0053]进一步地,所述可调试精密并联稳压器的参考输入端R通过一分压器与所述控制信号输入端连接。在本实施例中,优选地,所述分压器为一电阻RB 150。
[0054]如图3所示,电容CB109—端与光耦PCBlOl的2脚连接,另一端与电阻RB133串联后与电阻RB150的一端连接,电阻RB150的另一端作为所述控制信号输入端Cont ;电容CBllO的一端与稳压器UB102的阴极K连接,另一端与稳压器UB102的参考输入端R连接;电阻RB135的一端与反馈输入端A_in连接,另一端与稳压器UB102的参考输入端R连接。由此,构成了反馈电路1012的一种具体的实施方式。
[0055]在本实施例中,在稳压器UB102的参考输入端R上增加一电阻RB150,同时通过控制信号输入端Cont引入一控制信号对稳压器UB102的阴极K的输出电压值进行自动化控制,从而可实现对供电电路1011及其输出电压的调节。
[0056]参看图4,是本发明提供的前端电源电路的一种具体电路原理图。
[0057]所述供电电路1011包括电源输入电路11、开关电源电路12、多路输出变压器TBlOl、LED供电输出电路13和主板供电输出电路14 ;
[0058]所述电源输入电路11在所述开关电源电路12的控制下将接入的电源信号传输至所述多路输出变压器TBlOl ;如图4所示,所述多路输出变压器TBlOl包括主绕组和副绕组。其中,多路输出变压器TBlOl的9脚?11脚的线圈形成初级主绕组,多路输出变压器TBlOl的I脚?2脚的线圈形成次级主绕组;多路输出变压器TBlOl的7脚?8脚的线圈形成初级副绕组,多路输出变压器TBlOl的I脚?6脚的线圈形成次级副绕组,其中,I脚?2脚的线圈为主绕组和次绕组的共用绕组,需要说明的是,次级主、副绕组之间可以共用部分绕组,也可以采用独立的绕组。具体实施时,所述主绕组将所述电源信号变压后传输至所述主板供电输出电路14,并通过所述第二供电输出端0UT2进行输出;所述副绕组将所述电源信号同步变压后传输至所述LED供电输出电路13,并通过所述第一供电输出端OUTl进行输出;因此,图4中的多路输出变压器TBlOl具有两路输出电压,特别地,在电视机【技术领域】中,第一供电输出端OUTl优选为供给LED背光灯的供电输出端,第二供电输出端0UT2优选为供给电视机主板的供电输出端。
[0059]在本实施例中,多路输出变压器TBlOl每匝线圈的输出电压是相同的,当改变其中一路的输出电压,那么另一路的输出电压也将会同步跟随变化。例如,主绕组的线圈为2匝,输出电压为12V,即每匝线圈的输出电压为6V;假设副绕组的输出电压为120V,则副绕组的线圈匝数为20匝。而主绕组和副绕组的线圈匝数可根据实际应用场合进行调整,即所述主绕组与所述副绕组的线圈匝数比为1:N,N > 0,即当主绕组的输出电压为Vl时,副绕组的输出电压为V2 = N*V1。
[0060]需要说明的是,反馈电路1012的反馈输入端A_in可连接所述供电电路1011的第一供电输出端OUTl或第二供电输出端0UT2,并不影响本实施例的实施。
[0061]本发明可通过线性调节反馈电路1012的控制信号输入端Cont接入的外部控制信号的大小,从而控制第一供电输出端OUTl或第二供电输出端0UT2的电压值。具体地,以所述反馈电路1012的反馈输入端A_in连接到所述供电电路1011的第二供电输出端0UT2为例,本实施例的基本工作原理主要为:
[0062]当供电电路1011的输出电压升高(第一供电输出端OUTl和第二供电输出端0UT2同时升高)时,控制信号输入端Cont的控制信号经过电阻RB135和电阻RB134、电阻RB150分压后的电压传输至稳压器UB102的参考输入端R,稳压器UB102将参考输入端R的信号值与其内部基准电压进行比较。当参考输入端R的信号值大于基准电压时,稳压器UB102阴阳极之间的电压降低,进而光耦PCBlOl的电流增大,光耦PCBlOl集电极与发射极之间动态电阻变小(光耦PCBlOl的集电极为光耦的4脚,发射极为光耦的3脚),集电极与发射极之间的电压变低;随之连接的PWM(Pulse Width Modulat1n,脉冲宽度调制)控制芯片UBlOl的反馈脚COMP的电平变低,PWM控制芯片UBlOl输出占空比减小,从而使得多路输出变压器TBlOl的输出电压降低。反之,当参考输入端R的信号值小于基准电压时,可使得多路输出变压器TBlOl的输出电压(包括第一供电输出端OUTl和第二供电输出端0UT2的输出电压)升闻。
[0063]因此,为调节稳压器UB102的参考输入端R接入的电压信号的大小从而控制变压器TBlOl的输出电压,本发明通过增加电阻RB150并在电阻RB150的一侧接入控制信号来实现这一目的。具体地,当需要调制第二供电输出端0UT2的输出电压,且稳压器UB102的内部基准电压为2.5V时,第二供电输出端的输出电压值计算公式为:Vout2 =基准电压*(1+R135/R134),其中,基准电压优选为2.5V。优选地,可通过外部控制芯片输出一个PWM_12V信号至所述控制信号输入端Cont,经由电阻RB150将PWM_12V信号传输至电阻RB 134与电阻RB135之间串联点(即稳压器UB102的参考输入端R)。
[0064]具体实施时,控制信号输入端Cont的PWM_12V信号可采用0-3.3V中的任意一个恒定电压值,或者,采用一定波形的PWM(Pulse Width Modulat1n,脉冲宽度调制)波。根据第二供电输出端的输出电压值计算公式:Vout2 =基准电压*(1+R135/R134),在任何情况下,当通过外部控制芯片向反馈电路1012的控制信号输入端Cont输入的控制信号为3.3V(最大)时,第二供电输出端0UT2的输出电压为最小,因为控制信号输入端Cont的输入电压(3.3V)大于稳压器UB102的基准电压2.5V(电路稳定工作的时候稳压器UB102的I脚电压和基准电压几乎相等),所以此时相当于是电阻RB150接到3.3V的电源上,也就是相当于将电阻RB150并联在了电阻RB135上,根据Vout2的电压公式可知,由于电阻RB135并联了电阻RB150,相当于电阻RB135的等效电阻减少,从而使输出电压Vout2降低。当通过外部控制芯片向反馈电路1012的控制信号输入端Cont输入的控制信号为OV (最小)时,第二供电输出端0UT2的输出电压为最大,因为控制信号输入端Cont输入的控制信号为OV时相当于接地,这时相当于将电阻RB150并联在电阻RB134上,根据上述电压计算公式,由于电阻RB134并联了电阻RB150,相当于电阻RB135的等效电阻变小,从而使输出电压Vout2升高。
[0065]可见,通过线性调节反馈电路1012的控制信号输入端Cont输入的控制信号(例如上述的OV?3.3V的恒定电压信号或PWM波),可使得第二供电输出端0UT2的输出电压在实际常用电压范围11.5V?12.5V之间进行调节(Vout2_max = 12.5V, Vout2_min =11.5V),从而实现微调;同理,在多路输出变压器TBlOl的作用下,第一供电输出端OUTl的输出电压也将实现同步自动适配调节。
[0066]在具体应用场合中,在产品待机情况下(供电电路输出减少),可通过线性调节外部控制芯片向反馈电路1012的控制信号输入端Cont输入的控制信号为高电平(如3.3V),从而可使供电电路1011的第二供电输出端0UT2输出的电压为最小输出电压,可以减少电视机主板的待机功耗。
[0067]此外,所述待供电LED灯串由多个LED灯串联而成,随着待供电的LED灯串的数量的增多,多个LED串联后所需要的供电电压不断增高,因此,要求第一供电输出端OUTl的输出电压能够自适应地响应LED的数量变化,自动调节其输出电压值。
[0068]由于第一供电输出端OUTl与第二供电输出端0UT2同属于一个变压器TB101,在对第一供电输出端OUTl的输出电压进行调节时,必然会对第二供电输出端0UT2的输出电压产生影响,而电视机主板的供电电压通常较为固定(约12V),若第二供电输出端0UT2的输出电压幅度波动过大,将会影响电视机主板的整体性能,而过高的供电电压甚至可能烧毁电视机主板。
[0069]如图2所示,本发明提供的低功耗的恒流与稳压控制电路还设有DC-DC电压调节电路102。具体地,所述DC-DC电压调节电路102的输入端与所述第二供电输出端0UT2连接,用于将所述第二供电输出端0UT2所输出的电压信号调节为固定的电压信号后,输出至电视机主板进行供电。
[0070]以电视机主板所需供电电压为12V为例,本实施例在前端电源电路101与电视机主板之间增加一级DC-DC电压调节电路102,通过DC-DC电压调节电路102响应第二供电输出端0UT2的输出电压的变化,自动调节输出至电视机主板的供电电压值。DC-DC电压调节电路102可以根据第二供电输出端0UT2的输出电压大于或者小于12V的情况,采用降压调节电路或者升压调节电路。
[0071]参见图5,是本发明提供的DC-DC电压调节电路为升压调节电路时的一种电路原理图。当所述DC-DC电压调节电路102为升压调节电路时,包括:与所述第二供电输出端0UT2连接的电感器LB801、开关电路1021、电压转换芯片UB801及其外围电路1022,以及输出滤波电路1023 ;具体地,本实施例中可以通过将第二供电输出端0UT2的输出电压采用升压调节电路进行升压后得到12.5Vout给电视机主板供电。
[0072]所述开关电路1021与电感器LB801输出端连接,将所述第二供电输出端0UT2的电压信号传输至电压转换芯片UB801中调节为稳定的电压信号;再通过所述开关电路1021将调节后的稳定的电压信号传输至所述输出滤波电路1023进行过滤后,提供给电视机主板进行供电。
[0073]为了实现自适应调节第一供电输出端OUTl的输出电压,同时保证供给电视机主板的电压信号的稳定性,本实施例在添加了 DC-DC电压调节电路102后,则实现了第二供电输出端0UT2的输出电压的可调性。电视机主板允许的工作电压范围通常为11.5V?12.5V,则DC-DC电压调节电路102启动后作用是将第二供电输出端0UT2的输出电压进行调节后在12.5Vout输出端输出11.5V?12.5V的电压信号。
[0074]所述的线性恒流与稳压控制电路还设有后端线性恒流电路103,具体地,如图2所示,所述后端线性恒流电路103包括比较电路1031和恒流控制电路1032 ;所述比较电路1031设有参考信号输入端PWM_REF,以接入恒流参考电压Vkef ;所述恒流控制电路1032在所述比较电路1031的调节下与待供电LED灯串的一端LED-连接,所述待供电LED灯串的另一端LED+与所述第一供电输出端OUTl连接;
[0075]在所述恒流控制电路1032与所述待供电LED灯串连接处P引出一路电压采集输出端(如图2中的输出端ADC_12V),以根据所述待供电LED灯串的电压变化,所述前端电源电路调整所述控制信号输入端Cont的电压值,从而控制所述第一供电输出端0UT1、第二供电输出端0UT2的输出电压。
[0076]参看图6,是本发明提供的后端线性恒流电路的一种可实现方式的电路原理图。
[0077]具体实施时,在所述后端线性恒流电路103中,所述比较电路1031还包括运算放大器UB1A,所述运算放大器UBlA的反相输入端通过一电阻RB12与所述参考信号输入端PWM.REF连接;所述运算放大器UBlA的正相输入端连接有电流反馈电路。具体地,如图6所示,该电流反馈电路包括多个恒流检测电阻,分别为电阻RB5、电阻RB6、电阻RB7、电阻(RB8)、电阻RB9 ;其中,电阻RB6、电阻RB7、电阻RB8与电阻RB9组成并联电路,所述并联电路的一端连接在电阻RB5的一端上,所述并联电路的另一端接地;电阻RB5的另一端连接在所述运算放大器的正相输入端上。进一步地,所述电流反馈电路还包括电容CB5 ;所述电容CB5的一端接地,另一端连接在所述运算放大器的正相输入端上。其中电阻RB5和电容CB5组成的电路可以对输入到运算放大器UBlA的正相输入端的信号进行滤波。
[0078]优选地,所述比较电路1031还包括一钳位二极管DB1,以保护所述比较电路1031的正常工作。
[0079]在所述后端线性恒流电路103中,所述恒流控制电路1032还包括一开关管QBl。开关管QBl可以为三极管或者MOS (Metal-Oxid-Semiconductor,金属氧化物半导体)场效应晶体管,简称MOS管或场效应晶体管。其中,开关管QBl的导通/截止状态跟其自身的物理特性相关联。例如,当开关管QBl为三极管时,根据三极管的伏安特性曲线,存在着饱和区、放大区和截止区,分别对三极管的发射极与集电极之间的电压信号产生不同的影响,如当三极管工作在饱和区时,三极管的发射极与集电极之间相当于短路(导通状态)。
[0080]在本实施例中,当所述开关管QBl为三极管时,所述恒流控制电路1032通过所述三极管的集电极与所述待供电LED灯串的一端(LED-)连接;所述三极管的发射极与所述钳位二极管DBl的阳极连接;当所述开关管QBl为场效应晶体管时,所述恒流控制电路1032通过所述场效应晶体管的漏极与所述待供电LED灯串的一端(LED-)连接;所述场效应晶体管的源极与所述钳位二极管DBl的阳极连接。
[0081]具体实施时,钳位二极管DBl的阴极接地,阳极通过电阻RB5连接在运算放大器UBlA的正相输入端。在后端线性恒流电路103启动后,经过运算放大器UBlA的调整,其正相输入端所连接恒流检测电阻所分得的电压值与其反向输入接入的恒流参考电压Vkef相等,则当恒流参考电压Vkef高于钳位二极管DBl的导通电压值(约0.7V)时,钳位二极管DBl将会导通接地,即由电阻RB6、电阻RB7、电阻RB8和电阻RB9并联组成的恒流检测电阻两端的电压值被钳位二极管DBl所限制,因此,钳位二极管DBl起到了一定的保护作用。
[0082]并且,由于开关管QBl的发射极(开关管QBl为三极管)或源极(开关管QBl为MOS管)与钳位二极管DBl的阳极连接,因此流通开关管QBl的恒流值可以通过以下公式计算:
[0083]当恒流参考电压Vkef高于钳位二极管DBl的导通电压值时,流通开关管QBl的恒流信号为DBl的导通电压值/恒流检测电阻的阻值;当恒流参考电压Vkef低于钳位二极管DBl的导通电压值时,流通开关管QBl的恒流信号为=Itmffi =恒流参考电压Vkef/恒流检测电阻的阻值。通常,钳位二极管DBl的导通电压值为0.7V,恒流检测电阻的阻值为电阻RB6、电阻RB7、电阻RB8和电阻RB9并联后的总阻值。
[0084]在本实施例中,第一供电输出端连接到LED灯串的正极LED+,通过开关管QBl的恒流控制,再串接恒流检测电阻(电阻RB6、电阻RB7、电阻RB8和电阻RB9的并联电阻)到地,恒流检测电阻将LED灯串的电流大小转换成电压信号接入到运算放大器UBlA与恒流参考电压Vkef(由外部主芯片进行控制,或者接入固定电压,若为固定电压则输出的恒流值Ite
则为固定值,不能进行恒流大小的调节)进行比较和放大,从而控制开关管QBl调整LED灯串的电流保持恒定。
[0085]具体实施时,LED灯串一般会串联多颗LED灯,其中单颗LED的工作电压一般为2.8V?3.4V,多颗LED灯串联后的工作电压将相应增大。以开关管QBl为MOS管为例,开关管QBl的漏极与源极之间的电压:VDS = VTOT1—LED灯串工作电压一恒流参考电SVkef。因此,后端线性恒流电路103进入工作状态后,开关管QBl的漏极与源极之间的电压Vds将会受到LED灯串的工作电压大小的影响,此外还可能受到多路输出变压器TBlOl的交叉调制(一般范围为7% )的影响。
[0086]在现有技术中,随着LED灯串电压的变化,开关管QBl的漏源电压Vds电压也同步发生变化,开关管QBl的这部分功率(VDS*恒流值Iwffi)将会转换成热量的形式散发出来,Vds电压越大,开关管QBl的功耗越大,温度越高。因此功耗过大的开关管QBl会降低电源效率并且导致开关管QBl过热而容易损坏。为了降低开关管QBl的温度,可以采用多个MOS管或三极管并联作为开关管QBl使用,但这一技术方案导致了成本的增加。为此,本实施例对后端线性恒流电路103作出进一步的改进。
[0087]参见图4?图6,本实施例通过在所述恒流控制电路1032与所述待供电LED灯串连接处P引出一路电压采集输出端ADC_12V,以实时检测待供电LED灯串的电压变化,为电压采集输出端ADC_12V与参考信号输入端PWM_REF之间的压降设定一个阈值,或者,为电压采集输出端ADC_12V的输出电压设定一个恒定值(参考信号输入端PWM_REF的电压Vkef —般较小),当电压采集输出端ADC_12V与参考信号输入端PWM_REF之间的压降大于所述阈值,或者电压采集输出端ADC_12V的输出电压大于所述恒定值时,通过调整前端电源电路101中的控制信号输入端Cont的控制信号PWM_12V,控制光耦PCBlOl将LED灯串的工作电压的变化情况(即第一供电输出端OUTl的电压变化情况)反馈到PWM控制芯片UB101,PWM控制芯片UB1I控制开关管QB1I改变占空比,从而使得电压采集输出端ADC_12V的电压值减去参考信号输入端PWM_REF的电压值等于或接近预设的所述阈值(或者电压采集输出端ADC_12V的电压值等于或接近所述恒定值),因此,本实施例可以通过控制信号输入端Cont的控制信号PWM_12V,限定电压采集输出端ADC_12V与参考信号输入端PWM_REF之间的压降,从而减小开关管QBl的漏源电压Vds受到LED灯串的电压变化的影响,降低开关管QBl的功耗和保证了电源效率。
[0088]在本实施例中,由于第一供电输出端OUTl和第二供电输出端0UT2的输出电压均由多路输出变压器TBlOl所输出,则以上通过控制信号输入端Cont的控制信号PWM_12V来减小开关管QBl的功耗的同时,必然会使得多路输出变压器TBlOl的所有输出绕组的电压发生改变(即给电视机主板供电的第二供电输出端0UT2的输出电压也将发生改变),但是,由于本实施例在第二供电输出端0UT2与电视机主板之间设有DC-DC电压调节电路102,因此本实施例能够防止因对前端电源电路的输出电压调整过大而导致电视机主板供电电源的变化范围过大的情况发生,而DC-DC电压调节电路102可以根据实际情况采用降压或者升压电路。
[0089]本发明提供的一种低功耗的恒流与稳压控制电路,设置有前端电源电路、DC-DC电压调节电路和后端线性恒流电路,利用前端电源电路调节两路输出的供电电压,并在前端电源电路中建立反馈电路,以及在反馈电路中设有控制信号输入端,以实现控制前端电源电路在第一供电输出端和第二供电输出端的电压;由于控制信号输入端的电压信号将会同时影响第一供电输出端和第二输出端的输出电压,因此本发明进一步通过DC-DC电压调节电路来保证输出至主板电路的电压信号的稳定;并通过设立后端线性恒流电路自动适应串联的LED背光灯数量的变化,可以根据LED背光灯串联后的电压值调整所述控制信号输入端的电压值,从而通过前端电源电路及其反馈电路控制所述第一供电输出端、第二供电输出端的输出电压,而第一供电输出端连接至LED背光灯进行供电,实现了与LED背光灯数量相适应的电压自动化调节,降低电路开关元件的功耗,并保证了主板电路的供电电压的稳定性。
[0090]参看图7,是本发明提供的低功耗的恒流与稳压控制电路的又一实施例的结构示意图。
[0091 ] 本实施例与前文所述的实施例的区别点在于,在前文所述的实施例的基础上,进一步地,本实施例提供的低功耗的恒流与稳压控制电路还包括一控制主芯片104。其中,前端电源电路1UDC-DC电压调节电路102和后端线性恒流电路103的基本构造与工作原理与前文所述的实施例相同,在此不再赘述。
[0092]所述控制主芯片104与所述控制信号输入端Cont、所述参考信号输入端PWM_REF以及所述电压采集输出端ADC_12V分别连接;
[0093]所述控制主芯片104根据所述电压采集输出端ADC_12V的电压变化,调节输出至所述控制信号输入端Cont的信号大小,以控制所述前端电源电路101的第一供电输出端0UT1、第二供电输出端0UT2的输出电压值;并通过所述参考信号输入端PWM_REF向所述后端线性恒流电路103输入所述恒流参考电压VKEF。
[0094]具体地,当所述控制主芯片104检测到所述电压采集输出端ADC_12V与所述参考信号输入端PWM_REF的电压差值大于预设的阈值时,所述控制主芯片104将输出至所述控制信号输入端Cont的电压信号占空比减小。具体实施时,所述控制主芯片104内置有模数转换器,用于将所述控制主芯片104接入的电压信号转换为数字信号。从电压采集输出端ADC_12V采集获得的电压信号首先经过模数转换器的转换后,获得相应的数字信号,再通过控制主芯片104中的其它处理单元的处理。
[0095]本实施例由于米用了同一个控制主芯片对控制信号输入端Cont、所述参考信号输入端PWM_REF以及所述电压采集输出端ADC_12V三个端子的信号进行处理,因此在前文所述的有效效果的基础上,进一步地可以实时依据参考信号输入端PWM_REF以及电压采集输出端ADC_12V的信号变化而向控制信号输入端Cont发出相应的控制信号,因此可以迅速对LED灯串工作电压的变化进行响应。
[0096]本发明实施例还提供了一种自适应供电调节的电视机,包括:电视机主板、背光LED灯串,以及前文任一项所述的低功耗的恒流与稳压控制电路。
[0097]其中,所述低功耗的恒流与稳压控制电路与所述电视机主板和所述背光LED灯串分别连接,用于根据所述背光LED灯串的工作电压通过接入控制信号,自适应调节供给所述背光LED灯串的电压信号,并稳定输出至所述电视机主板的供电电压信号。
[0098]本实施例利用改进后的线性恒流与稳压控制电路,应用在电视机领域中而对电视机主板、电视机背光LED灯串的供电信号进行控制。具体地,利用第一供电输出端OUTl自动根据背光LED灯串数量的变化而调整输出电压;利用DC-DC电压调节电路对第二供电输出端的电压进行升压或降压处理,从而对供给电视机主板的电压信号进行固定,因此保证供给电视机主板的电压信号不受背光LED灯条数量的变化的影响;既实现了与LED背光灯数量相适应的电压自动化调节,降低电路开关元件的功耗,又保证了电视机主板的供电电压的稳定性。以上所述是本发明的优选实施方式,应当指出,对于本【技术领域】的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
【权利要求】
1.一种低功耗的恒流与稳压控制电路,其特征在于,包括:前端电源电路、DC-DC电压调节电路和后端线性恒流电路; 所述前端电源电路包括供电电路、第一供电输出端、第二供电输出端和反馈电路; 所述反馈电路包括反馈输入端、控制信号输入端和反馈信号输出端;所述反馈输入端与所述第二供电输出端连接,所述反馈信号输出端与所述供电电路连接;所述反馈电路根据所述控制信号输入端的电压值,向所述供电电路输出反馈信号,以控制所述供电电路对所述第一供电输出端和所述第二供电输出端的电压值进行调整; 所述DC-DC电压调节电路的输入端与所述第二供电输出端连接,用于将所述第二供电输出端所输出的电压信号调节为固定的电压信号后,输出至主板进行供电; 所述后端线性恒流电路包括比较电路和恒流控制电路;所述比较电路设有参考信号输入端,以接入恒流参考电压;所述恒流控制电路在所述比较电路的调节下与待供电LED灯串的一端连接,所述待供电LED灯串的另一端与所述第一供电输出端连接; 在所述恒流控制电路与所述待供电LED灯串连接处引出一路电压采集输出端,以根据所述待供电LED灯串的电压变化,调整所述控制信号输入端的电压值,从而控制所述前端电源电路调整所述第一供电输出端、第二供电输出端的输出电压。
2.如权利要求1所述的低功耗的恒流与稳压控制电路,其特征在于,还包括一控制主-H-* I I心片; 所述控制主芯片与所述控制信号输入端、所述参考信号输入端以及所述电压采集输出端分别连接; 所述控制主芯片根据所述电压采集输出端的电压变化,调节输出至所述控制信号输入端的信号大小,以控制所述前端电源电路的第一供电输出端、第二供电输出端的输出电压值;并通过所述参考信号输入端向所述后端线性恒流电路输入所述恒流参考电压。
3.如权利要求2所述低功耗的恒流与稳压控制电路,其特征在于,当所述控制主芯片检测到所述电压采集输出端与所述参考信号输入端的电压差值大于预设的阈值时,所述控制主芯片将输出至所述控制信号输入端的电压信号占空比减小。
4.如权利要求3所述低功耗的恒流与稳压控制电路,其特征在于,所述控制主芯片包括模数转换器,用于将所述控制主芯片接入的电压信号转换为数字信号。
5.如权利要求1?4任一项所述低功耗的恒流与稳压控制电路,其特征在于,所述供电电路包括电源输入电路、开关电源电路、多路输出变压器、LED供电输出电路和主板供电输出电路; 所述电源输入电路在所述开关电源电路的控制下将接入的电源信号传输至所述多路输出变压器; 所述多路输出变压器包括主绕组和副绕组;所述主绕组将所述电源信号变压后传输至所述主板供电输出电路,并通过所述第二供电输出端进行输出;所述副绕组将所述电源信号同步变压后传输至所述LED供电输出电路,并通过所述第一供电输出端进行输出;所述主绕组与所述副绕组的线圈匝数比为1:N,N > O。
6.如权利要求1?4任一项所述低功耗的恒流与稳压控制电路,其特征在于,在所述前端电源电路中,所述反馈电路还设有光耦(PCBlOl)、稳压器(UB102); 所述光稱(PCBlOl)包括位于原边的发光二极管和位于副边的光信号转换器; 所述稳压器(UB102)将所述控制信号输入端输入的控制信号接入至所述光耦(PCBlOl)的位于原边的发光二极管;所述发光二极管将控制信号转换为光信号后传递至所述光耦(PCBlOl)的位于副边的光信号转换器;所述光信号转换器将光信号转换为电信号后输出至所述反馈信号输出端。
7.如权利要求6所述低功耗的恒流与稳压控制电路,其特征在于,所述稳压器(UB102)采用可调试精密并联稳压器,包括阴极(K)、阳极(A)和参考输入端(R),并内建有基准电压; 其中,所述可调试精密并联稳压器的阳极(A)接地,阴极(K)与所述光耦(PCBlOl)的位于原边的发光二极管连接;参考输入端(R)用于接入所述控制信号输入端的控制信号。
8.如权利要求7所述低功耗的恒流与稳压控制电路,其特征在于,所述反馈电路还设有稳压反馈电路。
9.如权利要求8所述低功耗的恒流与稳压控制电路,其特征在于,所述稳压反馈电路包括电容(CB109)和电阻(RB133); 所述电容(CB109)的一端连接在所述可调试精密并联稳压器的阴极(K)上,另一端与电阻(RB133)的一端串联;电阻(RB133)的另一端连接在所述可调试精密并联稳压器的参考输入端(R)上。
10.如权利要求8所述低功耗的恒流与稳压控制电路,其特征在于,所述稳压反馈电路包括电容(CBllO); 所述电容(CBllO)的一端连接在所述可调试精密并联稳压器的阴极(K)上,另一端连接在所述可调试精密并联稳压器的参考输入端(R)上。
11.如权利要求8所述低功耗的恒流与稳压控制电路,其特征在于,所述稳压反馈电路包括电容(CB109)、电阻(RB133)和电容(CBllO); 所述电容(CB109)的一端连接在所述可调试精密并联稳压器的阴极(K)上,另一端与电阻(RB133)的一端串联;电阻(RB133)的另一端连接在所述可调试精密并联稳压器的参考输入端(R)上; 所述电容(CBllO)的一端连接在所述可调试精密并联稳压器的阴极(K)上,另一端连接在所述可调试精密并联稳压器的参考输入端(R)上。
12.如权利要求8所述低功耗的恒流与稳压控制电路,其特征在于,所述反馈电路还设有电阻(RB131)和电阻(RB132); 所述电阻(RB131)的一端为所述反馈输入端,另一端与光耦(PCBlOl)的位于原边的发光二极管的阳极连接;所述电阻(RB132)的一端连接在所述发光二极管的阳极,另一端连接在所述发光二极管的阴极上。
13.如权利要求8所述低功耗的恒流与稳压控制电路,其特征在于,所述可调试精密并联稳压器的参考输入端(R)通过一分压器与所述控制信号输入端连接。
14.如权利要求13所述低功耗的恒流与稳压控制电路,其特征在于,所述分压器为一电阻(RB 150)。
15.如权利要求5所述低功耗的恒流与稳压控制电路,其特征在于,在所述后端线性恒流电路中,所述比较电路还包括运算放大器; 所述运算放大器的反相输入端通过一电阻(RB12)与所述参考信号输入端连接;所述运算放大器的正相输入端连接有电流反馈电路。
16.如权利要求15所述低功耗的恒流与稳压控制电路,其特征在于,所述电流反馈电路包括多个恒流检测电阻,分别为电阻(RB5)、电阻(RB6)、电阻(RB7)、电阻(RB8)、电阻(RB9); 其中,电阻(RB6)、电阻(RB7)、电阻(RB8)与电阻(RB9)组成并联电路,所述并联电路的一端连接在电阻(RB5)的一端上,所述并联电路的另一端接地;电阻(RB5)的另一端连接在所述运算放大器的正相输入端上。
17.如权利要求16所述低功耗的恒流与稳压控制电路,其特征在于,所述电流反馈电路还包括电容(CB5);所述电容(CB5)的一端接地,另一端连接在所述运算放大器的正相输入端上。
18.如权利要求17所述低功耗的恒流与稳压控制电路,其特征在于,在所述后端线性恒流电路中,所述恒流控制电路还包括一开关管; 当所述开关管为三极管时,所述恒流控制电路通过所述三极管的集电极与所述待供电LED灯串的一端连接;所述三极管的发射极通过电阻(RB5)与所述运算放大器的正相输入端连接; 当所述开关管为场效应晶体管时,所述恒流控制电路通过所述场效应晶体管的漏极与所述待供电LED灯串的一端连接;所述场效应晶体管的源极通过电阻(RB5)与所述运算放大器的正相输入端连接。
19.如权利要求18所述低功耗的恒流与稳压控制电路,其特征在于,所述比较电路还包括一钳位二极管; 所述钳位二极管的阴极接地;所述钳位二极管的阳极与所述三极管的发射极连接,或者,所述钳位二极管的阳极与所述场效应晶体管的源极连接。
20.如权利要求19所述低功耗的恒流与稳压控制电路,其特征在于,所述DC-DC电压调节电路为升压调节电路或者降压调节电路。
21.一种自适应供电调节的电视机,其特征在于,包括:电视机主板、背光LED灯串,以及如权利要求1?20任一项所述的低功耗的恒流与稳压控制电路; 所述低功耗的恒流与稳压控制电路与所述电视机主板、所述背光LED灯串分别连接,用于根据所述背光LED灯串的工作电压通过接入控制信号,自适应调节供给所述背光LED灯串的电压信号,并稳定输出至所述电视机主板的供电电压信号。
【文档编号】H04N5/44GK104253955SQ201410476653
【公开日】2014年12月31日 申请日期:2014年9月17日 优先权日:2014年9月17日
【发明者】吴永芳, 刘威河, 廖武, 杨达富 申请人:广州视源电子科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1