用于通过基于散列路由和/或摘要路由的对等互连实现网络联合的方法、装置和系统与流程

文档序号:11852624阅读:348来源:国知局
用于通过基于散列路由和/或摘要路由的对等互连实现网络联合的方法、装置和系统与流程
信息中心网络(ICN)是最近的网络范例。在ICN下,内容对象是在通信中的主要对象。多种系统设计已被提出以实现ICN,包括内容中心网络(CCN)、信息网络(NetInf)和发布-订阅互联网路由范例(PSIRP)。在一些解决方案中,对内容对象的请求(“内容请求”)消息使用内容对象本身的名称(“内容名称”)被路由。使用这样的“按名称路由”的解决方案的系统设计包括例如,CCN和Netlnf的变体。在其他解决方案中,使用两步法。第一,内容名称在查找中被使用以得到定位符。以及第二,定位符然后用于得到内容对象。使用这种两步“按名称查找”方法的系统设计包括PSIRP和Netlnf的变体。所需要的是执行ICN域间联网的方式,旨在优化对所有对等端的缓存和传输成本。附图说明从以下通过示例方式给出并结合附图的详细描述中可以得到更详细的理解。附图中这样图、像详细描述是示例。因此,图和详细描述不被认为是限制性的,并且其他同等有效的示例是可能的并且可行的。此外,图中相同的附图标记表示相同的元件,并且其中:图1A是可以实施一个或多个公开的实施方式的示例通信系统的系统图;图1B是可以在图1A中示出的通信系统中使用的示例无线发射/接收单元(WTRU)的系统图;图1C、1D和1E是可以在图1A中示出的通信系统中使用的示例无线电接入网和示例核心网的系统图;图2是示出可以实施一个或多个公开的实施方式的示例网络联合的框图;图3是示出可以实施一个或多个公开的实施方式的示例网络联合的框图;图4是示出基于散列路由对等互连(HRP)的示例联合并示出联合的网络对等端的HRP路由表的框图;图5是示出在图4中示出的联合的网络对等端的示例HRP路由表的框图;图6是示出在图4中示出的联合的网络对等端的示例HRP路由表的框图;图7是示出在图4中示出的联合的网络对等端的示例HRP路由表的框图;图8是示出在图4中示出的联合的网络对等端的示例HRP路由表的框图;图9是示出具有和没有HRP的示例经验链路使用的曲线图;图10是示出示例HRP路由消息流的消息流程图;图11是示出用于在HRP路由器中做出转发决定的示例流的流程图;图12是示出用于集中的外部HRP的示例软件定义网络(SDN)堆栈和连接的框图;图13是示出用于集中的内部HRP的示例SDN堆栈和连接的框图;图14是示出用于HRP键范围分配通告的开放式最短路径优先(OSPF)不透明LSA扩展的示例消息结构的框图;图15示出了被增强以支持HRP路由的示例内容中心网络(CCN)转发信息库(FIB);图16是示出可以由HRP增强的内部CCN路由器执行的示例转发决定流的流程图;图17示出在HRP增强的内部CCN路由器中的转发决定过程;图18示出了用于HRP可达信息的边界网关协议(BGP)网络层可达信息(NLRI)格式;图19是示出在IP网络中通过HTTP代理的HRP示例的框图;图20示出了用于能力和/或配置信息的HPRJSON编码的示例;图21示出了用于键范围可达性的HRPJSON编码的示例;图22是示出了基于按名称查找的信息中心网络(ICN)系统内的HRP对等互连的示例的框图;图23是示出了基于摘要路由的对等互连(SRP)路由的示例的框图;图24是示出了示例SRP消息流的消息流程图;以及图25示出了SRP可达性信息的BGP扩展。具体实施方式在以下的详细描述中,许多具体的细节被阐述以提供对这里公开的实施例和/或示例的透彻理解。然而,可以理解,在没有这里提出的具体细节的某些或所有的情况下可以实施这样的实施方式和示例。在其它情况中,公知的方法、过程、组件和电路未被详细描述,以免模糊了下面的描述。此外,这里没有具体描述的实施方式和示例可以作为这里描述、公开或其他方式显式、隐式和/或内在提供(统称“提供”)的实施方式和其他示例的替代或与其相结合而被实施。示例通信系统本文提供的的方法、装置和系统非常适合于涉及有线和无线网络的通信。有线网络是众所周知的。各种类型的无线设备和基础设施的概述参考图1A-1E被提供,其中网络的各种元件可以利用、执行、被安排根据和/或适于和/或被配置用于本文提供的方法、装置和系统。图1A是在其中可以实施一个或多个实施方式的示例通信系统100的图。通信系统100可以是向多个无线用户提供内容,例如语音、数据、视频、消息发送、广播等的多接入系统。通信系统100可以使多个无线用户通过系统资源共享(包括无线带宽)访问这些内容。例如,通信系统可以使用一种或多种信道接入方法,例如码分多址(CDMA),时分多址(TDMA),频分多址(FDMA),正交FDMA(OFDMA),单载波FMDA(SC-FDMA)等。如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d,无线电接入网(RAN)104,核心网106,公共交换电话网(PSTN)108、因特网110和其他网络112。不过应该理解的是,公开的实施方式考虑到了任何数量的WTRU、基站、网络和/或网络元件。WTRU102a、102b、102c、102d的每一者可以是配置为在无线环境中进行操作和/或通信的任何类型的设备。作为示例,可以将WTRU102a、102b、102c、102d配置为发送和/或接收无线信号,并可以包括用户设备(UE)、基站、固定或者移动用户单元、寻呼器、蜂窝电话、个人数字助理(PDA)、智能电话、笔记本电脑、上网本、个人计算机、无线传感器、消费电子产品、终端或能够接收和处理压缩的视频通信的相似类型的设备,或相似类型的设备。通信系统100还可以包括基站114a和基站114b。基站114a、114b的每一者都可以是配置为与WTRU102a、102b、102c、102d中的至少一者无线对接以便于接入一个或者更多个通信网络,例如核心网106、因特网110和/或网络112的任何类型的设备。作为示例,基站114a、114b可以是基站收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器、媒体知晓网络元件(MANE),等等。虽然基站114a、114b的每一者被描述为单独的元件,但是应该理解的是,基站114a、114b可以包括任何数量互连的基站和/或网络元件。基站114a可以是RAN104的一部分,RAN104还可以包括其他基站和/或网络元件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。可以将基站114a和/或基站114b配置为在特定地理区域之内发送和/或接收无线信号,该区域可以被称为小区(未显示)。小区还可以被划分为小区扇区。例如,与基站114a相关联的小区可以划分为三个扇区。因此,在一种实施方式中,基站114a可以包括三个收发信机,即每一个用于小区的一个扇区。在另一实施方式中,基站114a可以使用多输入多输出(MIMO)技术,因此可以将多个收发信机用于小区的每一个扇区。基站114a、114b可以通过空中接口116与WTRU102a、102b、102c、102d中的一者或者多者通信,该空中接口116可以是任何合适的无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外线(UV)、可见光等)。可以使用任何合适的无线电接入技术(RAT)来建立空中接口116。更具体地,如上所述,通信系统100可以是多接入系统,并可以使用一种或者多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN104中的基站114a和WTRU102a、102b、102c可以实施例如通用移动电信系统(UMTS)陆地无线电接入(UTRA)的无线电技术,其可以使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可以包括例如高速分组接入(HSPA)和/或演进的HSPA(HSPA+)的通信协议。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。在另一种实施方式中,基站114a和WTRU102a、102b、102c可以实施例如演进的UMTS陆地无线电接入(E-UTRA)的无线电技术,其可以使用长期演进(LTE)和/或高级LTE(LTE-A)来建立空中接口116。在其他实施方式中,基站114a和WTRU102a、102b、102c可以实施例如IEEE802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA20001X、CDMA2000EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、GSM演进的增强型数据速率(EDGE)、GSMEDGE(GERAN)等等的无线电技术。图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或者接入点,例如,并且可以使用任何适当的RAT以促进局部区域中的无线连接,例如商业场所、住宅、车辆、校园等等。在一种实施方式中,基站114b和WTRU102c、102d可以实施例如IEEE802.11的无线电技术来建立无线局域网(WLAN)。在另一种实施方式中,基站114b和WTRU102c、102d可以实施例如IEEE802.15的无线电技术来建立无线个域网(WPAN)。在另一种实施方式中,基站114b和WTRU102c、102d可以使用基于蜂窝的RAT(例如,WCDMA,CDMA2000,GSM,LTE,LTE-A等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以具有到因特网110的直接连接。因此,基站114b可以不需要经由核心网106而接入到因特网110。RAN104可以与核心网106通信,所述核心网106可以是被配置为向WTRU102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或基于网际协议的语音(VoIP)服务等的任何类型的网络。例如,核心网106可以提供呼叫控制、计费服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分配等和/或执行高级安全功能,例如用户认证。虽然图1A中未示出,应该理解的是,RAN104和/或核心网106可以与使用和RAN104相同的RAT或不同RAT的其他RAN进行直接或间接的通信。例如,除了连接到正在使用E-UTRA无线电技术的RAN104之外,核心网106还可以与使用GSM无线电技术的另一个RAN(未示出)通信。核心网106还可以充当WTRU102a、102b、102c、102d接入到PSTN108、因特网110和/或其他网络112的网关。PSTN108可以包括提供普通老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的互联计算机网络和设备的全球系统,所述协议例如有TCP/IP网际协议组中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络112可以包括被其他服务提供商拥有和/或运营的有线或无线的通信网络。例如,网络112可以包括连接到一个或多个RAN的另一个核心网,该RAN可以使用和RAN104相同的RAT或不同的RAT。通信系统100中的WTRU102a、102b、102c、102d的某些或全部可以包括多模式能力,即WTRU102a、102b、102c、102d可以包括用于在不同无线链路上与不同无线网络进行通信的多个收发信机。例如,图1A中示出的WTRU102c可被配置为与基站114a通信,所述基站114a可以使用基于蜂窝的无线电技术,以及与基站114b通信,所述基站114b可以使用IEEE802无线电技术。图1B是WTRU102示例的系统图。如图1B所示,WTRU102可以包括处理器118、收发信机120、发射/接收元件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位系统(GPS)芯片组136和其他外围设备138。应该理解的是,WTRU102可以在保持与实施方式一致的同时,包括前述元件的任何子组合。处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、图形处理单元(GPU)、多个微处理器、与DSP核相关联的一个或更多个微处理器、控制器、微控制器、专用集成电路(ASIC)、场可编程门阵列(FPGA)电路、任何其他类型的集成电路(IC)、状态机等等。处理器118可执行信号译码、数据处理、功率控制、输入/输出处理和/或使WTRU102能够运行于无线环境中的任何其他功能。处理器118可以耦合到收发信机120,所述收发信机120可耦合到发射/接收元件122。虽然图1B描述了处理器118和收发信机120是单独的部件,但是应该理解的是,处理器118和收发信机120可以一起集成在电子封装或芯片中。发射/接收元件122可以被配置为通过空中接口116将信号发送到基站(例如,基站114a),或从基站(例如,基站114a)接收信号。例如,在一种实施方式中,发射/接收元件122可以是被配置为发送和/或接收RF信号的天线。在另一种实施方式中,发射/接收元件122可以是被配置为发送和/或接收例如IR、UV或可见光信号的发射器/检测器。在另一种实施方式中,发射/接收元件122可以被配置为发送和接收RF和光信号两者。应当理解,发射/接收元件122可以被配置为发送和/或接收无线信号的任何组合。另外,虽然发射/接收元件122在图1B中描述为单个元件,但是WTRU102可以包括任意数量的发射/接收元件122。更具体的,WTRU102可以使用MIMO技术。因此,在一种实施方式中,WTRU102可以包括用于通过空中接口116发送和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。收发信机120可以被配置为调制要由发射/接收元件122发送的信号和/或解调由发射/接收元件122接收的信号。如上面提到的,WTRU102可以具有多模式能力。因此收发信机120可以包括使WTRU102经由多个例如UTRA和IEEE802.11的RAT通信的多个收发信机。WTRU102的处理器118可以耦合到下述设备,并且可以从下述设备中接收用户输入数据:扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)。处理器118还可以输出用户数据到扬声器/麦克风124、键盘126和/或显示/触摸板128。另外,处理器118可以从任何类型的适当的存储器访问信息,并且可以存储数据到任何类型的适当的存储器中,例如不可移动存储器130和/或可移动存储器132。不可移动存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器设备。可移动存储器132可以包括用户标识模块(SIM)卡、记忆棒、安全数字(SD)存储卡等等。在其他实施方式中,处理器118可以从在物理位置上没有位于WTRU102上,例如位于服务器或家用计算机(未示出)上的存储器访问信息,并且可以将数据存储在该存储器中。处理器118可以从电源134接收电能,并且可以被配置为分配和/或控制到WTRU102中的其他部件的电能。电源134可以是给WTRU102供电的任何适当的设备。例如,电源134可以包括一个或多个干电池(例如,镍镉(NiCd)、镍锌(NiZn)、镍氢(NiMH)、锂离子(Li-ion)等等),太阳能电池,燃料电池等等。处理器118还可以耦合到GPS芯片组136,所述GPS芯片组136可以被配置为提供关于WTRU102当前位置的位置信息(例如,经度和纬度)。另外,除来自GPS芯片组136的信息或作为其替代,WTRU102可以通过空中接口116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个邻近基站接收的信号的定时来确定其位置。应当理解,WTRU102在保持实施方式的一致性时,可以通过任何适当的位置确定方法获得位置信息。处理器118可以耦合到其他外围设备138,所述外围设备138可以包括一个或更多个提供附加特性、功能和/或有线或无线连接的软件和/或硬件模块。例如,外围设备138可以包括加速计、电子罗盘、卫星收发信机、数字相机(用于照片或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、蓝牙模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。图1C是根据实施方式的RAN104和核心网106的系统图。如上面提到的,RAN104可使用UTRA无线电技术通过空中接口116与WTRU102a、102b、102c通信。RAN104还可以与核心网106通信。如图1C所示,RAN104可以包括节点B140a、140b、140c,节点B140a、140b、140c的每一者包括用于通过空中接口116与WTRU102a、102b、102c通信的一个或多个收发信机。节点B140a、140b、140c的每一者可以与RAN104内的特定小区(未显示)相关联。RAN104还可以包括RNC142a、142b。应当理解的是,RAN104在保持实施方式的一致性时,可以包括任意数量的节点B和RNC。如图1C所示,节点B140a、140b可以与RNC142a通信。此外,节点B140c可以与RNC142b通信。节点B140a、140b、140c可以通过Iub接口分别与RNC142a、142b通信。RNC142a、142b可以通过Iur接口相互通信。RNC142a、142b的每一个可以被配置以控制其连接的各个节点B140a、140b、140c。另外,RNC142a、142b的每一者可以被配置以执行或支持其他功能,例如外环功率控制、负载控制、准入控制、分组调度、切换控制、宏分集、安全功能、数据加密等等。图1C中所示的核心网106可以包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS支持节点(SGSN)148、和/或网关GPRS支持节点(GGSN)150。尽管前述元件的每一者被描述为核心网106的部分,应当理解的是,这些元件中的任何一个可以被不是核心网运营商的实体拥有或运营。RAN104中的RNC142a可以通过IuCS接口连接至核心网106中的MSC146。MSC146可以连接至MGW144。MSC146和MGW144可以向WTRU102a、102b、102c提供到电路交换网络(例如PSTN108)的接入,以促进WTRU102a、102b、102c和传统陆地线路通信设备之间的通信。RAN104中RNC142a还可以通过IuPS接口连接至核心网106中的SGSN148。SGSN148可以连接至GGSN150。SGSN148和GGSN150可以向WTRU102a、102b、102c提供到分组交换网络(例如因特网110)的接入,以便于WTRU102a、102b、102c和IP使能设备之间的通信。如上所述,核心网106还可以连接至网络112,网络112可以包括由其他服务提供商拥有或运营的其他有线或无线网络。图1D是根据另一实施方式的RAN104和核心网106的系统图。如上面提到的,RAN104可使用E-UTRA无线电技术通过空中接口116与WTRU102a、102b、102c通信。RAN104还可以与核心网106通信。RAN104可包括e节点B160a、160b、160c,但可以理解的是,RAN104在保持与实施方式的一致的同时,可以包括任意数量的e节点B。e节点B160a、160b、160c的每一者可包括用于通过空中接口116与WTRU102a、102b、102c通信的一个或多个收发信机。在一种实施方式中,e节点B160a、160b、160c可以实施MIMO技术。因此,e节点B160a例如可以使用多个天线来向WTRU102a发送无线信号和/或从其接收无线信号。e节点B160a、160b、160c的每一者可以与特定小区相关联(未显示),并可以被配置为处理无线资源管理决策、切换决策、在上行链路和/或下行链路中的用户调度等等。如图1D所示,e节点B160a、160b、160c可以通过X2接口相互通信。图1D中所示的核心网106可以包括移动性管理实体(MME)162、服务网关(SGW)164和/或分组数据网络(PDN)网关(PGW)166。虽然前述元件的每一者被描述为核心网106的一部分,应当理解的是,这些元件中的任意一者可以由除了核心网运营商之外的实体拥有和/或运营。MME162可以经由S1接口连接到RAN104中的e节点B160a、160b、160c的每一者,并可以充当控制节点。例如,MME162可以负责WTRU102a、102b、102c的用户认证、承载激活/去激活、在WTRU102a、102b、102c的初始附着期间选择特定服务网关等等。MME162还可以提供控制平面功能,用于在RAN104和使用例如GSM或者WCDMA的其他无线电技术的其他RAN(未显示)之间切换。SGW164可以经由S1接口连接到RAN104中的eNB160a、160b、160c的每一者。SGW164通常可以向/从WTRU102a、102b、102c路由和转发用户数据分组。SGW164还可以执行其他功能,例如在eNB间切换期间锚定用户平面、当下行链路数据对于WTRU102a、102b、102c可用时触发寻呼、管理和存储WTRU102a、102b、102c的上下文(context)等等。SGW164还可以连接到PGW166,PGW166可以向WTRU102a、102b、102c提供到分组交换网络(例如因特网110)的接入,以促进WTRU102a、102b、102c与IP使能设备之间的通信。核心网106可以促进与其他网络的通信。例如,核心网106可以向WTRU102a、102b、102c提供到电路交换网络(例如PSTN108)的接入,以促进WTRU102a、102b、102c与传统陆地线路通信设备之间的通信。例如,核心网106可以包括IP网关(例如IP多媒体子系统(IMS)服务器),或者与之通信,该IP网关充当核心网106与PSTN108之间的接口。另外,核心网106可以向WTRU102a、102b、102c提供到网络112的接入,该网络112可以包括被其他服务提供商拥有和/或运营的其他有线或无线网络。图1E是根据另一实施方式的RAN104和核心网106的系统图。RAN104可以是使用IEEE802.16无线电技术通过空中接口116与WTRU102a、102b、102c进行通信的接入服务网络(ASN)。如下面进一步讨论的,WTRU102a、102b、102c,RAN104和核心网106的不同功能实体之间的通信链路可以被定义为参考点。如图1E所示,RAN104可以包括基站170a、170b、170c和ASN网关172,但应当理解的是,RAN104在与实施方式保持一致的同时可以包括任意数量的基站和ASN网关。基站170a、170b、170c的每一者可以与RAN104中特定小区(未示出)相关联并可以包括通过空中接口116与WTRU102a、102b、102c通信的一个或多个收发信机。在一个实施方式中,基站170a、170b、170c可以实施MIMO技术。因此,基站170a例如使用多个天线来向WTRU102a发送无线信号,或从其接收无线信号。基站170a、170b、170c可以提供移动性管理功能,例如呼叫切换(handoff)触发、隧道建立、无线电资源管理、流量(traffic)分类、服务质量(QoS)策略执行等等。ASN网关172可以充当流量聚集点,并且可负责寻呼、缓存用户资料(profile)、路由到核心网106等等。WTRU102a、102b、102c和RAN104之间的空中接口116可以被定义为使用802.16规范的R1参考点。另外,WTRU102a、102b、102c的每一者可以与核心网106建立逻辑接口(未显示)。WTRU102a、102b、102c和核心网106之间的逻辑接口可以定义为R2参考点,其可以用于认证、授权、IP主机(host)配置管理和/或移动性管理。基站170a、170b、170c的每一者之间的通信链路可以定义为包括促进WTRU切换和基站间转移数据的协议的R8参考点。基站170a、170b、170c和ASN网关172之间的通信链路可以定义为R6参考点。R6参考点可以包括用于促进基于与WTRU102a、102b、102c的每一者相关联的移动性事件的移动性管理的协议。如图1E所示,RAN104可以连接至核心网106。RAN104和核心网106之间的通信链路可以定义为包括例如促进数据转移和移动性管理能力的协议的R3参考点。核心网106可以包括移动IP本地代理(MIP-HA)174,认证、授权、计费(AAA)服务器176和网关178。尽管前述的每个元件被描述为核心网106的部分,应当理解的是,这些元件中的任意一者可以由不是核心网运营商的实体拥有或运营。MIP-HA174可以负责IP地址管理,并可以使WTRU102a、102b、102c在不同ASN和/或不同核心网之间漫游。MIP-HA174可以向WTRU102a、102b、102c提供到分组交换网络(例如因特网110)的接入,以促进WTRU102a、102b、102c和IP使能设备之间的通信。AAA服务器176可以负责用户认证和支持用户服务。网关178可促进与其他网络互通。例如,网关178可以向WTRU102a、102b、102c提供到电路交换网络(例如PSTN108)的接入,以促进WTRU102a、102b、102c和传统陆地线路通信设备之间的通信。此外,网关178可以向WTRU102a、102b、102c提供到网络112的接入,网络112可以包括由其他服务提供商拥有或运营的其他有线或无线网络。尽管未在图1E中显示,应当理解的是,RAN104可以连接至其他ASN,并且核心网106可以连接至其他核心网。RAN104和其他ASN之间的通信链路可以定义为R4参考点,其可以包括协调RAN104和其他ASN之间的WTRU102a、102b、102c的移动性的协议。核心网106和其他核心网之间的通信链路可以定义为R5参考点,其可以包括促进本地核心网和被访问的核心网之间的互通的协议。概述本公开尤其针对用于通过基于散列路由的对等互连(HRP)和/或基于摘要路由的对等互连(SRP)实现多个独立网络的联合的方法、装置、系统、设备和计算机程序产品。根据本文提供的新方法和/或技术,多个独立的网络作为网络对等端的联合可以自我组织、或以其他方式组装。网络对等端可以协作以集中(pool)和/或合并资源(例如,回程和/或缓存资源),以使其可用于联合一些群体(或量)的内容对象。作为联合的成员,网络对等端的每一者可以承担责任以使得该群体(或量)的内容对象的共享可用于其他网络对等端(的至少一些)。为了推动这个,多个独立的网络可以建立连接并可以使用基于路由的对等互连协议来联合。基于路由的对等互连协议可以是HRP协议。根据该HRP协议,网络对等端可以在它们间分配在散列函数(例如MD5等)的散列值空间(例如[0;2n]间隔)内的各自的分区(“键范围”)。网络对等端可以使用分配策略(例如,分区函数)来引导散列值空间的分配。当网络对等端中的一者从本地终端用户、本地路由器或另一网络接收到内容请求时,如果内容请求落入到本分配给该对等端的内容对象群体,则网络对等端可以通过回程或运输网络或不是该对等互连网络的部分的任意链路来路由和/或转发该内容请求。可替换地,如果从内容请求计算的散列值落入分配给这样的网络对等端的散列值空间的键范围,则网络对等端通过另一网络对等端来路由和/或转发该内容请求,以进行处理。直观地逻辑上将多个单独的网络合并为具有网络对等端的(逻辑上)组合的回程和/或缓存资源的联合由于更高的缓存命中率应当导致效率增益,因为合并后的缓存资源支持更大的群体。使用HRP协议联合多个单独的网络以实现多个单独网络的缓存存储能力和中转(或回程)转移能力的这种逻辑合并。用于内容网络联合的基于散列路由的对等互连图2是示出可以实施一个或多个公开的实施方式的示例网络联合200的框图。网络联合200可以包括网络对等端204A、网络对等端204B、网络对等端204C和网络对等端204D(统称为“网络对等端204A-D”),网络对等端204A-D的每一者可以是例如在操作实体(“网络运营商”)的控制下或其他方式由其操作的单独的域;操作实体的示例可以包括互联网服务提供商(ISP)网络、单个小小区、小小区网络等的任意。在一些实施方式中,网络对等端204A-D可以由同一个网络运营商操作。在其他实施方式中,网络对等端204A-D的一些或全部可以由不同的网络运营商来操作。网络对等端204A可以包括与两个边界路由器210A1、210A2通信地耦合的内容路由器206A。网络对等端204B可以包括与两个边界路由器210B1、210B2通信地耦合的内容路由器206B。网络对等端204C可以包括与内容路由器206C通信地耦合的接入节点(例如,接入点)214C,而内容路由器206C与两个边界路由器210C1、210C2通信地耦合。网络对等端204D可以包括与边界路由器210D通信地耦合的内容路由器206D。网络对等端204A/B/C/D的每一者还可以包括其它各种网络资源,包括中转网络216A/B/C/D和本地缓存208A/B/C/D。每个中转网络216A/B/C/D可以给其网络对等端204A/B/C/D提供一定量的中转(回程)转移容量和/或其他回程资源。每个本地缓存208A/B/C/D可以给其网络对等端204A/B/C/D提供一定量的缓存存储容量和/或其他缓存资源。本地缓存208A-D例如可以存储从一个或多个内容源(统一表示为“内容源212”)得到的一个或多个内容对象。本地缓存208A-D可以分别与内容路由器206A-D并置(collocate)、集成或以其它方式组合。可替换地,本地缓存208A-D可以分别是网络对等端204A-D的分开的元件;以及内容路由器206A、206B、206C和206D可以分别与本地缓存208A、208B、208C和208D通信地耦合。网络对等端204A、204B、204C和204D可以分别与中转网络216A、216B、216C和216D交换(例如,发送和/或接收)内容请求消息和/或内容响应消息,以从内容源212获取一个或多个内容对象。尽管未示出,网络对等端的204A-D的每一者可以包括一个以上的内容路由器和一个以上的本地缓存。网络对等端204A、204B和204D的每一者可以包括一个或多个接入节点。网络对等端204C可以包括更多或更少的接入节点。网络对等端204A、204B和204C可以包括多于或少于两个边界路由器,以及网络对等端204D可以包括一个以上的边界路由器。为了促进网络对等端204A-D间的协作,这样的网络对等端可以建立到彼此的连接。这种连接可以使用任何拓扑结构来建立,例如,全网状、部分网状、集线器等。提供连接的互连可以使用底层传输网络,例如因特网。边界路由器210A1和210C1可以互连网络对等端204A和204C。边界路由器210A2和210B1可以互连网络对等端204A和204B。边界路由器210B1和210C2可以互连网络对等端204B和204C。边界路由器210C1和210D可以互连网络对等端204C和204D。边界路由器210B2和210D可以互连网络对等端204B和204D,和边界路由器210A1和210D可以互连网络204A和204D。根据互连,从网络对等端204A-D的一者发出的通信可以是彼此远离的单跳。内容路由器206C和接入节点214C可以基于按名称路由(例如按名称路由信息中心网络(ICN))协议或类似类型的协议来交换消息。内容路由器206A、206B和206D及网络204A、204B和204D的接入节点分别可以基于按名称路由或类似类型的协议来交换消息。网络对等端204A-D可以在用于取得和/或提供内容对象的共享责任方面进行协作,以满足由这样的网络对等端处理的内容请求。为了推动这个,内容路由器206A-D可以使用基于路由的对等互连协议建立对等互连网络。在一些实施方式中,这种基于路由的对等互连协议可以是HRP协议。根据该HRP协议,内容路由器206A-D可以在它们间分别分配在散列函数(例如,MD5等)的散列值空间内的键范围。内容路由器206A-D可以使用分配策略(例如,分区函数)来引导散列值空间的分配。适当的分配策略可以是使用分区函数在网络对等端204A-D间相等地分配散列值空间,将网络对等端ID关联到[0;2n]间隔内的任意散列值,其中n被选择为提供合适的键范围粒度。作为示例,n可以是4,并且分区函数可以关联(i)[0-4]内的散列值到网络对等端204A,(ii)[4-8]内的散列值到网络对等端204B,(iii)[9-12]内的散列值到网络对等端204C,和(iv)[9-12]内的散列值到网络对等端204D。示例分配策略的可视表示在图2中被示出为分段盘218。其他分配策略可以包括不分配整个散列值空间和/或某些键范围。如下面更详细地描述,内容路由器206A-D可以在分配键范围时交换消息以协商和/或会聚。内容路由器206A-D的每一者可以维护路由表或其他数据结构(“HRP路由表”)。HRP路由表可以包括与网络对等端204A-D的每一者相关联的对等互连信息(“HRP对等互连信息”)。对等互连信息可包括网络对等端204A-D的每一者的身份(“网络对等端ID”),且与网络对等端ID的每一者相关联;分配给被标识的网络的任意键范围和/或下一跳信息(例如下一跳路由器的定位符)。内容路由器206A-D的任意可以基于其HRP对等互连信息、内容请求以及用于网络对等端204A-D的HRP对等互连的散列函数来确定哪个网络对等端204A/B/C/D负责处理该特定内容请求(“负责对等端”)。通过示例的方式,内容路由器206C可以得到使用散列函数和内容请求计算的散列值。内容路由器206C可以确定在HRP对等互连信息中分配的键范围的任意是否具有匹配所得到的散列值的散列值。如果发现匹配,则内容路由器206C可以得到保持的与具有该匹配值的键范围相关联的网络对等端ID,其中网络对等端ID可以标识该负责的对等端。如果该网络对等端ID不匹配网络204C的该网络对等端ID,内容路由器206C可以通过该负责对等端路由和/或转发该内容请求。如果该网络对等端ID匹配网络204C的网络对等端ID,内容路由器206C可以通过从本地缓存208C或从内容源获取所请求的内容对象来满足该内容请求。在一些实施方式中,内容路由器206C可以在不用首先确定网络对等端204A-D的哪个是负责对等端的情况下检查该内容请求是否能够从本地缓存208C被满足。如果检查指示所请求的内容是可从本地缓存208C可得,则内容路由器206C可以从本地缓存208C取得所请求的内容对象。在一些实施方式中,网络对等端204A-D的运营商可以进入对等互连协议或其他对等互连安排(统称为“对等互连”)以促进协作和/或对等互连。根据对等互连协议,网络对等端204A-D可以同意使得一些量或群体的内容对象可用于网络对等端204A-D,且网络对等端204A-D的每一者可以承担责任以使得该量或群体的内容对象的一些共享可用于其他网络对等端。对等互连协议可指定对等端网络204A-D可以采用HRP协议。这样的对等互连协议(“HRP对等互连协议”)可以指定(尤其)散列函数和分配策略。可替换地,HRP对等互连协议可以指定多个散列函数和多个分配策略,网络对等端204A-D(或其运营商)可以从中选择和/或会聚。HRP对等互连协议可能不指定散列函数和分配策略;留下合适的散列函数和合适的分配策略的选择和/或协商给网络对等端204A-D(或其运营商)。在一些实施方式中,网络对等端204A-D可以被配置HRP协议(例如,作为标准协议)。网络对等端204A-D的每一者可使用发现过程来发现采用HRP协议的内容路由器(每一个“HRP路由器”),并且可以在HRP路由器与边界路由器之间形成互连(统称为“对等互连链路”)以建立对等互连网络(“HRP对等互连网络”)。图2也示出了网络联合200内的示例路由操作。WTRU202可以向网络204C发送内容请求消息以请求内容对象(201)。内容请求消息可包括内容描述符。内容描述符可以是以下的任意:(i)内容对象的名称(“内容对象名称”)的,(ii)与内容对象相关联的元数据(“内容对象元数据”),和(iii)内容请求消息的一个或多个属性(“内容请求消息属性”)。所述内容对象名称可以是,例如,该内容对象的统一资源标识符(URI)。可替代地,内容对象名称可以是该内容对象的层次(hierarchal)名称;其示例在图2中示出,即,“example.org/path/to/name2”。接入节点214C可接收从该WTRU202发送的内容请求消息(201),并且可以向内容路由器206C转发内容请求消息(203)。内容路由器206C可以接收内容请求消息(203),并且可以基于内容描述符或其别名(例如,散列值)确定本地缓存208C包括内容对象的本地副本。而内容路由器206C可以转发内容请求消息到本地缓存208C。本地缓存208C可以接收内容请求消息,获取内容对象的本地副本,并且通过向内容路由器208C发回包括内容对象的本地副本的内容响应消息来满足该请求。而内容路由器206C可以经由接入节点214C将内容响应消息转发到WTRU202(205,207)。在一些实施方式中,如果本地缓存208C不能获取内容对象的本地副本,则其可丢弃内容请求和/或用否定应答(NACK)来响应。本地缓存208C可能由于各种原因无法获取内容对象的本地副本,诸如,例如,本地缓存208C缺乏内容对象的本地副本和/或本地副本不能位于本地缓存208C(和/或从中提供)。内容路由器206C当无法利用本地缓存208C满足内容请求时可以寻求使用该域内和/或外的其他资源作为备选。内容路由器206C例如可以确定是否利用其他网络对等端204A、204B和204D的任意,来代替利用网络对等端204C的回程资源,如下所述。内容路由器206C可以使用散列函数对内容描述符散列化,并得到内容描述符的散列值(“描述符散列值”)。可替代地,如可用,内容路由器206C可以从内容请求消息提取描述符散列值。然后,内容路由器206C可以搜索其HRP路由表,以识别包括匹配该描述符散列值的散列值的分配的键范围的任意。如果没有找到匹配,则内容路由器206C可默认利用网络对等端204C的回程资源来满足内容请求。如果发现匹配,则内容路由器206C可以利用匹配保持的与识别的键范围相连接的网络对等端ID的网络对等端204A/B/D。可以使用除了识别的键范围以外的标准(例如成本信息)来解决多匹配。在所示的示例中,内容路由器206C确定可以使用网络对等端204A,且这样其可以通过网络对等端204A路由内容请求消息以进行处理。内容路由器206C基于该确定可以向边界路由器210C1转发内容请求消息(209)。为了促进内容请求消息的转发,内容路由器206C可以参考在转发信息库(FIB)中的路由项。这些路由项可以包括例如负责对等端网络ID、输出接口、下一跳,等。边界路由器210C1可以接收内容请求消息(209),然后向对等端网络204A转发内容请求消息(211)。边界路由器210A1可以接收内容请求消息(211),并且可以将其转发给内容路由器206A(213)。内容路由器206A可以接收内容请求消息(213),并且可以基于内容描述符、描述符散列值和/或它们的一些其他别名来确定本地缓存208A包括内容对象的本地副本。而内容路由器206A可以转发内容请求消息到本地缓存208A。本地缓存208A可以接收内容请求消息,获取内容对象的本地副本,并且通过向内容路由器208A发回包括内容对象的本地副本的内容响应消息来满足该请求。而内容路由器206A可以经由边界路由器210A、210C1、内容路由器206C和接入节点214C转发内容响应消息至WTRU202。在一些实施方式中,如果本地缓存器208A不能获取内容对象的本地副本,则其可丢弃内容请求和/或用否定应答(NACK)进行响应。本地缓存208A可能由于例如如上所述的各种原因而无法获取内容对象的本地副本。意识到了网络对等端204A是负责对等端且不能从本地缓存208A满足内容请求,内容路由器208A可以经由中转网络216A发送内容请求消息给原始内容源,以从原始内容源取得内容对象(215)。原始内容源可以接收内容请求消息,并获取该内容对象。虽然未示出,原始内容源可以将内容对象返回到内容路由器206A。在接收内容对象之后,内容路由器206A可以通过经由返回路径向WTRU202发送包括从内容源取得的内容对象的内容响应消息来响应内容请求消息(未示出)。从原始内容源取得的内容对象也可以(例如由内容路由器206A)被存储在本地缓存208A中。虽然网络对等端204C不是负责对等端,但内容对象可以被存储在本地缓存208C中(例如,具有低优先级)。可替代地,网络对等端204C可能不缓存内容对象。WTRU202可以发送另一个内容请求消息给网络204C以请求不同的内容对象(217)。接入节点214C可以接收内容请求消息(217),并且可以将内容请求消息转发到内容路由器206C(219)。内容路由器206C可以接收内容请求消息(219)。在确定不能利用本地缓存208C满足内容请求之后,内容路由器206C可以寻求使用该域内和/或外的其他资源。内容路由器206C可以以如上所述同样的方式确定该网络对等端204B可以被使用,且因此,其可以通过网络对等端204B路由内容请求消息以用于处理。内容路由器206C基于该确定可以向边界路由器210C2转发内容请求消息(221)。为了促进内容请求消息的转发,内容路由器206C可以参考FIB中的路由项。边界路由器210C2可以接收内容请求消息(221),然后向对等端网络204B转发该内容请求消息(223)。边界路由器210B2可以接收内容请求消息(223),并且可以将其转发给内容路由器206B(225)。内容路由器206B可以接收内容请求消息(225),并且可以基于内容描述符、描述符散列值和/或其一些其他别名确定本地高速缓存208B包括内容对象的本地副本。而内容路由器206B可以转发内容请求消息到本地缓存208B。本地缓存208B可以接收内容请求消息,获取内容对象的本地副本,并且通过向内容路由器208B发回包括内容对象的本地副本的内容响应消息来满足请求。而内容路由器206B可以经由边界路由器210B2、210C2、内容路由器206C和接入节点214C转发内容响应消息至该WTRU202。尽管未示出,如果内容路由器206C确定其网络对等端204C是负责对等端或其他对等网络204A、204B和204D都不是用于所请求的内容对象的负责对等端,内容路由器206C可经由中转网络216C从原始内容源取得这样的内容的对象,并且可以(经由接入节点214C)向WTRU202发送包括从原始内容源取得的相应的内容对象的内容响应消息。从原始内容源取得的内容对象可被存储在本地缓存208C中。图3是示出可以实施一个或多个公开的实施方式的示例网络联合300的框图。图3的联合300在大多数方面类似于图2的联合200。例如,联合200、联合300可以包括四个网络对等端,即小小区对等端304A、小小区对等端304B、小小区对等端304C以及小小区对等端304D(统称为“小小区对等端304A-D”);且小小区对等端304A-D可以由单个或多个运营商来操作。小小区对等端304A-D可以包括各自的网关306A-D。网关306A-D的每一者可以包括作为组合的本地缓存、HRP路由器和边界路由器来操作的功能。这样的功能可以是类似于例如网络对等端204C的本地缓存208C、内容路由器206C和边界路由器210C1(图2)的组合功能。网关306A-D的每一者可以使用边界缓存作为用于减少回程使用的方式。由于回程链路是昂贵的,运营商可能期望进一步减少回程使用。这可以部分地通过在小小区对等端304A-D之间部署端对端链路来实现。端对端链路可以是有线和/或无线链路,并且可以被认为具有低成本的部署和操作(至少与回程链路相比)。小小区对等端缓存的每一者可以被配置有内容路由器或与其组合。网关304A-D的HRP路由器功能可能会引起(i)小小区对等端304A-D协作以(i)聚集和/或合并缓存和/或回程以使得一定量或群体的内容对象可用于联合300,和/或(ii)小小区对等端304A-D的每一者承担责任以使得该量或群体的内容对象的一些共享可用于其余的小小区对等端304A-D。在分配了散列值空间的键范围之后,内容对象可以由该负责小小区对等端来处理(用于从回程取得和用于缓存),(注意从WTRU接收内容请求的小小区对等端可以不是负责对等端)。增益的来源可能由于和/或来自小小区对等端304A-D的本地缓存在逻辑上合并。而这可能会导致合并的缓存的终端用户基础大了4倍;增加了更高缓冲命中率的(典型设置中的)概率。另外和/或可替换地,对回程链路的一个或多个的容量需求可以被降低。图3还示出了网络联合300内的示例路由操作。图3所示的操作类似于图2中所示的操作,除了小小区对等端304A-D的每一者针对内容请求内部地处理本地缓冲存储处理、HRP路由和边界路由(如图所示,例如,组合的参考编号)。尽管未示出,网络运营商可以部署新的小小区对等端。由于技术的限制,网络运营商能够将新的小小区对等端互连到小小区对等端304A,304C,但不到小小区对等端304B,304D。对等互连网络中包括小小区对等端使得对等互连是部分网状。部分网状可以导致新小小区对等端和小小区对等端304A-D内转发决定的复杂性增加。例如,新小小区对等端可以学习小小区对等端304A,304C的分配的键范围,并可以通过它们转发相关内容请求。新小小区对等端可以或不可以发送某些内容请求给小小区对等端304B、304D,因为其由于内容请求必须通过小小区对等端304A或小小区对等端304C并使用更多网络资源而可能是效率低下的。新小小区对等端可以向小小区对等端304A和/或304C通告小小区对等端304B和/或304D负责的一些或所有键范围。小小区对等端304A和/或304C可以针对通告的键范围通过该新小小区对等端转发一些它们的内容请求。以上示出了HRP可以提供用于复杂和演进网络的基于散列路由的优化。HRP协议根据HRP协议,每个网络对等端可以提供网络对等端计划提供(例如贡献)给对等互连网络的中转带宽量的指示和/或缓存容量的量的指示。可替代地,每一个网络对等端可以提供网络对等端计划提供给对等互连网络的中转带宽量和/或缓存容量的量的加权指示。该权重可以被提供以代替传送带宽量和/或缓存容量的量的指示。网络对等端可以提供这样的权重,例如,在运营商不希望暴露中转和缓存信息到外部的情况下。提供给对等互连协议的中转和缓存容量可以代表可用于对等端网络的总容量的全部或部分。提供给对等互连协议的中转容量可能(例如由网络运营商)排除预留的用于其他类型的流量的回程/中转链路容量。对等互连协议可以包括对等端之间的对等互连链路规定的细节。这些对等互连链路可以是端到端链路(例如以太网电缆、无线端到端链路)和/或交换点。交换点可以是透明的(例如以太网交换机)。可替换地,交换点可以具有一些或全部的HRP功能。这样的交换点可以包括例如HRP路由器。该HRP协议可以包括针对一个或多个对等互连链路的描述。该描述可以包括链路的拓扑结构(例如,端到端、透明集线器、HRP使能集线器)和/或每个链路的容量(例如,P2P链路的独立的容量,或集线器链路的结合的容量)。示例HRP协议数据在下面的表1中列出。表1HRP对等互连协议可以包括缓存偏好,例如,负责内容对象的网络对等端是否应当在其网络中缓存它(如果可能),以及不负责内容对象的网络对等端是否应当不缓存它,或用较低优先级缓存它。路由和缓存偏好的组合基于散列值使得全局优化对等网络上的回程/中转使用和/或缓存命中率成为可能。HRP路由概述可以使用多个网络对等端的HRP路由元件在多个网络对等端间分配HRP路由。可替代地,可以使用单个网络对等端的HRP元件(例如HRP控制器)在该单个网络对等端上集中(例如集中)HRP路由,或在通信地耦合到网络对等端的网络元件上集中。HRP路由可用于在HRP路由器中填入转发信息(FIB)。这些转发信息可以用于转发HRP路由器接收的内容请求。HRP路由可以包括外部HRP功能和内部HRP路由功能。外部HRP路由功能(“外部HRP路由”)可以由HRP对等端执行,并可以包括分配键范围。内部HRP路由功能(“内部HRP路由”)可以由单个网络对等端内的实体执行,并可以包括向合适的边界路由器路由内容请求。在ICN设置中,可以在ICN路由器中执行HRP路由。ICN路由器可以被安置在(i)各种对等网络中,(ii)被分配有对等互连集线器的中央HRP路由器,和/或(iii)WTRU中。在IP设置中,可以例如在HTTP代理中执行HRP路由。HTTP代理可以位于(i)对等网络中,(ii)被分配有对等互连集线器的中央HTTP代理中,和/或(iii)UE中。HRP路由可涉及在路由器维护的数据结构(“HRP路由表”)中填入和/或更新(统称为“维护”)路由信息和/或路由规则。HRP路由表的维护可以通过分布方式(例如,HRP路由协议)或集中方式(例如HRP控制器)来执行。(下面)表2包括HRP路由表的示例的示例标签和项。标签和项可以代表HRP路由器206C(图2)和/或网关306B的HRP路由器(图3)的HRP路由表。目标网络204/304A和204/304B的下一跳项是相同的(即值是“5.6.7.8”)。项是相同的是因为值“5.6.7.8”对应于HRP路由器206B(网络204/304B),以及HRP路由器206A(网络204/304A)是通过网络204/304B可达的(如从HRP成本项确定的)。表2HRP成本可以与常规路由度量一致或不同。HRP成本可以由HRP路由器使用以在竞争的HRP项间进行区分。在一些实施方式中,HRP成本可以具有指示对等互连和/或中转链路负载的值。该值可以随时间变化。例如:如果网络对等端204/304B的HRP路由器206/306B确定或者被通知其到网络对等端204/304A的对等互连链路被过度使用,则网络可以将通过网络对等端204/304A到键范围0-4的HRP路由的成本从值2增加到值3。网络204/304C的HRP路由器206/306C可以基于指示HPR成本是不可接受的(例如本地)策略决定不选择通过网络对等端204/304A到键范围0-4的HPR路由。在一些实施方式中,HRP路由可以与常规IP路由表相关联。表3和4(以下)可示出组合的HRP和IP路由(“HRP/IP路由”)表方法的示例。表3包括与IP路由信息相关联的HRP路由信息的示例标签和项。HRP/IP路由方法可以例如被用在使用HTTP缓存的IP网络中,或当HRP被用在使用底层IP路由的CIN设置中时。表3表4包括与表3中所示的IP信息有关的IP路由信息的示例标签和项。如由该简化的路由表所示,HRP路由器有2个接口,并且直接连接到这些接口的每一者上的网络对等端。HRP路由器也连接到远端网络1.2.3.0/24,其中网络对等端204/304AHRP路由器/缓存位于通过直接连接的网络对等端304/204B(5.6.7.8)。表4表项索引目的地子网下一跳定位符11.2.3.0/245.6.7.825.6.7.0/24链路本地(外部接口)HRP路由表可以具有本地重要性,因为每个网络对等端可具有不同的HRP路由表。观点差异可以是不需要的,例如,由于对等端之间的临时解除同步。HRP路由协议可以被配置为纠正随时间的观点差异。可替换地,观点差异可能是有目的的,诸如,例如,由于多个网络对等端负责同一键范围以用于负载平衡或其它目的,和/或由于网络对等端指示一些键范围是未分配的,例如,以避免过度负担对等链路。在分布式设置中,其中使用HRP路由协议,每个网络对等端可以例如通过给自己分配小的或标称键范围来启动。然后,随着时间的推移,每个网络对等端可能会逐渐增加其键范围的分配。网络对等端可以继续增加其各自的键范围的分配,直到例如发生拥塞或整个散列值空间被分配。键范围可以表示为在整个散列值空间的部分(例如十六分之一)。以这种方式表达键范围可使得分配简单,并且可避免可能在其他方式分配中出现的碎片问题。图4是示出基于HRP的示例联合400的框图。联合400可包括经由端到端链路450彼此通信地耦合的网络对等端404A-C。网络对等端404A-C的HRP路由表452A-C分别可以反映在稳态条件下其相应网络对等端404A-C的HRP路由状态。例如当键范围分配或重新分配停留在或保持在稳态时可能发生这样的稳态条件。HRP路由表452A-C的所有可以包括分配给网络对等端404A-C的键范围和网络对等端404A-C的网络对等端ID。网络对等端404A-C的所有可以看到相同的HRP路由状态,例如在图4中示出的(例如,整个散列值空间被分配给,且同等分布在,网络对等端404A-C)。键范围表示为[0-16],指示散列值空间被划分成16个块。虽然简化说明,HRP路由表452A-C的每一者可以包括另外的信息,例如,下一跳和/或成本信息。图5是示出网络对等端404A-C的示例HRP路由表552A-C的框图。HRP路由表552A-C类似于HRP路由表452A-C,不同的是HRP路由表552B-C具有一HRP路由状态,其指示针对在网络对等端404B与404C之间交换的块5-12和13-15的内容请求的至少一些可以通过网络对等端404A被路由。该HRP路由状态可能由于网络对等端404B和404C之间的对等互连链路被过度使用且由于404B与404A之间的对等互连链路和404C与404A之间的对等互连链路使用不够而发生。虽然简化说明,HRP的路由表552A-C的每一者可以包括另外的信息,例如,下一跳和/或成本信息,且可以使用2个不同的项来实施单个项“A或B”,等等。图6是示出网络对等端404A-C的示例HRP路由表652A-C的框图。HRP路由表652A-C类似于HRP路由表452A-C,不同的是HRP路由表652A-C具有HRP路由状态,其反应在网络对等端404A-C间键范围的转移或重新分配由此之前被分配给网络对等端404B-C的一些块已经被重新分配给网络对等端404A。HRP路由表652A-C的HRP路由状态可能由于网络对等端404B与网络对等端404C之间的对等互连链路被过度使用且由于网络对等端404A具有足够的中转带宽和缓存容量(例如另外的容量可以被添加到网络对等端404A达20Gbps中转和20TB缓存)。虽然简化说明,HRP路由表的每一者可以包括另外的信息,例如,下一跳和/或成本信息等。图7是示出网络对等端404A-C的示例HRP路由表752A-C的框图。HRP路由表752A-C类似于HRP路由表452A-C,不同的是HRP路由表752A-C具有HRP路由状态,其反映对等网络404B和404C可能不向彼此发送内容请求的至少一些。HRP路由表752A-C的HRP路由状态可能在网络对等端404B和404C在它们之间的对等互连链路上检测到拥塞且由此决定从彼此的分配移除一些块之后发生。网络对等端404B和404C可以使用确定性方法(例如,选择具有最高索引的块等)来选择要移除的块,以最大化缓存命中率。例如,如果网络对等端404A决定从分配给网络对等端404C的键范围移除块,则网络端404A移除块15。通过这种方式,网络对等端404A、404B都能够继续使用针对键范围13-14的网络对等端404C。虽然简化说明,HRP路由表的每一者可以包括另外的信息,例如,下一跳和/或成本信息等。图8是示出网络对等端404A-C的示例HRP路由表852A-C的框图。HRP路由表852A-C类似于HRP路由表452A-C,不同的是HRP路由表852A-C的HRP路由状态反映不同对等端之间的拆分键范围分配,由此最初分配给网络对等端404B和404C的一部分键范围也被分配给网络对等端404D。HRP路由表852A-C的HRP路由状态可能由于网络对等端404B和404C之间的对等互连链路被过度使用且由于网络对等端404D可用或能够添加网络对等端404D以处理最初分配给网络对等端404B和404C的一些键范围块而发生。网络对等端的一些针对这样的块可以指向网络对等端404D,而其他网络对等端可以使用(或继续使用)网络对等端404B和404C。HRP路由表852A-C的HRP路由状态类似于上述的键范围的转移,不同的是该键范围不被从其前负责对等端解除分配。执行这种转变的能力可以尤其有用于较大对等互连网络。虽然简化说明,HRP路由表的每一者可以包括另外的信息,例如,下一跳和/或成本信息等。增益评估为了从HRP估计增益,执行对简化用例的研究,其中所有网络、回程链路和对等互连链路具有完全相同的特性。这些用例基于图2的示例拓扑结构,示出了具有相同传送能力、缓存能力和终端用户请求的相同流量量的4个网络对等端。针对研究,网络对等端只缓存它们关于联合已经承担责任所针对的对象。每个网络对等端也可以缓存其他非常流行的内容对象,这可以减少在尖峰的情况下的对等互连链路负载(例如直播流或“Slashdot效应”)。在一个实施方式中,所有4个网络对等端具有l0Gbps下游回程/中转链路,而由网络对等端204A(分别地204B、204C、204D)的终端用户总请求的内容对象与每一个其他网络的终端用户请求的内容对象相同。这反映了100%冗余率的一极端情况,且大多数的流量是来自终端用户的内容请求。该请求分组的大小可以被假定为可忽略不计(例如,相比于内容对象的大小)。通过在网络对等端404A-D的每一者之间加入5Gbps的点对点对等互连链路,并将这里公开的过程和技术应用到上述的网络情况,使得网络对等端能够提供相同的网络服务,在网络对等端404A-D的每一者的回程/中转链路的使用率可以只有25%。图9是示出有和没有HRP的示例经验链路使用的曲线图。该曲线图可描绘针对每个具有10Gbps回程的4个小区且所有小区之间是全网点对点互连,有和没有HRP的链路使用的演进。这些曲线基于以下的分析:在100%冗余情况下,所有小区的终端用户需要以10Gbps获取来自因特网的内容;在HRP情况下,小区A的用户将通过A获得25%的请求的内容,通过B获得25%,等,这意味着每一个对等互连链路被加载每个方向2.5Gbps,这意味着30Gbps的聚合。由于我们有100%冗余,响应于来自小区A、B、C和D的终端用户的请求的穿过A的中转链路的2.5Gbps的内容是相同的且仅需要获取一次且然后被缓存在网络A中。然后我们考虑75%,50%,25%,下到0%冗余的情况。为了保持该模型简单,X%冗余意味着网络A、B、C和D请求的内容对象的X%将在4个域是共同的,而其它X%是唯一的项。根据该曲线图,似乎当以下的任何或两者为真时HRP可以是有益的:(i)对等互连链路的成本应该比中转成本低得多;和(ii)对等网络请求的内容之间有足够的冗余。在对等互连链路(例如在相同物理节点上的虚拟节点实例之间)是非常便宜的极端情况中,HRP可以是合理的,甚至具有低冗余率。从运营商角度,增益可以通过减少回程/中转链路的容量、通过实现较大终端用户基础、和/或通过提供更多下载容量给现有终端用户来表达。且当在全网状配置中添加更多对等端时,以对等端链路的更大使用为代价,可以有对聚合回程的另外增益。局部敏感散列对其整体的内容描述符进行散列化可能导致向特定应用或网站的内容请求经过不同的对等端网络,且因此经过不同的回程。这可能会造成一些问题,包括例如,从相同服务获取的不同内容对象之间感知性能的差异。为避免这些问题的至少一些,在一些实施方式中,对内容描述符应用的HRP散列函数可以被选择为“局部敏感”。局部敏感散列(LSH)是一类散列函数,具有类似的输入会导致相似或相同的散列值的属性。这类散列函数的一个示例是Nilsimsa散列。在一些实施方式中,HRP散列函数的输入可被选择以满足通过相同网络对等端获得目标为一个域的所有内容请求的愿望。做到这一点的一种方式是仅使用该域名作为输入,或更一般地,前缀(例如,retrieving/example.com/video/avatar会通向hashing/example.com)。在一些情况中,朝向单个非常流行的域(例如youtube.com)的多数或所有请求可以经过相同的HRP网络对等端。这可能会影响负载平衡。为了避免这种情况,HRP路由协议可以将负责youtube.com的该网络对等端限制到小键范围。在一些实施方式中,特殊散列规则可应用于某些(配置的)流行域。例如,对于这样的域,整个内容描述符可被用作到散列函数的输入,确保到在我们的例子中的youtube.com的请求被分布在所有的网络对等端。位于对等端网络之一的起源服务器HRP可与本地路由共存。当起源服务器位于网络对等端之一时,所有的内容请求可以通过对等互连链接,而不干扰HRP,这因特网下处理对内容的路由。这能够通过在HRP路由器之间交换HRP路由和常规路由来完成。在CCN被使用的示例中,到/local.org/path/to/content/的特定路线可以分布在对等互连链路上。该路由可以是更特定于HRP路由的,其是到/的默认路由,导致该路由被选择用于具有该特定前缀的所有内容请求。HRP路由协议的基本原理该HRP路由协议可以被使用代替给每个网络配置静态路由表。HRP路由协议可以使得分配和路由信息适应改变的网络条件,例如对等互连链路和/或中转链路故障。该HRP路由协议可以处理复杂的对等互连网络配置,例如在大量互连小小区的情况中,该互连可以包括集线器和松散网状连接的混合。HRP路由协议可以处理对等网络配置中的改变,例如新连接和新小小区被添加到已有对等互连网络。该HRP路由协议的动态性质可以适于处理运营商策略考虑,诸如,例如在对等互连网络是ISP网络且运营商策略考虑随着时间发展(例如出于商业原因)的情况下,要求一些ISP同步其改变可能太复杂:但是一个ISP能够修改它的HRP路由器的配置来停止与一个特定的对等端对等互连。外部和/或内部HRP路由HRP路由可以使不同的网络对等端就如何在它们之间分布散列值空间达成一致。内部HRP路由可以在给定对等端网络内传播HRP路由信息。内部HRP路由可以导致在多个边界路由器之间的选择,以确保内容请求将达到合适的边界路由器。具有单个CCN路由器、HTTP代理、边界网关协议(BGP)边界路由器或开放式最短路径优先(OSPF)/IS-IS边界路由器的网络对等端(通过这来自该网络的所有终端用户的所有内容请求被路由)不需要传播HRP路由信息。这个中心路由器可以使用外部HRP路由协议从其他对等端获得HRP路由信息,且可以对所有内容请求作出路由决定。分布式和/或集中式路由协议新的分布式外部HRP路由协议被提供,以使网络对等端彼此通信并分配键范围。分布式内部HRP可以在任意给定对等端网络内侧被使用,以确保内容请求朝向合适的边界HRP路由器被转发。HRP路由能够通过扩展现有路由协议(例如BGP(外部和/或内部BGP))或内部路由协议(例如OSPF、RIP、IS-IS等)被实现。将现有路由协议适应于HRP可以包括将IP子网替换为键范围。增强的外部路由协议(例如BGP)可能是非常适合用例,例如互联网服务提供商(ISP)HRP联合,以及增强的内部路由协议(例如OSPF)可能是非常适合小小区联合。在小小区网络的上下文中的HRP可以通过集中方式被实现,例如在SDN控制器上运行的HRP软件定义网络(SDN)应用。它可以提供API给HRP对等端。HRP对等端可以例如使用API来输入关于单个小区或网络的一些信息(例如,回程容量、缓存存储容量、负载)。然后,SDN应用可以进行到将SDN路由器/交换机配置为合适转发内容请求。分布式外部HRP路由协议所有HRP路由器可以对散列函数和散列值空间达成一致(例如范围[0...2^32])。为了简化计算,HRP路由器可以同意键范围的给定粒度,例如散列值空间的n分之一,n=32或128。此粒度可以由HRP路由器在初始连接建立期间进行协商,并且可以被路由器配置影响。这样,键范围可以唯一地由[0...n]内的它们的索引命名。在分布式路由上下文中实施HRP的一种方式可以是让每个HRP路由器负责(或“分配给自己”)一次一个或多个关键范围,通告它们,且在与另一HRP路由器冲突的情况下后退(即,解除分配,等待随机时间量,之后重新分配)。所有的路由器都可以做到这一点,直到例如全范围被分配或者HRP路由器决定它们在全容量且不应该采取任何更多的键范围。当新的HRP路由器被互连时,其能够尝试从其他HRP路由器“偷”某些键范围。重新分配可能会导致达到新的平衡(即分配,通告,并等待直到当前持有者解除分配)。分配消息可以包括例如所请求的键范围,以及下一跳的标识符或定位符(其能够隐式地是发起分配消息的路由器)。在一些实施方式中,该分配消息可以包括与所请求的键范围相关联的成本信息。HRP路由器可能侦听来自其邻居的通告,并可以将通告填入其HRP路由表。‘N’个目前未分配的键范围可以由HRP路由器分配。‘N’可以是一个或多个,和/或可以依据条件而变化(例如,‘如果大量未分配键范围存在,且如果HRP路由器远离全容量,则N’可以是大的)。HRP路由器还可以决定分配已经被分配的键范围(例如由远距离路由器或由先前存在而现在过载的路由器)。减少分配期间冲突风险的一种方式是使HRP路由器获得散列值空间内的ID(例如被配置的散列值或MAC地址的散列值),然后在做出分配决定时使用该ID作为锚点(例如首先分配包含该ID的键范围)。进一步分配可以与已有分配是连续的,增加键范围索引(例如)。如果例如在回程检测到拥塞,则HRP路由器可以确定其应该停止分配新的键范围。例如,如果拥塞高于阈值,HRP路由器可以停止分配新的键范围。在一些实施方式中,如果拥塞过高,HRP路由器可以开始解除分配一些其所分配的键范围。如果例如在一个或多个对等端链路上检测到拥塞(例如特定的对等端链路被确定饱和),则HRP路由器可以确定其应该停止分配新键范围。在一些实施方式中,HRP路由器可以减少导致拥塞链路上的流量的分配。如果例如已经满足服务级协议(SLA)的条件(例如对等端A运营商同意共享其回程容量的给定部分,且通过测量确定使用当前键范围配置已经达到该值),HRP路由器可以确定它应该停止分配新的键范围。HRP路由器可以通告不同的分配给不同的对等端,尤其是为了限制某些链路上的拥塞或执行对等端网络的运营商之间的服务级协议的目的。HRP路由器可以以各种方式检测分配冲突和/或对其作出反应。例如,当HRP路由器分配新的键范围给自己,它可以在该分配之前或之后侦听来自网络对等端的通告。如果相同的键范围变得由另一HRP路由器分配,则初始分配冲突升高。初始分配冲突可以通过使得两个网络对等端都解除分配键范围,等待随机后退时间,然后重新尝试分配相同或不同的键范围来处理。可替代地,具有最低路由ID的HRP路由器可以对冲突的键范围解除分配,且其他的HRP路由器维护该分配。当第一HRP具有键范围的长期的分配且检测或被通知第二HPR路由器可能正尝试“偷取”这样的键范围时,第二类冲突可以发生。第一HRP路由器可以确定它是否同意第二HRP路由器尝试获取键范围。例如,如果第二HRP路由器的该获取导致更平衡的分配(例如,第二路由器可以是新引入到网络中且具有仅一些键范围),则第一HRP可以放弃该键范围,并且可以将其从其通告中移除。如果第一HRP不同意,其可以保持该键范围。在一些实施方式中,两个路由器可以通告相同的键范围(例如,它们在跳点意义上彼此远离,且可以提供备选给其附近的邻居)。HRP路由器可以基于HRP路由表确定向何处转发内容请求。例如,HRP路由器可以决定通过特定对等端网络发送与特定键范围有关的内容请求。如果HRP路由表中的多个项包括相同或重叠的键范围,则HRP路由器可以选择(i)最接近的网络对等端;(ii)基于策略或对等端链路使用,比其他网络对等端更优选的网络对等端。在一些实施方式中,HRP路由器可以考虑在HRP路由表的指向太远(例如滞后太大)的网络对等端的项,或在确定向何处转发内容请求时可以导致不可接受的对等端链路使用。在一些实施方式中,HRP路由器可以评估所有项,然后选择一个项以有效地用于任何给定的键范围。这个选择可以是粘性的,因为其可以在实践上是长期的,以优化针对键范围的负责对等端的缓存的缓存命中率。HRP路由器可以针对其不负责的键范围对请求回复否定应答来(除非例如其在到负责对等端的路径上且HRP路由器愿意路由该请求)。例如当HRP路由器停止通告某键范围时,HRP路由器可以用否定应答来答复。这样其他HRP路由器可以意识到该改变(例如,即使分配变化尚未被HRP协议分布)。图10是示出示例HRP路由消息流1000的消息流程图。网络对等端1004A和1004B的HRP路由器1006A和1006B分别可以建立端到端连接(1001)。该端到端连接可以经由底层传输网络(未示出)被建立。在连接建立后,HRP路由器1004A-B可以协商HRP路由能力和/或参数(1003)。能力和/或参数可以包括例如键范围分配粒度、网络对等端ID通告等。HRP路由器1006A可以通告或以其他方式发送与网络对等端1004A相关联的可达性信息给HRP路由器1006B(1005)。这个可到达性信息可以包括键范围可达性信息和/或IP可达性信息。键范围可达性信息可以指示没有键范围被分配到网络对等端1004A和/或通过该网络对等端1004A可达。包含在键范围可达性信息中的空键范围可以被解释为例如没有键范围被分配到网络对等端1004A和/或通过该网络对等端1004A可达的指示。该IP可达性信息可以包括到终端用户1002A的IP路由信息。HRP路由器1006B可以侦听和接收与网络对等端1004A相关联的可达性信息(1005)。该HRP路由器1006B可将该可达性信息填入到其HRP路由表中的相应路由项(1007)。像HRP路由器1006A,HRP路由器1006B可以通告或以其他方式发送与网络对等端1004B相关联的可达性信息给HRP路由器1006A(1009)。这个可到达性信息可以包括与网络对等端1004B相关联的键范围可达性信息和/或IP可达性信息。该键范围可达性信息可以指示没有键范围被分配到网络对等端1004B和/或通过该网络对等端1004B可达。键范围可达性信息可以包括例如空键范围,作为没有键范围被分配到网络对等端1004B和/或通过该网络对等端1004B可达的指示。该IP可达性信息可以包括到终端用户1002B的IP路由信息。该HRP路由器1006A可以侦听和接收与网络对等端1004B相关联的可达性信息(1009)。此后,HRP路由器1006A可以将与网络对等端1004B相关联的可达性信息填入到其HRP路由表中的相应路由项(1011)。基于与这两个网络对等端1004A-B相关联的可达性信息,HRP路由器1006B可以确定整个散列值空间未被分配。该HRP路由器1006B可以从未分配的散列值空间选择候选键范围(例如,键范围块0-4),并可以分配该候选键范围给网络对等端1004B(1013)。候选键范围的选择可以基于网络对等端1004B和/或网络对等端1004A的回程、缓存和/或其他网络资源;与网络对等端1004B和/或网络对等端1004A相关联的流量条件;网络对等端1004A-B之间的一个或多个端到端链路的容量;以及与网络对等端1004A-B的一者或两者相关联的成本和/或类似类型参数中的任意。候选键范围到网络对等端1004B的分配可以使用基于在公布-订阅或类似类型消息发送模式之后建模的和/或根据该发布-订阅或类似类型消息发送模式(其中HRP路由器1006B是发布方,且HRP路由器1006A是订阅方)的过程(“分配过程”)而被执行。可替代地,分配过程可以基于在争用和/或冲突避免协议之后建模的和/或根据该争用和/或冲突避免协议。分配过程的示例如下。HRP路由器1006B一旦选择可以假定候选键范围被分配给网络对等端1004B。这假定可以在与从分配的散列值空间或从未分配的散列值空间(如在示出的示例中)选择候选键范围无关的情况下而被做出。如果候选键范围从分配的散列值空间被选择,则最终存在键范围可能不被分配给网络对等端1004B的可能性。该HRP路由器1006B可以更新之前通告的与网络对等端1004B相关联的键范围可达性信息以反映和/或促进候选键范围的分配的传播。更新之前通告的键范围可达性信息的一个方式是将所分配的键范围插入到这样的键范围可达性信息。另一种方式是在之前通告的键范围可达性信息中插入对分配的键范围的参考或其他别名。HRP路由器1006B例如可以将与分配的键范围相关联的路由表索引插入到之前通告的与网络对等端1004B相关联的键范围可达性信息。HRP路由器1006B可以通告或以其他方式发送与网络对等端1004B相关联的更新的键范围可达性信息给HRP路由器1006A(1015)。可替代地,更新的键范围可达性信息可以与对之前通告的与网络对等端1004B相关联的可达性信息的其他更新(例如针对成本信息和/或IP可达性信息的更新、改变、修改等)一起发送。HRP路由器1006A可以侦听和接收与网络对等端1004B相关联的更新的可达性信息或更新的键范围可达性信息(1015)。之后,该HRP路由器1006A可以更新与网络对等端1004B相关的路由项以包括分配的键范围(1017)。HRP路由器1006A也可以更新路由项,以反映由与网络对等端1004B相关联的更新的可达性信息和/或更新的键范围可达性信息携带的其他更新(如果有的话)。尽管未示出,HRP路由器1006B可继续假定分配的键范围被分配给网络对等端1004B。没有明确的信息可以被发送到HRP路由器1006B,和/或被HRP路由器1006B接收,以确认该假定的键范围的分配。在键范围的分配中没有不可解决的冲突可以是该假定的键范围的分配的隐式确认。与HRP路由器1006B类似,HRP路由器1006A可以从未分配的散列值空间选择来自候选键范围(例如,键范围块16-19),并且可以分配该候选键范围给网络对等端1004B(1019)。候选键范围的选择可以基于以下的任意:网络对等端1004A和/或网络对等端1004B的回程、缓存和/或其他网络资源;与网络对等端1004A和/或网络对等端1004B相关联的流量条件;网络对等端1004A-B之间的一个或多个端到端链路的容量;以及与网络对等端1004A-B的一者或两者相关联的成本和/或类似类型参数。像上述情况,到网络对等端1004A的候选键范围的分配可使用各种分配过程的任意来进行。在一些实施方式中,该分配过程可以基于,在发布-订阅或类似类型消息发送模式之后建模和/或根据发布-订阅或类似类型消息发送模式,其中HRP路由器1006A是发布方和HRP路由器1006B是订阅方。在一些实施方式中,该分配过程可以基于,在争用和/或冲突避免协议之后建模的和/或根据争用和/或冲突避免协议。在一些实施方式中,之前描述的示例分配过程与到其他网络对等端1004A的候选键范围的分配有关。为简明起见,这样的分配过程(适当修改用于到网络对等端1004A的分配)这里不再重复。在键范围被分配之后,HRP路由器1006A可以接收到来自终端用户1002A的内容请求(1021)。内容请求可以包括内容对象名称和/或内容对象元数据。HRP路由器1006A可以散列化内容对象名称和/或内容对象元数据,以获得相应的散列值,确定该散列值落入分配给该网络对等端1004B的键范围内,并基于这样的确定,决定通过网络对等端1004B路由内容请求(1023)。该HRP路由器1006A可以通过网络对等端1004B转发内容请求到HRP路由器1006B(1025)。HRP路由器1006B可以接收所转发的内容请求(1025)并散列化内容对象名称和/或内容对象元数据以获得相应的散列值,确定散列值落入分配给网络对等端1004B的键范围内,并且基于这样的确定决定本地处理该内容请求(例如,使用其回程和/或缓存资源)(1027)。HRP路由器1006B例如可以转发内容请求到缓存1008B或经由传送资源HRP路由器1016B转发内容请求到内容源(1029)。缓存1008B或内容源可以获取所请求的内容对象,并用包括所获取的内容对象的内容响应来响应转发的内容请求(1031)。HRP路由器1006B可以接收内容响应(1031),并可以将内容响应路由到HRP路由器1006A(1033)。内容响应路由到HRP路由器1006A可基于HRP路由器1006B的内部状态,分组中的源路由信息、标准IP路由和类似类型路由中的任意。一旦被路由,路由器HRP1006B可以向HRP路由器1006A转发内容响应(1035)。HRP路由器1006A可以接收内容响应(1037),并可以将该内容响应路由到终端用户1002A(1039)。内容响应到终端用户端1002A的路由可以基于HRP路由器1006A的内部状态、分组中的源路由信息、标准IP路由和类似类型路由中的任意。一旦被路由,HRP路由器1006A向终端用户1002A转发内容响应(1035)。在一些实施方式中,非HRP路由信息(例如IP路由信息)可以被交换,以使得内容响应转发。在一些实施方式中,HRP路由器1006A和1006B之一或两者可以维护状态信息,以使得内容响应通过适当的返回路径路由。所述状态信息可以被维护在例如在一个待定兴趣表(PIT)或其他类似类型的数据结构中。在所示的示例中,只有两个键范围被分配—每一个给网络对等端1004A-B的每一个。在这两个键范围的分配之后或有关的任意时间,更多键范围可以被分配给网络对等端1004A-B的一者或两者。HRP路由器1006A和1006B的一者或两者可以基于各种容量、阈值、条件和/或策略重复该分配过程。分配过程可以由HRP路由器1006A和1006B的一者或两者重复,例如,(i)直到整个散列值空间被分配,(ii)直到在对等互连或中转链路上发生拥塞的某测量(例如满足阈值的量),(iii)直到散列值空间的指定百分比或部分被分配,(iv)多达缓存资源的指定百分比或部分被消耗或不可用,(v)多达回程资源的指定百分比或部分被消耗或不可用,和/或(vi)限制另外分配的指定限制或策略。可替代地,分配过程可以由HRP路由器1006A和1006B的一者或两者递增地重复(例如,在时间和/或键范围大小递增)或以控制的增长速率重复。作为示例,在分配更多的键范围之前,HRP路由器1006A和1006B可以等待,直至它们确定在稳定状态下HRP对等互连不会或不可能会导致不可接受的拥塞。可替换地,HRP路由器1006A和1006B可以在需要时以各种尺寸分配键范围,以限制在对等或中转链路上的不可接受的拥塞。尽管未示出,在一些实施方式中,散列值可被计算一次,并在内容请求中被传输供上游路由器使用。可替代地,计算的散列值与内容对象名称和/或内容对象元数据一起可以在该内容请求中被传输。这样,联合能够包括不同复杂程度的路由器—一些可以能够计算散列值和一些可能不能够做这个。图11是示出用于在网络对等端的HRP路由器(例如HRP边界路由器)中做出转发决定的示例流1100的流程图。在从网络对等端的终端用户或其他实体或从另一个网络对等端或(统称为“请求者”)接收针对内容对象的内容请求(1101)之后,HRP路由器做出该内容请对象是否从本地缓存可获取的确定(1103)。如果HRP路由器确定内容对象是从本地缓存可获取的,则HRP路由器可以从本地缓存取得内容对象,并且可以向请求者发送包括获取的内容对象的内容响应(1105)。如果HRP路由器确定内容对象不可以从本地缓存获取,则HRP路由器可以获得对应于内容对象的散列值(1107)。HRP路由器可以通过基于(例如散列化)与内容对象相关联的内容名称和/或元数据计算散列值来获得该散列值。可替换地,HRP路由器可以从内容请求获取该散列值(如果包含了)。在获得散列值之后,HRP路由器确定该散列值是否在在该HRP路由器责任下的键范围内(1109)。如果HRP路由器确定该散列值在在该HRP路由器责任下的键范围内(例如,发现指向网络对等端的本地缓存的匹配,或没有发现匹配),则HRP路由器可以通过本地回程将内容请求转发到朝向内容源的下一跳(1111)。HRP路由器例如可以首先通过本地缓存然后通过回程转发内容请求。如果HRP路由器确定散列值不是在在该HRP路由器责任下的键范围内(例如发现指向另一网络对等端的匹配),则HRP路由器确定该内容请求是来自本地网络还是来自另一网络对等端(1113)。如果内容请求被确定来自本地网络,则HRP路由器可以解决或以其它方式确定将内容请求路由到的目标网络对等端(1115)。当确定目标网络对等端时,HRP路由器可参考其HRP路由表,并使用一个或多个本地策略来在一些网络对等端之间进行区分(如果合适)。在识别目标网络对等端之后,HRP路由器可以将内容请求路由和/或转发到朝向这样目标网络对等端的下一跳(1117)。如果确定内容请求从另一个网络对等端转发,则HRP路由器可以确定HRP路由器是否被允许在网络对等端之间路由(1119)。如果被允许,则HRP路由器可以解决或以其他方式确定将内容请求路由到的目标网络对等端(1115)。当确定目标网络对等端时,HRP路由器可参考其HRP路由表,并使用一个或多个本地策略来在一些网络对等端之间进行区分(如果合适)。在识别目标网络对等端之后,HRP路由器可以将内容请求路由和/或转发到朝向目标网络对等端的下一跳(1117)。如果HRP路由器不被允许在网络对等端之间路由,则HRP路由器可以丢弃该内容请求(1121)。HRP路由器可以给请求者发回(速率限制的)NACK。分布式内部HRP路由例如如果网络对等端由于仅在该网络中的所有节点必须向单个边界路由器/网关(其可以与外部HRP路由功能并置)路由内容请求而具有该单个边界路由器/网关,则可以不使用内部HRP路由协议。例如如果网络对等端由于所有内容请求可以通过HRP路由器被路由且HRP路由器可以在合适时向中转链路或对等端转发内容请求而具有一些出口点(例如一个HRP路由器和一个边界路由器到回程/中转网络),则可以不使用内部HRP路由协议。例如如果网络对等端具有一些出口点(例如一个或多个HRP路由器和一个边界路由器到回程/中转网络)通过一个路由器路由所有流量可能不可行、不实际和/或不期望的,则可以使用内部HRP路由协议。内部HRP路由协议可允许网络对等端内部的路由信息的分布。一般情况下,所有的HRP路由器可以通告在网络对等端内它们感兴趣处理的所有键范围。为促进这个,该网络对等端内部的HRP路由器可以被配置为是HRP知晓的,和/或可基于键范围路由内容请求。映射到默认路由的内容请求可以被处理,就像没有使用HRP一样;它们可以经过缓存、和/或通过回程/中转链路留在网络。内部HRP路由可以通过扩展OSPF/IS-IS/其他路由协议被实施,其方式类似于通过扩展OSPF/IS-IS/其他路由协议实施外部HRP路由的方式,可能使用键范围通告的相同编码。集中的外部HRP路由在一些实施方式中集中的外部HRP路由可以使用SDN控制的交换点来执行。在HRP网络对等端是由同一实体或协作实体操作的小小区的示例中,一些小小区对等端可以与包括在SDN控制器下的一个或多个SDN路由器/交换机的一个交换点网络互连。可以在SDN控制器中实施HRP路由功能,例如在基于键范围的路由控制堆栈之上的层上。基于键范围的路由控制堆栈的示例细节可以在2013年7月26日递交的美国专利申请No.13/952,285(代理人案号11477US02)(“‘285申请”)中找到,其通过引用的方式结合于此。每个网络对等端可以提供反馈给SDN控制器。这种反馈可以包括例如,回程和对等端链路负载和缓存命中率。该反馈可以由SDN控制器使用各种协议得到,例如SNMP或NetConf。可替换地,SDN控制器可以实现北向接口,HRP路由器可以使用该北向接口来提供该相同的信息。基于该输入,SDNHRP路由应用可以估计小小区对等端之间的键范围责任的(例如最优)划分和/或其他分配。SDNHRP路由应用可以使用基于键范围的路由功能(诸如,例如,在'285申请中提供的)来配置交换点交换机/路由器以基于内容名称的散列值转发内容请求。图12是示出示例SDN堆栈和用于集中外部HRP的连接的框图。SDN堆栈如下:HRP路由器A和B可以提供输入给SDN控制器提供的使用API#1的SDNHRP外部路由应用(例如,通过HTTPAPI的JSON),并从中得到信息。API动作可以包括以下的任意:(i)POST/ehrp/peer-configuration,其中HRP路由器向应用通知其网络对等端配置,包括例如网络对等端的回程链路容量和缓存容量;(ii)POST/ehrp/peer-status,其中该路由器更新其当前负载和其它状态信息(电流中断状态、回程链路负载、缓存负载和命中率、任何对等端链路的负载);以及(iii)POST/ehrp/peer-connectivity,其中HRP路由器设置其向/从其他互连对等端路由流量的意愿,以及与这些对等端的对等端链路容量。SDNHRP外部路由应用可以考虑该输入来计算用于每个HRP网络对等端的键范围分配。SDNHRP外部路由应用可以针对每个HRP网络对等端且在用于每个键范围的这样的对等端内确定哪个网络对等端将负责取得与该键范围相关联的内容对象。结果是,针对每个HRP网络对等端和针对在它们之间形成互联网的每个SDN路由器/交换机,SDN应用可以将流转发规则与键范围的任意相关联。SDNHRP外部路由应用可以使用键范围增强的开发流(OpenFlow)API,(诸如,在'XXX申请中提供的)来在增强的SDN/交换机和HRP路由器中设置基于键范围的转发规则。这种设备的转发机制也可被增强(例如,在'XXX申请中提供的)以将消息的某个字段(即内容请求中的字段)与在流表中描述的键范围匹配。可替换地,转发机制可以被增强以将从消息字段(例如内容名称)中计算的散列值与在流表中描述的键范围项匹配。集中的内部HRP路由在一些实施方式中,集中的内部HRP路由可以使用SDN控制的对等端网络被执行。边界HRP路由器可以使用集中的或分布式外部HRP路由协议。边界HRP路由器可以提供它们的HRP路由表给由SDN控制器使用的内部HRP路由应用。基于该信息,SDN控制器内部HRP路由应用可以使用基于键范围的路由功能(诸如,例如,在'XXX申请中提供的)来配置交换点交换机/路由器以基于内容描述符的散列值转发内容请求。集中的内部HRP路由和集中的外部HRP路由可以不同,如下:(i)到SDN控制器内部HRP路由应用的输入可以是不同的。到SDN控制器内部HRP内部HRP路由应用的输入可以是HRP路由表。到SDN控制器外部HRP路由应用的输入可以是使用率测量。(ii)内部HRP路由应用和外部HRP路由应用的计算可以是不同的。对于外部HRP路由应用,该应用可以包括用于分配键范围的逻辑。对于外部HRP路由应用,这种分配可以已经存在于输入中。内部HRP路由应用可以使用API(诸如,例如在'XXX申请中提供的API#2)来使得内容请求被路由到合适的HRP边界路由器。图13是示出示例SDN堆栈和用于集中的内部HRP的连接的框图。SDN堆栈可以如下:HRP路由器A可以提供输入到SDN控制器提供的使用API#3的SDNHRP内部路由应用(例如,通过HTTPAPI的JSON)。该API动作可以包括:(i)POST/ihrp/handled-key-ranges,其中该路由器给应用提供其希望从其自己域内的路由器和WTRU接收的键范围的集合。这些键范围可以是该路由器用于向HRP对等端转发所需要的键范围。路由器A可以从其内部状态得到该列表(其可以已经使用外部HRP路由被建立);和(ii)SDNHRP内部路由应用可以针对每个内部SDN路由器/交换机确定如何转发每个键范围以使得内容请求到达路由器A。SDNHRP内部路由应用可以使用键范围增强的开发流API#2,例如,在'XXX申请中提供的,以在增强的SDN/交换机和HRP路由器中设置基于键范围的转发规则。默认路由可以是应用到不匹配任何显式处理的键范围的内容请求。默认路由可以通过本地缓存路由内容请求,且然后通过回程链路将内容请求路由到因特网。HRP系统HRP系统可以包括以下的一个或多个:(i)分布式或集中的外部HRP路由;(ii)需要或不需要内部HRP路由协议;(iii)基于ICN的或基于HTTP的内容分发;(iv)按名称路由ICN;(v)按名称查找ICN;和(vi)OSPF、IS-IS、BGP或其他路由协议的扩展。按名称路由ICN网络中的小小区之间的示例HRPHRP系统可以被实施用于由相同运营商或由紧密合作的运营商操作的小小区的集合。按名称路由ICN协议;例如CCN,可以用于在所有网络对等端中路由内容请求。该系统可以包括用HRP增强的CCN路由器(“HRP增强的CCN路由器”)。HRP增强的CCN路由器可以使用端到端连接而彼此互连。HRP增强的CCN(例如,内部和/或外部)路由器可以具有以下特征中的一个或多个:(i)HRP增强的CCN路由器可以交换新类型的路由消息、CCN路由消息,例如上文描述的分配消息。OSPF可以被增强以支持散列值(键)范围通告。这可以使用OSPFN不透明链路状态通告(LSA)来完成,其中该LSA不透明信息(体)可以包括HRP路由信息,例如,散列值(键)范围方案、成本等。(ii)FIB可以被增强以包括HRP路由项。FIB也可以用转发逻辑被增强,该转发逻辑利用HRP路由项中的新信息元素。图14是示出用于HRP散列值(键)范围分配通告的OSPF不透明LSA扩展的示例消息结构的框图。该不透明信息可以包括CCN前缀通告,用于使得普通CCN路由和/或新类型的不透明LSA支持HRP路由(在包括HRPLSA不透明信息的框中示出)。键范围方案可以例如编码散列值空间的选择(例如[0;2^n]具有n的公知值)和/或键范围粒度(例如,公知的p值)。一个可能的值可以是例如DEFAULT_HRP_SCHEME=0,这可以指n=32且p=128。图15示出了被增强用于支持HRP路由的示例CCNFIB(“HRP增强的CCNFIB”)。HRP增强的CCNFIB可以包括具有与一个名字前缀相关联的若干下一跳定位符的项。HRP增强的CCNFIB可以将HRP散列范围信息关联到下一跳。转发过程的部分可以包括HRP增强的CCN路由器首先针对FIB检查请求的内容名称,且如果一些竞争的路由可用,则HRP增强的CCN路由器可以使用散列范围信息来在它们之间进行区分。在一些实施方式中,在由HRP增强的CCN路由器的策略层处理的数据结构中维护HRP路由表,且CCNFIB可能不被增强以支持HRP路由。HRP增强的CCN路由器的策略层可以针对其中的数据结构检查请求的内容名称,并可以执行竞争路由的区分。为了便于此,散列范围信息可以以逻辑方式被包括在FIB中(例如,实际的FIB不从当前形式改变,且策略层维护HRP路由表)。HRP增强的CCN路由器确定选择了默认路由,HRP增强的CCN路由器可以从策略层请求转发决定。HRP增强的策略层可以计算或以其他方式获得散列值,并可以检查其HRP路由表以确定通过哪个接口转发内容请求。图16是示出示例转发决定流1600的流程图。转发决定流1600可以由HRP增强的内部CCN路由器执行。HRP增强的内部CCN路由器可以接收到内容请求(1601)。HRP增强的内部CCN路由器此后可以确定内容对象是否从本地缓存可得(1603)。如果内容对象是在本地缓存中,则HRP增强的内部CCN路由器可以用内容对象进行回复(1605)。如果内容对象不是本地缓存,则HRP增强的内部CCN路由器可以在FIB中找到(例如最佳)匹配(1607)。HRP增强的内部CCN路由器可以确定FIB是否包括与HRP散列范围相关联的任何项(1609)。如果FIB缺乏这样的项,则非HRP转发策略可以被应用(例如,向一个或多个匹配的下一跳转发)(1611)。如果FIB包括与HRP散列范围相关联的一个或多个HRP项,则HRP增强的内部CCN路由器可以确定在这样的HRP项中是否找到键范围匹配(1613)。如果没有找到匹配,那么非HRP转发策略可以被应用(1611)。如果至少一个HRP项的散列值范围匹配内容请求,则HRP增强的内部CCN路由器可以向将HRP项与最佳成本匹配的下一跳转发内容请求(在质量的情况中,可以选择具有最低定位符值的项)(1615)。图17示出转发决定过程1700。转发决定过程1700可以在HRP增强的内部CCN路由器中被执行。在1,HRP边界路由器可以通过增强的OSPF交换路由消息。每个网络对等端可以是不同的OSPF路由区域。用于HRP键范围分配通告的OSPF不透明LSA扩展(“HRP不透明LSA扩展”)可以用于保持通告信息。CCN/HRP边界路由器可以使用交换的信息来建立和维护HRP路由表。在2,HRP边界路由器A可以使用HRP不透明LSA扩展淹没(flood)其自己网络内的HRP路由表。HRP路由表可以被简化,例如,所有连续的项可以被收起,因为所有内容请求可以通过HRP边界路由器A。所有的CCN路由器可以在其HRP增强的策略层内维护该HRP表。在3-4,WTRU可以发送感兴趣分组。感兴趣分组可以到达内部路由器的一者。HRP增强的路由器可以使用对应于内容请求的描述符-散列值并在其增强的FIB中匹配它时确定内容请求可以被路由到HRP路由器A。在5:HRP路由器A可以在其HRP路由表中查找该描述符-散列值,并可以通过合适的对等端HRP路由器转发内容请求。然后该第二对等端可以从本地缓存或通过回程链路获取内容对象。在常规CCN实施之后可以发回内容请求(例如通过请求占用的路径的返回(反向),使用CCN路由器内的状态来确定该返回路径)。在上面的过程中,可以不在在每一个路由器确定描述符-散列值。描述符-散列值可以被计算一次(由发送方或由CCN路由器),并且被插入到感兴趣分组中(例如作为分组报头的附加字段,或者可替换地作为名称的分量:/example.com/video/avatar可以成为/example.com/video/avatar/hash=12345)。前述的HRP增强(例如,增强路由协议和增强转发过程)可能不与CCN设计的规范关联,并可以应用到任意其他按名称路由的ICN设计,例如在信息网络(NetInf)中。按名称路由ICN网络中的ISP之间的HRP在一些实施方式中,一些ISP可以是HRP对等端。ISP间通信可以使用BGP。BGP可以扩被展以支持HRP。为了简单说明,可以假设ISP内部地使用CCN来路由内容请求和响应,例如如上文提供的。BGP扩展可以通过增强BGP以交换HRP可达性信息来形成。新的网络层可达性信息(NLRI)被提供。该NLRI可以使得BGP对等端可能通告与其他信息(例如成本)相关联的某键范围。图18示出了用于HRP可达性信息的BGPNLRI格式。HRP通告可以被交换,如上文提供的。BGP/HRP路由器可以维护HRP路由表和/或可以在ISP的网络中对其进行内部地分配(诸如,例如,上文提供的)。新字段(方案、键范围最小值/最大值和成本)可以与参照图14在上文描述的OSPF扩展的字段具有相同的含义。IP网络中通过HTTP代理的HRP在一些实施方式中,HRP路由器可以是HTTP缓存代理。终端用户WTRU可以被配置为使用HTTP缓存代理的一者或多者。可替换地,WTRU可以自动检测这种HTTP缓存代理。WTRU可以例如使用Web代理自动发现(WPAD)。WTRU连接到的HTTP代理可以使用任意输入URL和/或请求的另一特性(例如域名,或URL分量的组合)来计算描述符-散列值。这样的HTTP代理可以通过对等端缓存代理转发请求。这些代理可以事先交换路由信息(如上文提供的)以在一些对等端代理之间的散列值空间上分布责任。在一些实施方式中,HRP路由器/HTTP缓存代理可以将HRP路由表信息通信给WTRU。这可以让WTRU在不同的缓存代理之间分配请求。这样做,由于在任意给定内容请求中涉及仅单个代理,因此可以产生更低的开销。在在网络和WTRU域中都使用HRP的一些或所有这些实施方式中,WTRU可以具有包括HRP项的增强的FIB/路由表。WTRU实施的转发逻辑可以类似于上文关于图11的HRP路由器提供的转发逻辑,不同在于WTRU典型地不转发其从其他节点接收的任意内容请求。在在网络域中使用HRP和/或在网络和WTRU域中都使用HRP的一些或所有实施方式中,例如关于图10-13的一者或多者,在上文提供的信令和过程可以是可应用的。还可以例如使用XML或JSON编码在HTTP之上实施HRP路由消息。图19是示出在IP网络中通过HTTP代理的HRP的示例的框图。在该示例中,WTRU可以使用单个HRP增强的HTTP缓存。在0,对等的网络1904A-D之间的HRP增强的HTTP代理1906A-D可以交换HRP路由通告。这些HRP路由通告可以被交换,例如,如上文关于图10-13的一者或多者提供的,和/或使用通过HTTP消息的JSON(如下文提供的)。HTTP代理可以使用从交换HRP路由通告收集的信息来初始化及保持该它们各自的HRP路由表。在交换通告之前,HTTP代理可以交换其他信息,例如,配置和/或能力。在示出的示例中,对等互连网络具有部分网状拓扑结构,因为在网络1904B和1904D之间没有建立对等互连链路。在1,WTRU可以向网络204C发送针对某内容对象的内容请求。该请求可以使用HTTPGET被发送,例如通过其HTTP代理C。在2,HRP增强的HTTP代理C可以在其HRP路由表中查找从请求中计算的描述符-散列值,并可以确定网络1904A负责该内容请求落在的键范围。在3,HTTP代理C可以通过HTTP代理A转发内容请求消息。在4:HTTP代理A可以验证网络1904A负责内容对象。HTTP代理A可以检查内容对象是否在本地缓存中。在确定内容对象从本地缓存不可得之后,HTTP代理A可以从内容源获得该内容(例如DNS查找,之后是HTTPGET),如在5所示。在接收到答复后,HTTP代理A可验证(通过在HRP路由表中再次查找,或通过检查其用于在4中早期检查的内部状态)网络1904A负责该内容对象。基于肯定结果,HTTP代理A可以本地地实现缓存内容对象。该内容对象(在200OK响应中)可以被发回HTTP代理C。HTTP代理C可以将其发回到原始请求方。由于网络1904C不负责键范围,HRP使能的HTTP代理C可能不会缓存从响应获取的内容对象。可替换地,HRP使能的HTTP代理C可以缓存具有低优先级的获取的内容对象。关于参考数字6-11执行的用户平面行为类似于关于参考数字1-5执行的用户平面行为,除了不同的内容对象和这样的内容可以被发现在网络1904B的责任下。如上关于参考数字0描述的,在交换可达性信息之前,对等端可以交换HRP配置。在图20中示出的示例中,key-range-granularity和hrp-routing是分别指示用于键范围分配的单元和HRP路由器是否愿意在不同HRP路由器之间路由流量的HRP特定配置元素。key-range-granularity可以有益于保持路由表更容易为人类操作员理解,以及防止路由表的过度的碎片。可替换地,HRP可以没有这种粒度发挥功能;可以执行另外的过程来对路由表进行碎片整理。图21示出用于键范围可达性的HRPJSON编码的示例。在所示的示例中,键范围被表示为粒度的倍数。键范围也可以以其它方式来表示。按名称查找ICN网络中的HRP在发布-订阅互联网路由范例(PSIRP)和其他按名称查找ICN网络设计中,例如NetInf的一个变体,可以通过2个阶段来实施用于内容的请求。在查找阶段(第一阶段)中可以从名称解析系统(NRS)获得定位符。定位符可以基于存在于请求中的内容名称来获得。在获取阶段(第二阶段),可以使用定位符获取内容。ICNNRS系统的一个方面是它必须是分层的以便是可伸缩的。本地NRS可以是查找请求的进入点。本地NRS可以试图满足来自本地可用信息的请求,并且如果没有发现这样的信息,则本地NRS可以向上游转发查找请求。能够在本地NRS中部分实现HRP。HRP路由器可以彼此直接(通常通过IP)通信,并可以交换HRP路由信息,例如键范围、下一跳的标识符、成本,如上文关于图10-13的一个或多个描述的。在此之后,每个HRP路由器可以将HRP路由信息通信到自己的本地域的本地NRS。当网络对等端A的终端用户通过本地NRSA查找内容描述符时,NRSA可以使用HRP路由信息来确定哪个本地NRS负责这个内容对象。在一些实施方式中,网络对等端B可以负责包括对应于内容对象的散列值的键范围。NRSA可以将终端用户重定向到NRSB,和/或可以将查找请求转发到NRSB。NRSB可以发现该内容对象是在缓存B中并提供该请求。可替代地,NRSB可以决定将该请求转发到上游NRS。图22是示出基于按名称查找的ICN系统内的HRP对等互连的示例的框图。基于按名称查找的ICN系统可以是例如根据PSIRP和/或Netlnf的变体。在1,HRP边界路由器可以通过增强的OSPF交换路由信息(例如)。每个网络对等端可以是不同的OSPF路由区域。该HRP不透明LSA扩展可以用于保持通告信息。HRP边界路由器可以使用交换的信息来建立和维护HRP路由表。信息交换可以将“下一跳定位符”信息元素替换为“会合(Rendezvous)函数进入点定位符”。在2和2’,HRP边界路由器可以将HRP路由表(以及其任意更新)通信到本地会合函数。会合函数可以指根据PSIRP的名称解析系统。在3,WTRU可以请求内容对象。WTRU可以发送请求到本地会合函数。在4,会合函数可以计算描述符-散列值(或从该请求获得)。会合函数可以在HRP路由表中查找该描述符-散列值。该表可以指向网络对等端B的会合函数。会合函数A可以将内容请求转发到会合函数B。在图5-6,在其验证它负责内容请求(例如,通过在其HRP路由表中查找它)之后,会合函数B可以使用常规PSIRP处理来处理该内容请求。假设没有找到本地匹配,会合函数B可以向上游将该请求转发到全局会合函数,其中匹配被找到。拓扑结构管理器可以被请求计算用于内容请求的路径,并且得到的转发标识符被提供给所选的内容源。在7-8-9-10,可以使用常规PSIRP处理将内容响应发回到请求方。本地拓扑结构管理器可以参与建设用于内容响应流的本地路径。该内容也可以被本地缓存在网络对等端B中用于将来使用。ISPHRP联合,P2P链路ISP可以进入彼此的对等协议,在该协议下它们同意通过端到端链路直接交换流量,典型地不需要任何金钱交换,因为交换这种流量是互利的。在这种类型的对等互连中,流量从一个对等端的客户到另一对等端的客户。在HRP协议中,ISP可以同意协作并分享它们的缓存容量和它们的中转链路,理解一个ISP的客户请求的内容的一些将由另一ISP的客户请求,且会导致总体中转链路负载降低。使用端到端链路的用于ISPHRP联合的HRP路由协议可以是上文提供的增强的BGP协议。ISPHRP联合,交换点ISP通常在交换点(IPX”)彼此连接。这样的交换点或类似的连接中心能够用于一些ISP之间的HRP互连。在一些实施方式中,中央HRP路由实体可以与交换点并置。该HRP路由实体能够保持中央HRP路由/分配,且然后将该信息通信给每个单独的HRP对等端ISP。在使用BGP的上下文中,这能够被视为增强的BGP路由反射器。BGP路由反射器可以在BGP联合的上下文中被使用,其中单个自治系统(AS”)被细分为多个子AS,并且路由反射器可以用于通过引入中心点来减少网状连接的数量。由单运营商运营的(子)网络之间的HRP对等互连可以按照这种模型,在交换点处使用增强的BGP路由器反射器,而不同实体之前的HRP对等互连能够基于BGP路由器之间的点对点连接使用增强的BGP路由。小小区HRP联合小小区可以是使用回程链路与因特网的其余部分通信的孤立的接入网络。使用HRP,有可能互连这些小小区以从来自不同小小区的终端用户的冗余利益(interest)受益。如上提供的,为最大化HRP的有效性,对等端越多越好,对等端可以使用尽可能大且廉价的对等互连链路。小小区HRP联合,交换点在一个示例部署中,一些小小区可以与一个交换点连接,例如以太网交换机(例如,商场中的小小区可以使用有线连接连接到该中央交换机)。交换点可以包括用于将特定请求向负责对等端(RP)路由的逻辑。小小区HRP联合,由终端用户的节点路由在一个示例部署中,终端用户可以直接同时与几个小区附着。小小区控制器可以彼此通告HRP路由信息。WTRU可以例如使用发送组播查询和接收XML编码的HRP路由项的集合的发现协议来从网络(例如从一个或多个小小区控制器)得到HRP路由表。WTRU然后可以基于散列值直接将内容请求路由到负责它的HRP路由器/小小区控制。广播HRP交换点网络对等端之间的互连点可以是通过广播信道的。每一个网络对等端可以知晓其负责的散列值空间段。发出请求的小小区可以不需要选择合适的对等互连链路,其可以广播其不能满足自己且没有在其自己责任下的任何内容请求。所有其他的小小区可以在广播信道上侦听,并可以检查该内容对象名称是否在其责任下。如果是,则负责对等端可以从缓存或使用它们的回程处理该请求。小小区的蜂窝技术实现在使用蜂窝技术的小小区的一个示意性实施中,接入节点可以是e节点B,其可以连接到小小区网关。该实施可以被增强以如下支持HRP。该e节点B可以与所有相互连的对等端的小小区网关连接(例如,维持向每个对等端的不同承载)。HRP增强的e节点B在从终端用户接收到内容请求(例如接收到ICN内容请求消息或HTTP请求)时可以基于e节点B计算的描述符散列值来确定哪个对等端网络负责处理请求的内容,并可以通过合适的承载朝向网络对等端小小区网关转发内容请求。松散网状小小区HRP联合不是总是可能的或实际的是在小小区之间具有全网状连接。网络运营商能够适机地在一些对等端之间部署端到端链路或本地集线器以最大化小小区之间的互连(例如在给定成本和物理约束内)。HRP路由协议然后能够用于利用这些互连最大化缓存/回程增益。在增强后,网络运营商可以识别问题区域并在这些点中增加小小区之间的互连,并让HRP协议优化这些新对等互连链路的使用。为了增加覆盖到小小区集合,可以添加成熟的小小区,其需要一个或多个回程链路。可替代地,单一小小区的覆盖范围可以通过向其加入更多接入节点而被增加,这需要增加已有回程链路的容量或该回程的拥塞风险。HRP可以使第三替代方案,其中增加了无中转小小区,且其连接到小小区对等端的已有HRP联合(例如使用端到端链路或通过通过集线器连接到许多对等端)。这样做的结果是新的小小区可以使用其他一些小小区的回程的部分,而这可以分散其对已有小小区的回程拥塞的影响。网络共享是蜂窝网络中的最近趋势,其目的是大大降低成本。这可以从简单的站点共享改变到RAN共享,和/或核心网络共享。随着ICN的发展,移动网络运营商(MNO)可以在其核心网中部署内容缓存,和小小区。在共享相同小小区或相同核心网的MNO之间能够使用HRP。运营对等互连链路的成本在这种情况中应该非常低,因为来自不同MNO的缓存可以并置。在一些实施方式中,键范围之间的对象的重新划分可以导致不平衡的分配。这样的不平衡如果不希望,可以通过选择避免这种不平衡的散列函数来控制和/或通过周期性改变该划分函数来控制。考虑不是不明显量的用于内容对象的请求都恰好向相同负责对等端散列化的不期望的事件。尽管可能性不大,这种事件可能会发生。其发生的概率在很大程度上依赖于HRP联合覆盖的用户数和观测时间,以及使用避免不平衡的散列函数和/或周期性改变分配策略(划分函数)可以使得这样的事件不太可能发生。作为示例,针对四个网络对等端的联合,适当的分配策略可以是(i)将分散列值空间分成16个相等的段,(ii)给四个网络对等端分配各自的键范围-每个由四个不同的四个段的组中的一组构成,和(iii)周期性转动键范围。作为示例,段1-4可以被分配给网络对等端A,段5-8可以被分配给网络对等端B,等等。例如每周在固定时间,转动发生。在第一次转动之后,段2-5可以被分配给对等端A,段6-9可以被分配给网络对等端B,等等。这可能导致当转动发生时无效仅每个对等端的缓存容量的1/4的部分。处理该问题的第二种方式可以是在HRP路由协议中引进拥塞标志。一个对等端中的拥塞可以导致各种动作,例如将该对等端的键空间的部分转移到其他对等端。在一些实施方式中,发布方可以制作(craft)内容对象以确保单网络对等端总是被选择用于这样的内容对象。如果这发生,可以在这样的对等端上发生服务拒绝(DoS)攻击。上文提供的转动和拥塞机制可以用于减轻这一风险。在一些实施方式中,网络对等端中的一者提供明显较低的服务等级,同时从其他网络对等端的较高服务等级获益。结果是,终端用户可以针对不同内容对象得到不同体验质量,这取决于它们的描述符。解决这个问题的一种方案可以是其他对等端重新配置其HRP路由器(例如临时)将不期望的对等端从联合中排除,例如重新分配最初被分配给不期望对等端的键范围的责任,以及停止或降低其自己对不期望对等端的支持。基于HRP路由器进行的RTT测量,这种校正也可以是自动的。有时HRP网络对等端的一个或多个可以在服务外或其他原因不可用,导致不能在这样的网络对等端的责任下得到内容对象。HRP增强的路由协议可以实现确定用于该内容请求的备用路由(即,在HRP上下文中,备用键范围分配)。该备用路由可以使用用于与不可用HRP网络对等端相关联的键范围的备份分配项来确定。备份分配项可以响应于发现中断而被填入,且可以是分配策略的部分。此外和/或可替换地,如果针对给定键范围不存在备份分配项,则对等端能够回退以将该键范围视为“未分配”,并因此通过其自己的中转链路取得它。用于内容网络联合的摘要路由对等互连(SRP)在内容网络联合的可替换实施中,每个网络对等端可以例如在布隆过滤器摘要中通告它在缓存中有什么。这个过程在本文可以被称为摘要路由对等互连(SRP)。在通过中转/回程取得内容对象之前,第一网络对等端可以检查在其他网络对等端的一者的缓存中存在内容对象。如果在检查期间发现一个或多个目标网络对等端,则第一网络对等端可以将用于内容对象的请求转发到这些目标网络对等端中的一者。在一些实施方式中,目标网络对等端可以仅在内容对象在其本地缓存中时提供该内容对象。如果内容对象不是在其缓存中,则目标网络对等端用否定响应来回复。在发现内容对象从目标网络对象的任意不可得时,第一网络对等端可以通过其中转/回程从因特网请求该内容对象。在SRP中,网络对等端通过协作的缓存提供另外的缓存命中率。针对非缓存的内容对象或非协作的缓存的内容对象,每个网络对等端可以依靠其自己的回程/中转链路,用于从因特网取得任意这样的内容对象。网络对等端可以交换缓存摘要。缓存摘要的交换出于各种原因,例如,(i)由于缓存替换,在最后通告中存在的对象可以已经被移除,以及作为代替可以换成没有被通告的新对象;(2)由于摘要(典型地,布隆过滤器),存在假肯定的机会。(1)和(2)相结合时的效果可能会导致假肯定(消息被交换,但没有发现匹配),结果是取得项的另外延迟,以及(1)导致假否定(由于比赛条件,失去从缓存获益的机会)。如果摘要消息被生成且经常被交换,且如果所使用的摘要足够大,则能够减少这些影响。SRP可以通过直接对互连等链路实现在网络/SCN/小小区之间的协作缓存,同时留给每个网络对等端取得其终端用户请求的任意非缓存对象的责任。这在一些情况中可以是有利的,其中网络对等端不希望太依赖彼此。尽管需要网络对等端的更多参与,HRP具有另外的益处,包括(1)位于网络中更深(即在回程/中转链路之外)的任意缓存的更高效率,(2)如需要使用新对等互连链路优化缓存和中转的流量管理的潜能,以及(3)无中转网络/SCN/小小区的协作支持。对于(2),在SRP路由中,缓存摘要可以经常被更新,并通过整个联合很快被淹盖,因为缓存信息可以很快变旧且动态控制流可以很好适合于小互连网络。在HRP路由中,键范围分配信息可以比缓存摘要信息更不频繁变化,与SRP相比导致更少的控制消息,且可以非常适合更大和更复杂的互连网络。图23是示出SRP路由的示例的框图。可以关于SRP路由表(表5)描述SRP路由。在1之前,边界路由器可以(i)从它们自己的域的路由器/缓存获得摘要,(ii)将该信息组装成缓存摘要,以及(iii)将该缓存摘要提供给所有SRP网络对等端。在1,WTRU可发送的内容请求。在2,内容请求可以到达路由器/缓存。路由器/缓存可以发现这个内容名称匹配SRP路由项的缓存摘要,并且基于该发现,可以向在该项中给定的边界路由器转发该请求。路由器/缓存可以已经通过内部SRP路由协议等从边界路由器获得缓存摘要。如表5中所示,SRP路由表中的项可以包括缓存摘要。在3,SRP边界路由器可以检查列入存在于其SRP路由表(表5)中的所有缓存摘要的内容名称。SRP边界路由器可以发现匹配,并可以向存在于匹配项中的SRP路由器转发给内容请求。在4:接收SRP路由器可以向其对等端的缓存转发该请求。如果一些缓存存在,则接收SRP路由器可以使用其各自的缓存摘要,来确定将该请求转发到哪里。一请求,缓存可以用内容对象来回复,其被发送回原始请求方。在5-6-7,WTRU可以发送另一个请求。此时,在网络对等端C中的内容路由器发现该内容描述符不匹配任何缓存摘要,并且基于这一发现,可以通过中转链路向因特网转发该请求。SRP协议一些网络可以通过同意共享缓存项和交换SRP路由信息进入SRP协议。每个对等端共享的缓存存储空间的大小可以是SRP协议中的因素。贡献类似缓存量的对等端可能不需要交换支付。缓存存储空间可能不是一个重要的因素,因为它仅转化为较低缓存命中率,以及相应地更少的对等互连流量。该对等互连链路的大小也可以影响该方案的有效性。对等端是否接受在2个其他对等端之间路由请求和数据可以是SRP协议的一部分。SRP路由概述像HRP、SRP路由可能需要实现在通过所有种类的拓扑结构(例如集线器、全网状、松散网状或这些的混合)连接的对等端之间交换缓存摘要。由每个网络/SCN/小区对等端通告的缓存摘要可以使用已有协议的扩展(例如BGP、OSPF、中间系统到中间系统(IS-IS)或其他)在网络中被淹没。每个对等端可以建立路由表,包括具有以下信息元素的项:(i)缓存摘要(典型地,总结缓存内容的布隆过滤器);(ii)目的地SRP路由器或缓存,其可以是标签或定位符;(iii)下一跳SRP路由器定位符或标签;和(iv)成本,其可以反映距离、金钱成本、链路利用率,或它们的组合。表5表5是在网络对等端C的SRP边界路由器中的SRP路由表的示例。网络对等端A和B的下一跳可以是相同的。下一跳5.6.7.8可以是例如网络对等端B的HRP路由器。根据该SRP路由表,网络对等端A的HRP路由器可以通过网络对等端B到达。网络对等端C可以在IP地址1.2.3.4和1.2.3.5具有两个本地缓存。网络对等端C的SRP路由器可以从这两者收集缓存摘要,并可以向其对等端发送两个通告,或具有合并的缓存摘要的单个通告。缓存摘要信息可以尽可能经常更新。在包括在SRP路由表中的路由信息中,其可以是最动态的信息元素,且其不影响路由本身而是仅影响网络对等端的决定制定过程。虽然可以使用已有路由的扩展(例如在已有消息中的新信息元素或已有信息元素的新语义)来设置路由的其余部分,但是这样的协议可以进一步被扩展有另外的缓存摘要淹没机制。该缓存摘要淹没机制可以被配置成有效率地淹没与已有路由有关的信息元素。考虑像OSPF的路由协议,并假设在IP网络的上下中,每个SRP路由器可以使用未经修改的OSPF协议向内部LAN通告可达性。在稳定状态中,每一个SRP路由器可以具有路由表,具有每一个项包括例如:(i)缓存或SRP路由器定位符(例如在CIDR表示中,针对IPv4的1.2.3.0/24);(a)每个SRP路由器可以有单个项,在这种情况中所有请求可以到SRP路由器(其能够与缓存本身并置,或其然后能够被内部地转发给缓存);和/或(b)可能有一些项,对等端网络内存在每个缓存一个项(SRP路由器可以只是向缓存转发请求,有效用作IP路由器);(ii)下一跳(例如:下一跳SRP路由器的4.5.6.7IPv4地址);和(iii)成本(例如,整数)每个SRP路由器可以例如使用HTTP消息或使用像NetConf或SNMP的管理协议从位于其自己的LAN的缓存收集/接收缓存摘要。SRP可以发送SRP路由信息更新消息给它所有的邻居,而它所有的邻居可以将该更新消息转发给所有邻居,等。通过不向已经给我们发送过该更新的网络对等端转发并通过丢弃/忽略来自更新已经发送到的网络对等端的任何更新能够很容易地避免循环。路由信息更新消息可以包括以下的一者或多者:(i)该更新涉及的路由的标识符(例如缓存或SRP路由器定位符);(ii)用于该更新的唯一ID(例如,针对每次更新递增的整数);和(iii)附着到路由的信息元素,例如:最新的缓存摘要。一旦接收,SRP路由器可采取以下动作:(i)如果适用,丢弃以避免循环(例如如果已经接收到则丢弃),否则向所有对等端(从中得到该相同的更新)转发;(ii)如果得到具有相同标识符的路由,则将信息元素附着到路由(第一更新),和/或将附着到该路由的当前信息元素替换为更新的信息元素(后续更新)。图24是示出示例SRP消息流2400的消息流图。SRP消息流2400示出了用于图23的SRP路由过程的示例的消息交换。在消息流2400的第一阶段,SRP路由器可以交换IP路由,且然后SRP路由更新。SRP路由器B是在A和C之间的路径上。在此过程结束时,每个SRP路由器可具有最新的SRP路由表。在稍后的时间(未示出),从缓存收集缓存摘要和使用SRP路由更新在SRP互连网络中淹没该信息的过程可以周期性继续。四个不同的内容请求可以由WTRU发起。第一内容请求可以由本地缓存答复。第二内容请求可以没有被发现在任意本地或SRP对等端缓存中,且通过回程链路被转发到因特网。第三内容请求可以最终由域B中的缓存服务。第四请求可以被发现以匹配网络对等端B通告给网络对等端C的缓存摘要。当请求到达网络对等端B时,SRP路由器可以确定该内容对象匹配网络对等端A发送的摘要。内容请求可以被转发给网络对等端A,其中该内容请求从网络对等端A的缓存被服务。路由协议扩展示例用于SRP的路由扩展可以类似于HRP扩展—将键范围替换为缓存摘要。SRP路由可以在SRP对等端之间被交换,且如果在网络对等端中存在多个边界路由器,则其可以在网络内分配SRP路由表。SRP扩展可以从上文提供的示例导出。例如,BGPNLRI可以被扩展有SRP可达性信息。图25示出用于SRP可达性信息(新NLRI类型)的BGP扩展。缓存摘要信息格式可以包括缓存摘要类型信息,与尺寸和布隆过滤器(摘要类型信息是指定编码细节的枚举类型,例如布隆过滤器、散列函数的数量和定义,等等)。实施例在代表性实施例1中,一种在网络对等端的联合的网络对等端中实施的方法,可以包括基于网络对等端的缓存和/或回程资源,在散列函数的散列值空间内选择键范围,向其他网络对等端通告到该网络对等端已经给自己分配该键范围,以及将该网络对等端配置为使用其缓存和/或回程资源以用于完成针对对应于键范围内的键的任意内容对象的请求。在代表性实施例2中,根据代表性实施例1的方法,其中,在键范围没有被分配给其他网络对等端的情况下,配置网络对等端。在代表性实施例3中,根据代表性实施例1-2的任意的方法可以进一步包括在选择键范围之前,侦听通告当前分配的键范围的一个或多个通告,以及基于散列值空间和通告的当前分配的键范围来确定未分配的散列值空间,其中选择键范围可以包括基于网络对等端的缓存和/或回程资源从未分配的散列值空间选择该键范围。在代表性实施例4中,根据代表性实施例1-3的任意的方法可以进一步包括从另一个网络对等端接收通告其他网络已经给自己分配另一键范围的通告,以及给该网络对等端配置信息,该信息用于向该其他网络对等端路由和/或转发针对对应于其他键范围内的键的任意内容对象的请求。在代表性实施例5中,根据代表性实施例1-4的任意的方法可以进一步包括接收消息,该消息指示该键范围中的至少一个键当前被分配给另一网络对等端,以及与其他网络对等端协商以向该网络对等端重新分配当前被分配给其他网络对等端的键范围的至少一个键。在代表性实施例6中,根据代表性实施例1-5的任意的方法可以进一步包括接收消息,该消息指示键范围中的至少一个键当前被分配给另一网络对等端,以及向该其他网络对等端发送通告,该通告通告该网络对等端已经修改键范围以排除当前分配给其他网络对等端的键范围的至少一个键,其中配置该网络可以包括配置该网络对等端以使用其缓存和/或回程资源来满足针对对应于修改的键范围的键的任意内容对象的请求。在代表性实施例7中,根据代表性实施例1-5的任意的方法还可以包括从另一网络对等端接收通告,该通告通告该其他网络已经给自己分配键范围,与其他网络对等端协商以给其他网络对等端重新分配键范围,以及给该网络调度重新配置信息,该信息用于向其他网络对等端路由和/或转发针对对应于键范围的任意内容对象的请求。在代表性实施例8中,根据代表性实施例7的方法还可以包括向其他网络对等端通告该网络对等端已经给自己分配新的键范围,以及将该网络对等端配置使用该网络对等端的缓存和/或回程资源来满足针对对应于新的键范围的键的任意内容对象的请求。在代表性实施例9中,根据代表性实施例7的方法还可以包括与其它网络对等端协商不同键范围的分配,以及将该网络对等端配置为使用其缓存和/或回程资源来满足针对对应于不同键范围的键的任意内容对象的请求。在代表性实施例10中,根据代表性实施例1的方法可以进一步包括从另一网络对等端接收通告,其通告其他网络已经给自己分配另一键范围,该另一键范围包括该键范围的至少一个键范围,向其他网络对等端发送消息,该消息指示键范围的至少一个键当前被分配到第一网络,与其他网络对等端协商以给其他网络对等端分配修改的键范围,该修改的键范围排除当前被分配给第一网络的键范围,以及给网络对等端配置信息,该信息用于向其他网络路由和/或转发针对对应于修改的键范围的任意内容对象的请求。在代表性实施例11中,根据代表性实施例1的方法可以进一步包括从另一网络对等端接收通告,通告其他网络已经给自己分配键范围,与其他网络协商(i)给其他网络对等端重新分配键范围的第一部分,以及(ii)给网络对等端分配键范围的第二部分,以及重新配置网络对等端(i)满足针对对应于键范围的第一部分的任意内容对象的请求,以及(ii)有信息,该信息用于向另一网络对等端路由和/或转发针对对应于键范围的第二部分的任意内容对象的请求。在代表性实施例12中,根据代表性实施例1-11的任意的方法,其中,键范围的选择还基于网络对等端的两个之间的通信链路的一个或多个特性和/或与该通信链路相关联的流量条件。在代表性实施例13中,根据代表性实施例1的方法可以进一步包括基于网络对等端的两个网络对等端之间的通信链路的一个或多个特性和/或与该通信链路相关联的流量条件修改键范围,向其他网络对等端通告该网络对等端将使用其缓存和/或回程资源来满足针对对应于修改的键范围的任意内容对象的请求,以及重新配置网络对等端以满足针对对应于修改的键范围的任意内容对象的请求。在代表性实施例14中,根据代表性实施例1的方法,其中配置网络对等端可以包括在实体的存储器中维护的数据结构中存储与网络对等端的身份有关的键范围。在代表性实施例15中,根据代表性实施例4的方法,其中配置网络对等端可以包括在实体的存储器中进行维护的数据结构中存储与其他网络的身份有关的其他键范围。在代表性实施例16中,根据代表性实施例12的方法,其中配置网络对等端可以包括在该数据结构中存储与该网络对等端的身份有关的键范围。在代表性实施例17中,根据代表性实施例15-16的任意的方法,其中数据结构是路由表。在代表性实施例18中,根据上述代表性实施例的任意的方法,其中,键范围的分配基于分配策略。在代表性实施例19中,根据代表性实施例18的方法,其中,分配策略包括划分功能。在代表性实施例20中,一种装置,可以包括接收机、发射机和处理器的任意,被配置成执行如上述实施例的至少一个中的方法。在代表性实施例21中,一种系统,被配置成执行如实施例1-19的至少一个中的方法。在代表性实施例22中,多个网络对等端,被配置成执行如实施例1-19的至少一个中的方法。在代表性实施例23中,一种网络对等端,被配置成执行如实施例1-19的至少一个中的方法。在代表性实施例24中,一种有形计算机可读存储介质,在其上存储有计算机可执行指令,用于执行如实施例1-19的至少一个中的方法。在代表性实施例25中,一种在网络对等端的联合的网络对等端中实施的方法,可以包括从另一网络对等端接收通告,该通告通告其他网络已经给自己分配散列函数的散列值空间内的键范围,以及给网络对等端配置信息,该信息用于向其他网络对等端路由和/或转发针对对应于其他键范围内的键的任意内容对象的请求。在代表性实施例26中,根据代表性实施例25的方法,其中给网络对等端配置信息可以包括维护键范围与其他网络对等端的身份之间的映射。在代表性实施例27中,根据代表性实施例25-26的任意的方法,其中维护键范围与其他网络对等端的身份之间的映射可以包括给数据结构填入与键范围有关的身份。在代表性实施例28中,根据代表性实施例27的方法,其中,该数据结构是路由表。在代表性实施例29中,根据代表性实施例27的方法,其中,该数据结构是转发信息库。在代表性实施例30中,根据代表性实施例25-28的任意的方法可以进一步包括基于网络对等端的缓存和/或回程资源在散列值空间内选择另一键范围,向其他网络对等端通告网络对等端已经给自己分配其他键范围,以及将网络对等端配置为使用其缓存和/或回程资源用于完成针对对应于另一键范围内的键的任意内容对象的请求。在代表性实施例31中,一种装置,可以包括接收机、发射机和处理器的任意,被配置成执行如实施例25-30的至少一个的方法。在代表性实施例32中,一种系统,被配置成执行如实施例25-30的至少一个的方法。在代表性实施例33中,多个网络对等端,被配置成执行如实施例25-30的至少一个的方法。在代表性实施例34中,一种网络对等端,被配置成执行如实施例25-30的至少一个的方法。在代表性实施例35中,一种有形计算机可读存储介质,其上存储有计算机可执行指令,用于执行如实施例25-30的至少一个的方法。在代表性实施例36中,一种方法可以包括接收具有与所希望的内容对象相关联的内容标识符的内容请求,从散列化内容标识符得到散列值;以及基于得到的散列值和多个网络对等端ID与分配给各自多个网络对等端的多个共享之间的映射确定负责提供内容对象的网络对等端的网络对等端ID。在代表性实施例37中,根据代表性实施例36的方法还可以包括基于确定的网络对等端ID向负责网络对等端路由和/或转发内容请求。在代表性实施例38中,根据代表性实施例37的方法还可以包括从负责网络对等端接收内容对象,以及从接收内容请求的网络对等端提供内容对象。在代表性实施例39中,根据代表性实施例36-38的任意的方法还可以包括确定内容对象被存储在与接收内容请求的网络对等端相关联的本地缓存中;从本地缓存获取内容对象;以及从接收内容请求的网络对等端提供内容对象。在代表性实施例40中,根据代表性实施例36-38的任意的方法还可以包括基于网络ID确定接收内容请求的网络对等端是负责网络对等端;确定内容对象从与负责网络对等端相关联的本地缓存不可得;经由中转(回程)网络或链路从内容源获取内容对象;以及从接收内容请求的网络对等端提供内容对象。在代表性实施例41中,根据代表性实施例36-40的任意的方法可以进一步包括在负责网络对等端处接收从另一网络对等端转发的内容请求;确定内容对象从与负责网络对等端相关联的本地缓存可得;从本地缓存获取内容对象;以及向接收了内容请求的网络对等端发送内容对象。在代表性实施例42中,根据代表性实施例36-40的任意的方法可以进一步包括在负责网络对等端处接收从另一网络对等端转发的内容请求;确定内容对象从与负责网络对等端相关联的本地缓存不可得;经由中转(回程)网络或链路从内容源获取内容对象;以及向接收了内容请求的网络对等端发送内容对象。在代表性实施例43中,一种装置,可以包括接收机、发射机和处理器的任意,被配置成执行如实施例36-42中的至少一个的方法。在代表性实施例44中,一种系统,被配置成执行如实施例36-42中的至少一个的方法。在代表性实施例45中,多个网络对等端,被配置成执行如实施例36-42中的至少一个的方法。在代表性实施例46中,一个网络对等端,被配置成执行如实施例36-42中的至少一个的方法。在代表性实施例46中,一种有形计算机可读存储介质,其上存储计算机可执行指令,用于执行如实施例36-42中的至少一个的方法。在代表性实施例47中,一种方法可以包括联合多个独立网络,以便形成网络联合,其中多个独立网络协作以集中和/或聚合资源以使得一些量的内容对象可用于这样的协作网络,且其中协作网络的每一者承担用于使得协作网络同意支持的该量的内容对象的共享可用于其他协作网络的至少一些的责任。在代表性实施例48中,一种装置,可以包括接收机、发射机和处理器的任意,被配置成执行如实施例47的方法。在代表性实施例49中,一种系统,被配置成执行如实施例47的方法。在代表性实施例50中,多个网络对等端,被配置成执行如实施例47的方法。在代表性实施例51中,一种网络对等端,被配置成执行如实施例47的方法。在代表性实施例52中,一种有形计算机可读存储介质,其上存储有计算机可执行指令,用于执行如实施例47的方法。在代表性实施例53中,一种在多个网络对等端的第一网络对等端的实体中实施的方法,可以包括:接收用于请求内容对象的消息,其中,内容对象对应于散列函数的散列值空间的键范围内的键;以及基于多个网络对等端中的哪个网络对等端将使用其缓存和/或回程资源来满足针对对应于键范围内的键的任意内容对象的请求的指示来确定用于该消息的下一跳目的地。在代表性实施例54中,一种装置,可以包括接收机、发射机和处理器的任意,被配置成执行如实施例53的方法。在代表性实施例55中,一种系统,被配置成执行如实施例53的方法。在代表性实施例56中,多个网络对等端,被配置成执行如实施例53的方法。在代表性实施例57中,一种网络对等端,被配置成执行如实施例53的方法。在代表性实施例58中,一种有形计算机可读存储介质,其上存储有计算机可执行指令,用于执行如实施例53的方法。总结注意,本文重点在于优化内容缓存。非缓存内容,例如实时端到端通信和其他交互通信不是本文的范围。这样的流量会与HRP共存,即ISP能够像今天这样继续路由这种流量,并使用用于内容请求和响应(例如HTTPGET或ICN内容请求)的HRP路由。虽然以上以特定组合提供了特征和元素,但本领域技术人员可以理解每个特征或元素能够单独使用或与其他特征和元素任何组合使用。本公开不限于本申请中描述的特定实施方式,其旨在示出各种方面。本领域技术人员可以理解在不偏离本公开的实质和范围的情况下可以进行许多修改和变化。本申请的描述中使用的元素、动作或指令不应当理解为对本发明是关键或必要的,除非明确说明。本领域技术人员根据上述描述可以明白本公开的范围内功能等同的方法和装置以及这里列举的这些。这样的修改和变化旨在落入权利要求书的范围内。本公开仅被权利要求书以及权利要求书等同范围限制。可以理解本公开不限于特定方法或系统。还理解这里使用的术语用于仅描述特定实施方式,且不旨在是限制性的。这里使用的术语“视频”可以指在时间基础上显示的快照、单个图像和/或多个图像的任意。作为另一示例,这里使用的术语“用户设备”及其缩写“UE”可以指(i)无线发射和/或接收单元(WTRU),例如如上所述;(ii)WTRU的多个实施方式的任意,例如如上所述;(iii)具有无线能力和/或具有有线能力(如,可拴绳的)设备,被配置有WTRU的一些或所有结构和功能,例如以上所述的;或(iv)等等。可以代表任意这里描述的UE的示例WTRU的细节可以参考图1A-1E提供。此外,本文提供的方法可以在计算机程序、软件或固件中实施,其可以集成在接收机可读介质中,用于由接收机或处理器执行。计算机可读介质的示例包括电子信号(通过有线或无线连接)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于,只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓存存储器、半导体存储设备、磁介质,诸如内部硬盘和可移动磁盘、磁光介质和光介质,例如CD-ROM盘和数字多功能盘(DVD)。与软件相关联的处理器可以用于实现用于在WTRU、UE、终端、基站、RNC或任何主机计算机中使用的射频收发信机。在不偏离本发明的范围的情况下以上提供的方法、装置和系统的变形是可能的。鉴于能够被应用的广泛不同的实施方式,应当理解示出的实施方式仅是示例,且不应当认为是限制权利要求书的范围。例如,这里提供的实施方式包括手持设备,其可以包括或与提供任意合适电压的任意合适的电压源使用,例如电池等。此外,在以上提供的实施方式中,描述了处理平台、计算系统、控制器和包含处理器的其它设备。这些设备可以包含至少一个中央处理单元(CPU”)和存储器。根据计算机编程领域技术人员的实践,对动作的参考和操作或指令的符号表示可以由各种CPU和存储器执行。这种动作和操作或指令可以称为“执行”、“计算机执行”或“CPU执行”。本领域技术人员可以理解动作和符号描述的操作或指令包括通过CPU的电信号的操纵。电气系统表现数据比特,其能够造成电信号的最终变换或减少和数据比特维持在存储系统中的存储位置,由此重新配置或其他方式改变CPU的操作,以及其他信号处理。维持数据比特的存储位置是物理位置,具有对应于或代表数据比特的特定电、磁、光或有机属性。应当理解示意性实施方式不限于上述平台或CPU且其他平台和CPU可以支持提供的方法。数据比特还可以被维持在计算机可读介质上,其包括CPU可读的磁盘、光盘和任意其他易失性(例如随机存取存储器(“RAM”))或非易失性(例如只读存储器(“ROM”))的大存储系统。计算机可读介质可以包括协作或互连计算机可读介质,其专门存在处理系统上或被分配在多个互连处理系统间,其可以在处理系统的本地或远程的。可以理解代表性实施方式不限于上述的存储器且其他平台和存储器可以支持所述的方法。在示例性实施方式中,这里描述的操作、过程等的任意可以被实施为存储在计算机可读介质上的计算机可读指令。计算机可读指令可以由移动单元、网络元件和/或任意其他计算设备的处理器执行。在系统的方面的硬件和软件实施之间基本没有差别。硬件或软件的使用一般是(但是不总是,因为在某些环境中硬件和软件之间的选择可以是重要的)代表成本与效率权衡的设计选择。可以有各种媒介,通过该媒介可以实现这里描述的过程和/或系统和/或其他技术(例如硬件、软件和/或固件),且预选的媒介可以根据部署的过程和/或系统和/或其他技术的环境而变化。例如,如果实施者确定速度和精度是最重要的,实施者可以选择主要是硬件和/或固件媒介。如果灵活性是最重要的,实施者可以选择主要是软件实施。可替换地,实施者可以选择硬件、软件和/或固件的组合。上述详细描述通过使用框图、流程图和/或示例已经陈述了设备和/或过程的各种实施方式。虽然这样的框图、流程图和/或示例包含一个或多个功能和/或操作,本领域技术人员可以理解这样的框图、流程图或示例内的每个功能和/或操作可以由宽范围的硬件、软件、固件或其虚拟任意组合单独和/或整体地实施。在实施方式中,这里描述的主题的一些部分可以经由专用集成电路(ASIC)、场可编程门阵列(FPGA)、数字信号处理器(DSP)和/或其他集成格式来实施。但是,本领域技术人员认识到这里公开的实施方式的一些方面整体或部分上可以同等在集成电路中被实施为运行在一个或多个计算机上的一个或多个计算机过程(例如运行在一个或多个计算机系统上的一个或多个过程)、运行在一个或多个处理器上的一个或多个过程(例如,运行在一个或多个微处理器上的一个或多个过程)、固件、或这些的虚拟任意组合,以及设计电路和/或写入用于软件和或固件的代码根据本公开可以是为本领域技术人员公知的。此外,本领域技术人员可以理解这里描述的主题的机制可以被分配为以各种形式的过程产品,且这里描述的主题的示例性实施方式可以应用,不管用于实际执行该分配的信号承载介质的特定类型。信号承载介质的示例包括但不限于以下:可读型介质,例如软盘、硬盘驱动、CD、DVD、数字带、计算机存储器等,和传输型介质,例如数字和/或模拟通信介质(例如光纤电缆、波导、有线通信链路、无线通信链路等)。本领域技术人员将认识到,在本领域中常见的是以这里提出的方式描述设备和/或过程,且之后使用工程实践来将这样描述的设备和/或过程集成到数据处理系统。也就是说,这里描述的设备和/或过程的至少一部分可以经由合理数量的实验被整合到数据处理系统。本领域技术人员可以认识到典型的数据处理系统可以一般包括以下的一者或多者:系统单元外壳、视频显示设备、存储器(例如易失性和非易失性存储器)、处理器(例如微处理器和数字信号处理器)、计算实体(例如操作系统)、驱动器、图形用户界面以及应用程序、一个或多个交互设备(例如触摸板或屏幕)和/或控制系统,包括反馈环和控制电机(例如用于感测位置和/或速度的反馈,用于移动和/或调整组件和/或量的电机)。典型的数据处理系统可以使用任意合适的商业可获得组件来实施,例如典型地在数据计算/通信和/或网络计算/通信系统中找到的这些组件。这里描述的主题有时示出包含在或连接不同其他组件的不同组件。可以理解这样示出的架构仅是示例,且实际上许多其他架构可以被实施实现相同功能。概念上,用于实现相同功能的组件的任何排列是有效地“相关联”由此期望的功能可以被实现。因此,这里任意两个组件组合以实现特定功能可以被视为彼此“相关联”由此实现期望的功能,不管架构或中间组件。同样,所谓相关联的任意两个组件还可以视为彼此“可操作连接”或“可操作耦合”以实现期望功能,且能够所谓相关联的任意两个组件还可以视为彼此“可操作耦合的”以实现期望功能。可操作耦合的特定示例包括但不限于物理匹配和/或物理交互组件和/或可无线交互和/或无线交互组件和/或逻辑交互和/或可逻辑交互组件。关于这里使用基本任意复数和/或单个术语,在适合环境和/或应用时,本领域技术人员能够从复数转变到单数和/或从单数转变到复数。为清楚,这里可以明确提出各种单数/复数排列。本领域技术人员可以理解,一般来说,这里使用的术语且尤其是在权利要求书中使用的术语(例如权利要求书主体部分)一般是“开放性”术语(例如术语“包括”应当理解为“包括但不限于”,术语“具有”应当理解为“具有至少”,术语“包括”应当理解为“包括但不限于”等)。本领域技术人员还理解如果权利要求书中要描述特定数量,这样的意图在权利要求中明确描述,且没有这样的描述不存在要描述特定数量的意图。例如,如果要描述仅一个,术语“单个”或类似语言可以被使用。为助于理解,权利要求书和/或这里的描述可以包含使用介绍性短语“至少一个”和“一个或多个”来进行权利要求描述。但是,这样的短语的使用不应当理解为表示非限定冠词“一”后的权利要求描述将包含这样的权利要求描述的任意特定权利要求限制到包含一个这样的描述的实施方式,即使当相同的权利要求包括先行短语“一个或多个”或“至少一个”且例如“一”的非限定冠词(例如“一”应当理解为“至少一个”或“一个或多个”)。使用限定冠词后接权利要求描述也是如此理解。此外,即使权利要求描述的特定数量被明确描述,本领域技术人员认识到这样的描述应当理解为指至少该描述的数量(例如只是“两个”的描述,没有其他修饰符,是指至少两个,或两个或更多个)。此外,在使用类似“A、B和C等中的至少一者”的表达的情况中,一般来说这样的结构对于本领域技术人员来说理解为该表达(例如“系统具有A、B和C中的至少一者”可以包括但不限于系统只具有A、只具有B、只具有C、A和B、A和C、B和C、和/或A、B和C,等)。在使用类似于“A、B或C等中的至少一者”的表达中,一般来说这样的结构对于本领域技术人员来说理解为该表达(例如“系统具有A、B或C的至少一者”可以包括但不限于系统只具有A、只具有B、只具有C、A和B、A和C、B和C、和/或A、B和C,等等)。本领域技术人员还理解描述两个或更多个可替换项的虚拟任意转折词和/或短语,不管是在说明书、权利要求书还是附图中,应当理解为构想了包括项中的一者、项中的任一者,或两者的可能性。例如,短语“A或B”被理解为包括“A”或“B”或“A和B”的可能性。此外,这里使用的在一列多个项和/或多个项类别之后的“的任意”旨在包括单独或与其他项和/或其他项类别组合的项和/或项类别的“任意”、“任意组合”、“任意多个”、“任意多个组合”。此外,这里使用的术语“集合”旨在包括任意数量的项,包括零。此外,这里使用的术语“数量”旨在包括任意数量,包括零。此外,如果按照马库什群组描述的公开的特征或方面,本领域技术人员认识到公开还由此按照马库什群组的成员的任意单独成员或子群组来描述。本领域技术人员理解为了任意和所有目的,例如提供文字描述,这里公开的所有范围还包含该范围的任意和所有可能的子范围和子范围的组合。任意列出的范围能够容易认识为充分描述并实现被分为至少相等的两半、三份、四份、五份、十份等的相同范围。作为非限制性示例,这里描述的每个范围可以容易被分成下三分之一、中三分之一和上三分之一等。本领域技术人员可以理解例如“多至”、“至少”、“大于”、“小于”等的所有语言包括描述的数字且是指能够如上所述被连续分成子范围的范围。最后,本领域技术人员可以理解,范围包括每个单独数字。因此,例如具有1-3个格子的群组涉及具有1个、2个或3个格子的群组。类似地,具有1-5个格子的群组涉及具有1、2、3、4或5个格子的群组,等等。此外,权利要求书不应当理解为限制到提供的顺序或元素,除非指明如此。此外,在权利要求中的术语“用于…的装置”的使用旨在引用35U.S.C.§112,‖6或装置+功能的权利要求形式,且没有术语“用于…的装置”的任意权利要求无此意图。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1