SUDAC、用户设备、基站和SUDAC系统的制作方法

文档序号:11532060阅读:161来源:国知局
SUDAC、用户设备、基站和SUDAC系统的制造方法与工艺

本发明的实施例涉及一种sudac(共享用户设备侧分布式天线组件)、用户设备和基站。另外的实施例涉及sudac系统、用于信号转发的方法、用于利用用户设备或基站发送或接收信号的方法。另外的实施例涉及计算机程序。另外的实施例涉及用于共享ue侧分布式天线系统(sudas)的发现、资源分配和通信协议。



背景技术:

无线网络旨在增加通过网络的数据量和数据速率,以允许更多的用户、更多或增强的服务和/或更快的传输时间。

已经在它们的部署期间,当前的4g移动通信系统(如lte-advanced)似乎遭受到可以提供给用户的数据速率的短缺。预计在未来,用户所请求的数据速率大幅增长,这主要是由于接收视频内容。存在非线性电视/视频(即在其消费的时刻没有广播的视频内容)的消费增加的趋势。除了在其传输之后的某个稍后点(如电视频道的媒体中心的提供)消费以及可以存储在用户设备(ue)中的高速缓存中直到其消费的广播内容,存在广泛的领域内容,其不可以简单地由传统的广播系统(卫星、地面、有线电视)分发,如youtube视频。同时,家庭中消费的内容需要越来越高的数据速率,例如针对超高分辨率电视(uhdtv)或3d内容(有或没有专用3d眼镜)。

此外,人们交换(即下载和上传)越来越大的文件。虽然这是目前几兆字节的照片,但人们未来将从他们的移动设备下载数千兆字节的完整电影。对于这样的行为,人们热衷于保持下载时间尽可能短,因此非常高的万兆比特/秒量级的数据速率是未来的现实需求。随着人们未来将更大程度地使用云服务,当人们离开或进入移动网络的覆盖范围时,即他们离线之前以及他们从离线状态返回之后,需要在移动设备与云端上的内容的快速同步。同步的数据量可能相当

大。所有这些都表明,针对许多(移动和静态)设备,以非常高的数据速率传输可能被认为是未来必须的。

使用像lte这样的移动通信来下载这样大的文件的备选方案是使用局域网(lan),它是无线(wlan,wi-fi)或有线(以太网)的。然而,除了使用光纤(光纤到家ftth),从骨干网到家庭的最后一英里不能支持在gbit/s范围的所需高数据速率。然而,用ftth装备家庭的成本是非常高的;例如单独对于德国来说,用ftth装备每个建筑物的成本估计约为930亿欧元。因此,我们认为最后一英里将最终主要成为无线连接。这显著降低了将宽带带到每个建筑物及其房间的成本。

此外,大多数家庭没有专用的有线lan基础设施(以太网)来进一步分发在最后一英里接收到的数据,即大多数家庭使用wi-fi通过它们的接入点(ap)将它们的设备连接到互联网,其中ap代表最后一英里的终点。应该注意到,为了达到gbit/s的数据速率,以太网插口或ap存在于每个家庭或办公楼的一个或多个或者每个房间中。因此,连接每个建筑物的每个房间的成本必须添加到上面提到的用于连接建筑物的数字中。

此外,网络拓扑的主要结构是集中式的(例如,ieee802.11)或分布式的(例如,诸如在ieee802.15中定义的移动自组织网,其也称为微微网)。

在集中式架构中,只有协调设备负责发现,并且所有数据业务都通过此设备进行路由。在分布式系统中,还存在对等通信并且支持发现,其可能但并不需要独立于协调设备。

即将到来的标准ieee802.11ad支持(直到至今发布的)集中式和分布式结构。分布式结构也称为自组织对等、独立基本服务集(ibss)和/或个人基本服务集(pbss)。为了发现,每2.16ghz频带有3个低速率物理层(lrp)信道用于信标传输。图25示出了按照ieee802.11ad标准中提出的信道类型的频率分配。lrp频率是固定的。发现基于希望被发现的设备的信标数据传输。在[1]中,提出ieee802.11b,g,n或ieee802.11a传输可用于帮助调度和管理ieee802.11ad设备。还针对ieee802.11ad计划定向的中继服务。这些将包含解码和转发方法。ieee802.11网络正在使用时分双工(tdd)进行有或没有确认的传输。时间结构上的初始同步通过具有冲突避免的载波侦听多址接入(csma-ca)完成。

在[2]中,描述了如何创建和管理ieee802.15中定义的微微网。微微网协调器(pnc)呈现信标,网络中的另外的设备在时间和频率上与其同步。作为异步发现和通信,通常使用[3]中描述的aloha协议的一些实现。由pnc提供的是由整个微微网共享的单个帧结构(超帧)。其中一段时间内为异步传输保留,所有其他传输由pnc调度。定义了动态更改网络布局或切换pnc的方法。还支持扫描频率范围以检测干扰、信标和信道质量。pnc对网络中的单个使用频率做出决定(其随着时间可以改变以调整到干扰条件)。自组织网通常不使用极高频(ehf)频带,因为信号的衰减在该频率范围内非常高,并且只有视线(los)传输是可能的,其中[4]提供了对毫米波的扩展。

分布式移动自组织网(manet)的主要挑战是解决路由问题。为此,必须分析接收到的数据,并且必须至少提取路由相关信息。自组织网在功耗范围方面通常非常敏感,并且它们为休眠模式以及为如何在仍然保持网络信息的同时从其恢复提供了复杂的机制。存在对使伙伴在网络中局部化的实现以允许使用波束成形。

对于上述所有实现,通常它们被设计为提供数据传输的点对点可靠性。这是通过不同的调度和数据获取方案来确保的。例如,这可以是所有设备的公共控制信道。

在现有技术的系统中,频率、时间、码和空间被看作是要以最佳可能方式共享和分配的有限资源。这是针对一个设备完成的,无论是真正的中央管理单元还是本地pnc。



技术实现要素:

因此,需要一种改进的方法。本发明的目标是提供一种sudac、基站、用户设备、系统或方法,其使得能够实现用于下行链路,即从基站到用户设备的高数据速率,和/或用于上行链路,即从用户设备到基站的数据传输的高数据速率,同时避免上述限制。

通过独立权利要求的内容来解决该目标。

本文公开的教导是基于以下基本思想:可以通过控制sudac来优化数据传输,使得sudac在基站的方向上或在用户设备的方向上的传输基于从本地(用户设备)观点的用户设备驱动的对sudac的控制和/或基于基站驱动的控制来增强。基站可以从本地观点实现控制,从而考虑到sudac系统(网络)的多个或全部组件,使得基站的资源被更有效地或从全局观点被利用,使得资源的使用在整个网络内进行了优化。

实施例提供了一种包括第一无线通信接口、第二无线通信接口和处理器的sudac。第一无线通信接口被配置用于使用超高频率,以便与基站建立至少一个后端通信链路。第二无线通信接口被配置用于使用极高频率,以便与用户设备建立至少一个前端通信链路。该处理器被配置用于将经由前端通信链路接收的用户信息信号至少部分地(例如,用户信息信号的有效载荷部分)转发作为要经由后端通信链路发送的通信信号,同时将极高频率频率转换为超高频率。处理器进一步配置用于备选地或附加地将经由后端通信链路接收的通信信号转发作为要经由前端通信链路发送的用户信息信号,同时将超高频率频率转换为极高频率。处理器还被配置用于从用户信息信号提取控制信息,并且用于基于控制信息来控制第一或第二无线通信接口的转发参数。转发参数至少涉及后端通信链路或前端通信链路的时间、频率、空间或码资源之一。

处理器被配置用于将在极高频率处接收的用户信息信号频率转换为在超高频率处的通信信号,并且用于将在极高频率处的通信信号频率转换为在超高频率处的通信信号。备选地或附加地,sudac包括被配置用于将在极高频率处接收的用户信息信号数字化的模数转换器和被配置用于将数字化通信信号模拟化以获得在超高频率处的通信信号的数模转换器,其中处理器被配置用于基于数字化用户信息信号产生数字化通信信号。

当处理器被配置用于将在极高频率处接收的用户信息信号频率转换为在超高频率处的通信信号并且用于将在极高频率处的通信信号频率转换为在超高频率处的通信信号时,通信信号或用户信息信号的有效载荷部分可以以纯模拟方式转发。这可以允许实现没有模数转换器和数模转换器的sudac用于接收和发送用户信息信号和/或通信信号的。这样的sudac也可以称为模拟sudac(asudac)。

基于频率转换而不使信号数字化的转发允许低成本的sudac和减少的时间延迟,因为可以跳过耗时的数据处理。一种sudac的实现(称为数字sudac-dsudac),其中sudac包括被配置用于将用户信息信号数字化的模数转换器,并且还包括被配置用于将数字化通信信号模拟化的数模转换器,允许对信号灵活滤波,例如针对干扰或带外噪声减少,也可以用于在转发过程期间修改信号,例如通过添加或移除信息,改变调制类型等。可以从诸如膝上型计算机、pc、移动电话等的用户设备接收控制信息,或者可以从基站接收控制信息。

根据另一实施例,提供了包括第一无线通信接口和第二无线通信接口的用户设备。第一无线通信接口被配置用于使用超高频率以便与基站建立至少一个直接通信链路。第二无线通信接口被配置用于使用极高频率以便与sudac建立至少一个前端通信链路。用户设备被配置用于部分地经由直接通信链路并且至少部分地经由前端通信链路接收用户信号。用户设备与基站相关联(例如,基站可以是用户设备的服务提供者),并且被配置用于基于从与另一基站相关联的另一用户设备接收到的信息来生成用户信息信号,使得用户信息信号包括与用户设备相关的信息和与另一用户设备相关的信息。

这允许用户设备可以向另一用户设备提供所谓的搭载模式的优点,使得另一用户设备可以向sudac和/或基站发送数据,而不保持到sudac或者到基站的自己的通信链路。此外,由基站或用户设备专门控制(使用)的sudac可以用作数据转发装置(中继)而不控制它。通过将另一用户设备的信息插入由用户设备生成的消息或信号中,可以避免另一用户信息的消息的开销,使得在增加网络内传送的有效载荷数据量方面,增强了网络中的资源利用。

根据另外的实施例,提供了一种基站。基站包括多个无线通信接口和被配置用于控制多个无线通信接口的控制器,使得获得多个无线通信接口的多天线功能,例如多输入多输出功能或波束成形功能。基站被配置用于经由多个无线通信接口中的至少一个接收控制信息,所述控制信息和与基站通信的用户设备或sudac相关。控制器被配置用于基于控制信息来适配多天线功能的传输特性。

这允许可以基于来自sudac和/或来自用户设备的信息和/或命令来调整基站操作模式的优点。此外,可以由sudac和/或用户设备向基站提供信息,所述信息指示基站被请求组织或重组网络。这两个选项都允许在资源分配方面提高网络效率。

根据另一实施例,提供sudac系统(sudas)。sudac系统包括sudac、基站和用户设备。

根据另外的实施例,提供了用于信号转发和用于利用用户设备或基站发送或接收信号的方法。

根据另一实施例,提供了一种用于这些方法的计算机程序。

附图说明

随后将参考附图讨论本发明的实施例,其中:

图1是根据实施例的作为共享用户设备侧分布式天线组件的sudac的示意性框图;

图2是根据实施例当与图1所示的sudac相比时被修改并包括两个滤波器的sudac的示意性框图;

图3a是根据实施例保持到基站的直接通信链路和到sudac的前端通信链路的用户设备的示意性框图;

图3b是其中sudac被配置用于建立到基站的第一后端通信链路和到另一基站的第二后端通信链路的示意性框图;

图4是根据实施例被配置用于经由后端通信链路与sudac通信并且经由直接通信链路与用户设备通信的基站的示意性框图;

图5是根据实施例的sudac系统的示意性框图;

图6是根据实施例的包括两个用户设备装置、sudac和两个基站的sudac系统的示意性框图;

图7是根据实施例的包括用户设备的sudac系统的示意图,三个sudac被布置在不同的位置处,其中墙阻止两个sudac之间的视线;

图8是根据实施例当与图7的sudac系统相比时被修改的sudac系统的示意图;

图9是包括第一和第二bs侧sudac的sudac系统的示意性框图,bs侧sudac被配置用于使用极高频率与基站建立后端间通信链路;

图10是包括两个用户设备和两个sudac的sudac系统的示意性框图,其中从sudac到基站的后端通信链路不活动;

图11是根据实施例的用户设备和sudac之间的通信,特别是有效载荷和状态控制信道关联;

图12是根据实施例的可以在sudac和用户设备之间的通信链路中在极高频率处实现的多个会聚信道的示意性结构;

图13是根据实施例的包括sudac、两个用户设备装置以及两个基站的sudac系统的示意图;

图14a是根据实施例的sudac的用户设备和控制/状态信道的关联的图示;

图14b是根据实施例的在两个导频符号之间插入环回响应的sudac的重传的图示;

图15a是根据实施例的上传方向上的前端通信链路到后端通信链路的转换;

图15b是根据实施例的sudac在下行链路方向上的转换;

图16a是根据实施例当与图13a和13b相比时被修改的情况,其中有效载荷的带宽较大;

图16b根据图16a的情况,其中传输方向被交换;

图17a-d是根据实施例的传输介质的正常分配和搭载分配之间的比较;

图18是根据实施例的嵌入在状态/控制信道中的同步符号的使用;

图19是根据实施例的状态/控制信道的信令数据的不同类型的部分;

图20a是根据实施例的sudac的滤波器的示意性实现;

图20b是根据实施例的利用两个滤波器的滤波的实现,每个滤波器使在相应有效载荷信道之外的频率衰减;

图21是德国lte的情况下的超高频率的频率分配的示意图。

图22是根据实施例的用于信号转发的方法的示意流程图。

图23是根据实施例的利用用户设备发送或接收信号的方法的示意流程图;

图24是根据实施例的利用基站发送或接收信号的方法的示意流程图;和

图25是根据现有技术在ieee802.11ad标准中提出的通过信道类型进行的频率分配。

具体实施方式

下面将详细讨论本发明的实施例,其中相同的附图标记被提供给具有相同或相似功能的对象,使得其描述是可互换的或相互适用的。

以下将参考超高频率和极高频率。超高频率与从至少300mhz到6ghz的范围内的频率有关。极高频率与从至少30ghz直到300ghz的范围内的频率并且优选地到利用在57和64ghz之间的范围内的频率的所谓的60ghz频带有关。例如,超高频率用在如用于gsm和/或lte(长期演进)的移动通信网络中,并且适合于向或从移动设备和从其他移动设备或基站传送数据。如极高频带的其他频带提供更高的带宽,但是以这样的频率发送的波(所谓的毫米波)遭受高衰减,使得在通信伙伴之间优选视线(los)连接以允许可靠的数据传送。

在下文中,术语信标涉及ehf频带中的控制信道,其容纳有关sudas、其配置和参考数据(=导频)的信息。术语有效载荷涉及通过sudas从bs到ue(或反之)的中继信号。术语前端涉及ehf(大约60ghz)频带中的通信,并且术语后端涉及s6g(亚6ghz,即低于6ghz)频带中的通信。

在下文中,将首先参考根据实施例的sudac(共享用户设备侧分布式天线组件)。当简化表示时,sudac可以被视为一种信号转发设备,被配置用于在重发接收到的数据信号的同时和/或在从一个频率范围到另一个频率范围(反之亦然)对信号进行频率转换的同时,在超高频率和/或极高频率上发送数据信号。之后,将参考根据另一实施例的用户设备。之后,在描述根据实施例的包括sudac、用户设备和基站的sudac系统之前,将参考根据另一实施例的基站。

图1示出了作为共享用户设备侧分布式天线组件(即,用于在对信号进行频率转换的同时转发信号的装置)的sudac10的示意性框图,。sudac10包括第一无线通信接口12,其被配置用于使用超高频率以通过发送要从基站40接收的通信信号42a并且通过接收来自基站40的通信信号42b来与基站40建立至少一个后端通信链路14。后端通信链路14可以是从基站40到sudac10(下行链路)或从sudac10到基站40(上行链路)的单向数据链路。备选地,后端通信链路14可以是实现上行链路和下行链路两者的双向数据链路。

sudac10包括第二无线通信接口16,其被配置用于使用极高频率以通过发送要从用户设备30接收的用户信息信号32a并且通过接收来自用户设备30的用户信息信号32b来与用户设备30建立至少一个前端通信链路18。正如对于后端通信链路14所描述的,前端通信链路18可以是单向(上行链路或下行链路)或双向链路。

sudac10包括处理器22,其被配置用于至少部分地转发经由前端通信链路18接收的用户信息信号32b,作为要转换并将经由后端通信链路14发送的通信信号42a的至少一部分。处理器22被配置用于将在前端通信链路18中实现的极高频率频率转换为在后端通信链路14中实现的超高频率,并且用于至少部分地基于用户信息信号32b来发送通信信号42a。该转换可以例如基于信号的接收并且基于新信号的生成。备选地或附加地,可以基于所接收信号到不同载波的解调和调制来转换所接收信号。用户设备可以经由前端通信链路18和后端通信链路14部分地(并且部分地经由直接通信链路34)或完全地(即,没有建立直接通信链路34)与基站交换信息。所接收的用户信息信号32b可以包括要转发到基站40的部分(有效载荷)和控制信息24。

sudac10可以是独立设备。备选地,sudac10可以集成到如(光)开关、建筑物中的插座、汽车中的设备等其他设备中。sudac10还可以是诸如移动电话、路由器等的另外的无线通信设备的部分。sudac10可以一次建立到多于一个基站的后端通信链路14和/或到基站40的多个后端通信链路14。备选地或附加地,sudac10还可以建立到用户设备30的多于一个前端通信链路18和/或到多于一个用户设备的前端通信链路18。

sudac10可以被配置用于基于有效载荷并且在没有控制信息24或具有(可能不同或改变的)控制信息24的情况下来发送通信信号42a。备选地或附加地,所接收的通信信号42b包括有效载荷且可选地包括控制信息24。sudac10可以被配置用于基于有效载荷并且基于生成或修改的控制信息24发送用户信息信号32a。简而言之,控制信息24可以作为用户设备30和sudac10之间和/或在sudac10和基站40之间的点对点信息被发送(单向或双向)。有效载荷可以经由sudac10从基站40转发到用户设备30,或反之。

由此,可以经由sudac10在用户设备30和基站40之间实现间接数据链路,其从用户设备30的观点来看是上行链路连接。

处理器22还被配置用于转发经由后端通信链路14接收的通信信号42b作为要经由前端通信链路18发送的用户信息信号32a。处理器22被配置用于将超高频率频率转换为极高频率。这允许在用户设备30和基站40之间的另一间接数据通信链路,其从用户没备30的观点来看是下行链路连接。处理器22还可以被配置用于对信号施加进一步处理,例如解码和/或编码。

处理器22被配置用于从用户信息信号32b和/或从通信信号42b提取控制信息24,并且用于基于控制信息24控制第一或第二无线通信接口12或16的转发参数。备选地或附加地,处理器还可以被配置用于将控制信息24与要发送或转发的信号组合。例如,要转发的通信信号42b的部分可以与控制信息24组合,使得用户信息信号32a包括通信信号的部分(有效载荷)和控制信息。

控制信息24可以经由用户信息信号32b被接收,例如当被并入用户信息信号32b的首部或预定部分时。备选地或附加地,sudac10还可以被配置用于接收通信信号32b和从通信信号32b提取控制信息。控制信息24可以是例如与sudac10所使用的资源相关的发送功率、调制方案和/或参数。sudac10可以被实现为在时分双工(tdd)、频分双工(fdd)和/或空分双工(sdd)方面利用传输介质。因此,控制信息24可以与要由sudac10,特别是无线通信接口12和/或16使用的频率、码、空间和/或时隙(资源)相关。

处理器22可以被配置用于将用户信息信号32b频率转换为通信信号42a,以及用于将通信信号32b频率转换为通信信号32a。

备选地或附加地,并且将参考图2进行描述,sudac10可以包括模数转换器(adc)和数模转换器(dac),其允许对所接收的信号32b或42b进行数字化,对数字化信号进行处理、评估和/或操作(修改),之后对信号进行模拟化并发送信号。这允许关于资源利用的高灵活性,因为用户信息信号32a和/或通信信号42a可以被适配(修改),从而增强了受限资源的利用。包括数字前端(包括adc和dac)的sudac可以被称为数字sudac(dsudac)。

如果在没有上述adc和dac的情况下实现sudac10,则sudac10可以以模拟方式实现频率转换和信号转发,并且因此可以被称为模拟sudac(asudac)。

sudac10可以包括用于对所接收和/或发送的信号32a、32b、42a和/或42b进行滤波的滤波器。滤波器可以被实现为数字滤波器或模拟滤波器。模拟滤波器可以部分地隐含地在混频器级和无线通信接口的所使用的天线中实现。在有效载荷和状态/控制信道之间的频率分离的情况下,控制信息24可以由窄带滤波器提取。sudac可以包括用于对所提取的控制信息24进行数字化的(窄带)adc,使得可以由sudac10评估控制信息。此外,sudac10可以包括用于对可以被发送的控制信息进行模拟化的(窄带)dac。

前端通信链路18和后端通信链路14一起形成所谓的中继链路,该中继链路是支持用户设备30与可以保持直接通信链路34的基站40之间的通信的支持链路。当用户设备30是移动电话时,直接通信链路34可以是例如移动电话和基站之间的常规移动通信链路。用户设备30可以是被配置用于在移动通信网络中进行通信的任何移动或固定设备。例如,用户设备30可以是膝上型计算机、移动电话,特别是所谓的智能电话、平板计算机、pc、电视设备和/或无线电设备。

基站40被配置用于向用户设备30提供如数据通信的服务,并且可以是例如包括多个发送天线的发送杆。备选地,基站40可以实现为多个发送杆,每个发送杆包括至少一个发送天线,并且被控制以利用多个发送杆实现一个虚拟基站。若干个发送杆可以形成基站网络组,即服务提供商的不同发送节点。因此,基站40可以实现多天线功能(多输入多输出——mimo),例如波束成形功能,以增强沿波束方向的传输质量和/或空间复用功能(即,每个无线通信接口(天线)被配置用于发送独立信号),利用天线分集和/或空-时编码功能(即,为了发送后续符号,信号由无线通信接口发送,其中信号基于所使用的码彼此相关)。这允许保持到多个或大量其他设备的多个或甚至大量通信链路。因此,sudac可以被集成到移动通信网络中,作为用户设备30和/或另一用户设备的虚拟天线。这允许基站40将其通信适配于用户设备30,以便利用用户设备30的“常规”天线和另外的(虚拟)天线,使得用户设备30与基站40之间的连接增强。备选地,例如当直接通信链路34丢失时(例如在建筑物内部),用户设备30和基站40之间的通信可以完全经由中继链路提供。

用户设备30可以将sudac10用作外部天线,即,用户设备30控制sudac,并且可以向基站40通知其外部天线。根据一个实施例,sudac10一次只能由一个用户设备控制。根据另一个实施例,另一用户设备可以请求控制sudac10,其中sudac10被配置用于在请求控制sudac的用户设备装置之间共享其能力。例如,在第一次sudac可以由第一用户设备使用,并且另一次sudac可以由另一用户设备使用。备选地或附加地,频率、空间或码域可以在用户设备之间共享。

在前端通信链路18处利用极高频率的sudac10允许多个前端通信链路以增强多个用户设备的通信。因此,sudac10可以被配置用于保持到多个用户设备的多个前端通信链路和/或保持到多个基站的多个后端通信链路14,其中不同的基站或基站网络组。不同的基站或基站网络组可以与不同的网络提供商相关,即,sudac10可被配置用于与不同提供商的基站或基站网络组进行通信,并用于转发相应的数据信号。

图2示出了当与sudac10相比时被修改并且包括数字滤波器25a和滤波器25b的sudac10′的示意性框图。滤波器25a和/或25b可以实现为例如现场可编程门阵列(fpga)、数字信号处理器(dsp)、微控制器等。滤波器25a被配置用于对用户信息信号32b进行滤波。滤波器25b被配置用于对通信信号42b进行滤波。sudac10′包括用于对经滤波的用户信息信号32b进行数字化以获得其数字化版本的adc26a。sudac10′包括用于对经滤波的通信信号42b进行数字化的adc26b。此外,sudac10′包括dac28a和dac28b,其中dac28a被配置用于对从处理器22′获得并且基于由adc26b数字化的信号的信号进行模拟化。因此,处理器22′可以被配置用于修改通信信号42b的数字化版本。dac被配置用于对由处理器22′处理的从adc26a获得的信号进行模拟化。通信信号42b和/或用户信息信号32b的数字化版本的修改可以包括经由用户设备30从另一用户设备间接接收(例如通过使用如下所述的所谓的搭载功能)的信号的插入或提取。简而言之,用户设备30可以由另一用户设备用作中继。多用户设备可能构建suda系统(sudas)。

滤波器25a和25b可以被实现为模拟或数字频率自适应预选择器滤波器并且允许抑制干扰。干扰可能来自于在相同频率范围内进行通信的其他通信伙伴和/或来自于sudac本身(当其包括用于保持另外的前端通信链路和/或后端通信链路的另外的无线通信接口时)。

备选地,可以实现后端通信链路和/或前端通信链路,使得相应链路的频率范围被分割,即通过滤波分区,使得频率范围的分区部分之间的干扰被减小或最小化。当滤波器25a和/或25b包括数字滤波器时,这允许以低成本和低空间要求进行时变滤波。

sudac10′是所谓的dsudac,包括adc26a和26b以及dac28a和28b(数字前端)。用户信息信号32b和/或通信信号42b的数字处理允许在有效载荷信道中包括图1所描绘的控制信息24,即,可以经由与要转发的数据相同的频率来发送控制信息,即,控制信息可以在不同的时间(t)/频率(f)-资源块中被包括到有效载荷信道中。处理器22可以被配置用于分析数字域中的控制信息24。相比之下,模拟sudac可以转发信号,使得有效载荷信道以纯模拟方式传送,而不使用模数转换器和数模转换器。

换句话说,asudac和dsudac之间的主要区别在于,可以更灵活地处理dsudac的有效载荷带宽,因为信号的滤波可以在数字域中完成。这基本上意味着在asudac需要在不同的滤波器实现之间物理切换时交换滤波器系数。此外,dsudac可以通过改变载波频率距离来聚合不同的载波。dsudac可以与公共网络时钟同步。这允许dsudac将相移应用于有效载荷,这允许通过使用其中至少一个是dsudac的两个sudac来提供一种波束成形。这意味着两个sudac都在超高频率(例如低于6ghz)上接收相同的有效载荷信号,并在相同的极高频率(例如在60ghz的范围中)的频率上发送它。通过应用正确的相移,两个信号将建设性干扰。此外,dsudac可以将有效载荷数据传输模式从tdd改变为fdd,反之亦然。dsudac可以在后端通信链路上提供与在前端通信链路上相同的发现和获取方法。dsudac可以提供压缩和转发方法以及解码和转发方法用于前端和后端链路信号。

例如,当处理器22′被配置用于压缩和转发所接收的用户信息信号32b时,应用以获得通信信号42a的压缩率可以由处理器22′根据所包括的开销率而变化,例如基于由于信道估计和干扰避免而导致另外的或冗余的信息。

图3示出了用户设备30的示意性框图,用户设备30保持到基站40的直接通信链路34和到sudac10或备选地到sudac10’的前端通信链路18。用户设备30包括被配置用于信号处理的处理器31。用户设备30包括被配置用于使用超高频率建立直接通信链路34的第一无线通信接口36。用户设备30还包括第二无线通信接口37,其被配置用于使用极高频率建立前端通信链路18。用户设备30被配置用于部分地经由直接通信链路34并且至少部分地经由前端通信链路18来接收用户信号,例如要下载的数据。如上所述,sudac10可以用作另一无线通信接口,如用户设备30的间隔的天线。因此,要发送到用户设备30的基站40的数据可以部分地经由直接通信链路34发送,并且至少部分或甚至完全经由前端通信链路18发送,这意味着sudac10接收通信信号42b并经由前端通信链路18以用户信息信号32b的形式转发用户信号。用户设备30与基站40相关联。例如,如从移动电信或数据服务提供商已知的,基站40由向用户设备30提供服务的服务提供商操作。

用户设备30被配置用于经由直接通信从另一用户设备39接收信号38,该另一用户设备39还请求向基站40或另一个基站发送数据。例如,用户设备39不能保持到与其相关联的基站的直接通信链路,和/或其还请求由sudac10进行的通信增强。当sudac10被用户设备30利用(即控制)时,sudac10可能不能或可以拒绝被用户设备39控制并且按照用户设备39所请求的来实现通信增强。因此,用户设备39可以经由直接通信链路将数据信号38发送到用户设备30,用户设备30可将其至少部分地转发到sudac10。备选地,前端通信链路18可以包括随机接入信道,即,所利用的资源的部分可以被开放以供诸如用户设备39之类的第三方使用。当sudac10接收到由用户设备39利用随机接入信道发送的数据信号38时,sudac10可以简单地重发数据信号38作为数据信号38′(用户信息信号),使得用户设备30经由sudac10通过(间接)链路从用户设备39接收数据。用户设备30被配置用于基于用户设备30想要(请求)发送的数据(上传数据)并且基于从另一用户设备39接收的信息来生成用户信息信号32a。

这允许所谓的搭载模式,其中用户设备30将从用户设备39接收的信息包括到其自己的信息中或将从用户设备39接收的信息与其自己的信息组合,并将这两个信息发送到sudac10。这也可以被认为是另一用户设备39的通信模式。sudac10可以将搭载信息发送到基站40或另一基站41。基站40可以被配置用于将来自与基站40相关联的用户设备30的信息与可以与基站40或另一基站41相关联的用户设备39的信息分离。在后一种情况下,基站40可以被配置用于将来自另一用户设备39的信息发送到另一基站41,即,基站40被配置用于经由后端通信链路并经由sudac10接收与用户设备30相关的信息(例如,在有效载荷信道中)。用户设备可能与基站相关。sudac可以发送信息将作为搭载于信息的信息。备选地或附加地,用户设备30可以被配置用于利用多于一个的载波,即建立多于一个的前端通信链路和/或直接通信链路。然后可以实现搭载功能,使得另一信息与要由用户设备30的另一个通信链路搭载的另一通信链路相关。单个前端通信链路可以包括可以由asudac分离和/或聚合的多个或甚至大量载波。在dsudac的情况下,可以实现包括所有信息并由dsudac分离和/或聚合的“宽”通信链路,使得单个前端通信链路可以被映射到多个或大量后端通信链路和/或反之。

这允许用户设备装置到基站的通信,即使它们不保持到其基站的直接通信链路和/或减少在控制信息方面的数据开销。在搭载模式中,与用户设备30和用户设备39相关的信息两者可以被包括在与被配置用于包括控制信息的相应控制信道相关联的一个有效载荷信道中。这意味着,针对发送另一用户设备的信息,可以避免另外的控制信道的分配,使得原本被使用的相应资源可以被节省并用于其他服务。

备选地或附加地,sudac10可以被配置用于建立到另一用户设备39的直接通信链路(即,另一前端通信链路)。如此,可以经由sudac10接收与该另一用户信息相关的信息。sudac10然后可以被配置用于基于与用户设备30相关的信息并基于与另一用户设备39相关的信息,通过将与另一用户设备相关的信息搭载到与用户设备30相关的信息来生成通信信号42。

图3b示出了其中sudac10的第一无线通信接口12被配置用于建立到基站40的第一后端通信链路14a和到另一基站41的第二后端通信链路14b的示意性框图。sudac10被配置用于在超高频率处建立后端通信链路14a和14b两者。第一无线通信接口12可以被实现为多个无线通信接口,每个无线通信接口被配置用于与基站40或41进行通信。备选地,第一无线通信接口12可以被实现为被配置用于在宽的频率范围内进行发送的一个接口,使得能够实现与基站40和41两者进行通信,基站在不同的频率范围内发送,例如,利用与如图21所述的不同的服务提供商相关联的频带。

sudac10被配置用于经由前端通信链路18从用户设备30接收用户信息信号32b。用户信息信号32b包括与用户设备30相关的信息,以及与另一用户设备39相关的另一信息,即,用户设备30通过使用搭载选项发送与另一用户设备39相关的信息。与另一用户设备39相关的信息也与另一基站41相关。例如,另一信息可以包括指示另一基站41是信息的指定接收者的信息。

sudac10被配置用于形成要经由第一后端通信链路14a发送并包括与用户设备30相关的信息的通信信号42a-1,并且用于形成要经由第二后端通信链路14b发送并包括与另一用户设备39相关的信息的通信信号42a-2。简而言之,sudac10被配置用于分离两个信息并用于分离地发送它们。

图4示出了被配置用于经由后端通信链路14与sudac10通信并且经由直接通信链路34与用户设备30通信的基站40的示意性框图。基站40包括三个无线通信接口44a、44b和44c以及被配置用于控制无线通信接口44a-c的控制器46,使得获得多天线功能,例如无线通信接口44a-c的空间复用、空-时编码和/或波束成形功能。为了获得mimo功能,控制器46可以被配置用于控制每个无线通信接口44a-c,使得它们中的一个或多个保持到通信伙伴(例如用户设备或sudac)的直接链路。这被称为所谓的单天线模式,其中基站40可以被配置用于一次实现到不同的通信伙伴的多个单天线模式。控制器可以被配置用于对要发送的信号进行预编码,使得要发送到其他通信伙伴的每个信号经由所有所使用的无线通信接口(天线)发送以获得所谓的空间流。备选地或附加地,控制器46可以被配置用于控制无线通信接口46a-c中的一个或多个,使得相应的无线通信接口44a-c实现波束成形功能,例如通过以具有与所使用的接口(天线)的距离相对应或相关的相移来发送相同的信号,使得可以发生建设性的和破坏性的干扰和/或获得沿着波束方向具有良好信号质量的所谓的波束。

基站40被配置用于经由直接通信链路34从用户设备30接收控制信息,例如作为用于控制通信参数和/或用信号发送通信参数的控制信息的一部分。控制器46被配置用于基于控制信息来适配多天线功能的传输特性。控制信息可以包括由用户设备30使用的sudac的标识符或向基站40指示建立后端通信链路14的请求。该请求可以例如基于信号质量信息。简而言之,用户设备30可以选择一个或多个可以与其通信的sudac,从而允许良好的信道质量,并向基站40发送与所选择的sudac相关的信息。备选地或附加地,控制信息可以包括与所选择的sudac的位置相关的信息,使得基站40将一个或多个波束的方向调整到一个或多个sudac相对于基站40所在的方向。

备选地或附加地,控制信息可以由sudac10发送。因此,基站40的操作至少部分地可由用户设备30和/或sudac10控制。这允许更有效地使用由基站40接入的媒介,因为其他通信伙伴可以控制基站40使得它关于网络高效地利用媒介。

控制信息可以包括与用户设备30和/或sudac10或其他通信伙伴相关的地理信息,使得由基站发送的信号的定向无线电模式可以被修改。特别地,当基站由间隔较大距离的若干个发送杆形成时,定向无线电模式可以不是波束,而导致在由地理信息指示的位置或区域处的建设性干扰。在基本上一个位置处布置的多个无线接口方面的波束成形可以导致后端通信链路14的优选方向的适配,其中优选方向可以指向sudac10。备选地,也可以适配直接通信链路34的优选方向,即,波束或区域可以指向或邻近用户设备30,和/或积极干扰可以在用户设备30的位置处有效。备选地或附加地,控制信息还可以涉及带宽信息,使得控制器46可以被配置用于基于控制信息来修改或适配直接通信链路34和/或后端通信链路14的带宽。

备选地或附加地,控制信息还可以指由用户设备30和/或由sudac10请求的资源分配(时间频率、码和/或空间)。基站40可以被配置为响应该信息,例如,以确认新的分配方案并适配当前的资源分配。

基站40可以被配置为与多个用户设备装置和/或多个sudac通信。在这种情况下,基站40可以是具有关于网络内的通信伙伴的几乎或所有信息的网络节点,特别是当sudac和/或用户设备装置仅能够达到一些但不是全部其他通信伙伴时。控制信息可以包括指示基站被请求组织由通信伙伴形成的网络的配置的信息,使得控制器46修改如基站、用户设备的或sudac的传输频率、传输时间、码或传输空间的资源,即,用户设备30和/或sudac10可以被配置用于发送指示基站被请求组织网络的控制信息。

基站40可以被配置用于基于指示sudac10和/或用户设备30被请求使用频域、时域、码域或空间域的部分的控制信息,向sudac10和/或向用户设备30发送响应信息。即,响应信息和/或分配信息可以与sudac10和/或用户设备30以及sudac10和/或用户设备30的发送或接收信号的传输域相关。

被配置为控制资源分配的网络节点可以被配置为确定资源分配率,例如,资源是否在网络的一些或所有部分中由至少一个网络节点使用。此外,可以配置该网络节点,以确定资源是否未被使用或者次优使用,例如在相同或其他资源遭受过载时比可能的使用更少。网络节点可以被配置为将资源分配与阈值进行比较。阈值可以是例如一次或在过去时间期间的最大资源使用,或者可以包括预定值。网络节点,即用户设备30、sudac10和/或基站40可以被配置用于确定网络的部分或其全部的资源分配,使得基站、用户设备或sudac的资源利用率高于阈值,即,使得在网络中共享资源使用,并且使得网络节点可以切换或修改它们当前利用的资源以使具有低的利用率(能力相对于资源)的其他节点能够提高利用率。

备选地或附加地,响应信息可以涉及指示用户设备30被请求改变当前所使用的sudac的信息,即涉及关闭到sudac10的前端通信链路18,并建立到另一个sudac的另一个前端通信链路。例如,基站40可以知道两个用户设备装置可以建立到由用户设备30控制的sudac10的通信。基站40可以进一步知道另一个sudac是仅对用户设备30(而不是其他)可达的,使得当用户设备30改变其sudac时,两个用户设备可以利用sudac。

尽管用户设备30被配置用于控制sudac,但是基站40可以向用户设备30发送控制信息,以例如改变其sudac,和/或指示sudac被请求改变为休眠模式的控制信息,即停止传输以避免干扰。可以基于从用户设备30发起的指示基站40被请求控制网络的命令来发送该控制信息。在这种情况下,sudac10被配置用于改变为休眠模式。休眠模式和sudac从其恢复的可能性将在下面描述。

图5示出sudac系统50的示意性框图。基站40被配置用于保持多个直接链路34a-c和多个前端通信链路14a-c。前端通信链路14a-c可以等于直接通信链路34a-c,因为从基站40的观点来看,sudac10可以是用户设备30的外部天线,使得基站40可以被配置用于在前端通信链路14a-c和直接通信链路34a-c中发送相同的信号。

换句话说,图5示出了sudac10、用户设备30和基站40之间的通信链路的概述。设想安装自主中继天线(sudas)系统,其有助于到用户设备(ue)的通信。由一个或多个sudac组成的这种分布式天线系统是采用mimo技术的关键,该技术打开了在移动通信系统的ue和基站(bs)之间的超快数据传输的大门。sudac和bs之间的链路被称为后端通信链路,并且使用对于当前移动系统低于6ghz的频率范围的频带1(超高频率)。ue(用户设备)和sudac之间的传输在毫米波频带(频带2)极高频率中完成,以允许用于短距离、基本上视线(los)传输的高数据速率。此链路被称为前端通信链路。从系统的观点来看,两个链路都是双向的,并且成对建立单个中继链路。单个sudac使用一个或多个独立的中继链路。从ue到sudac和从sudac到bs的链路方向被标记为上行链路,另一个方向被标记为下行链路。

图6示出了包括两个用户设备装置30a和30b、sudac10和两个基站40a和40b的sudac系统60的示意性框图。图6描绘了用户设备装置30a和30b两者都利用sudac10来增强其到相应基站的上行链路连接的情况,其中用户设备30可以与基站40a相关联,并且其中用户设备30b可以被关联到基站40b。两个基站40a和40b可以在媒介的不同的频率范围或其他部分中工作。用户设备1与sudac10保持(单向)前端通信链路18a。用户设备30b与sudac10保持(单向)前端通信链路18b。sudac10分别与基站40a、40b保持两个(单向)后端通信链路14a和14b。

频带1中的后端通信链路14a和14b的总频率范围可以是例如高达200mhz等,其中频带2中的总带宽可以例如在高达2.5ghz的范围内,或者甚至更高,并从而显著更大。备选地,后端通信链路的频率范围可以包括不同的带宽,例如小于200mhz(例如,100mhz)或大于200mhz(例如,300mhz)。

sudac10可以在压缩和转发通信(操作)模式中操作,并且可以被配置为在向基站40a和/或40b发送相应的信号时压缩从用户设备30a和/或30b接收的数据或信息。

换句话说,图6示出了针对不同基站的不同频带中的频率使用。后端通信链路14a和/或14b可以是最受限制的资源,并且在不同基站之间共享。前端通信链路在不同的用户设备之间共享。sudac10在频带之间进行中继。备选地,通信还可以指向用户设备30a和/或30b(下行链路)。然后,sudac10可以在解码-转发通信(操作)模式中操作。

图7示出了包括用户设备30、布置在不同位置处的sudac10a、10b和10c的sudac系统70的示意图,其中墙52b阻止sudac10b和10c之间的视线。sudac系统70示出了用于sudac系统的室内使用的情况。点划线表示用户设备30从位置1经由位置2移动到位置3。例如,用户设备30可以在建筑物内部以行人速度和/或在都市区域中以汽车速度移动。

在位置1,用户设备30具有到sudac10a和10b的视线,并且因此可以保持到sudac10a和10b中的一个或两者的前端通信链路。在位置2,用户设备30具有到sudac10a、sudac10b和sudac10c的视线,并且可以保持到一个、多个或所有sudac10a-c的前端通信链路。即,当与位置1相比时,用户设备30可以建立另一前端通信链路。在位置3,用户设备30已经失去了到sudac10b的视线,这可能导致在相应的到其的前端通信链路中的连接丢失。用户设备30可以被配置用于向基站发送相应的信息并且在基站和一个或多个sudac10a-c之间建立、保持或关闭相应的后端通信链路方面控制基站。

用户设备30可以被配置用于通过发现过程来检测新的“可见”sudac和/或用于关闭到不可见的sudac的连接。这样的机制将在后面描述。

换句话说,考虑到sudas拓扑可能改变的事实,系统可以被配置为确保它能够应对这一点并且能够以高效的方式分配其资源。这意味着可以以这样的方式来分配资源,即使得可以以最佳可能的方式利用在当前移动通信系统中作为后端通信链路的系统关键资源。这当然也意味着单个ue所使用的sudac的数量旨在被最大化。鉴于多个ue可能依赖不同的bs的事实,用于分配传输资源的非常灵活的系统可能是必需的。

这导致以下的思想:以单个中继链路(前端通信链路和后端通信链路)可以用于中继多个ue的数据的方式分配资源是有利的。

解决网络发现和资源问题的任何方法的必要条件是:在只有作为ue、bs和sudac的sudas的基本基础设施元素的情况下可行才是有利的。通过相同的频带(例如ieee802.11ad),不同的频带(例如802.11n,a,ac)或甚至不同的媒介(例如,电力局域网(powerlan)、基于有线的以太网)与其他设备进行协作可以是可能的,但被认为是基本功能的扩展。使用这样的扩展添加了在由所有sudac和ue共享的最佳情况下的通信信道。

如果建立了此通信信道,则系统将出现新的选项:a)所有连接的sudac和其他ue对ue是已知的,因此解决了隐藏节点问题;b)可以为所有sudac一起完成资源分配以构建单一sudas,即,由于所有使用的频率都是已知的,所以在前端通信链路上没有干扰,因为ue能够通知sudac它将发送其请求的频率和/或所有sudac的状态信息可用于sudas(例如干扰频率),所以简化发现。此外,c)可以建立sudac之间的公共时间基础以实现同步,d)sudas可以知晓其实际布局,即,ue可以强制各个sudac发送由其他sudac中的一些接收的测试序列,通过分析接收结果,可以估计sudac之间的相对位置,并且定位未知的干扰源也变得可能。对于控制和系统状态信息的传输,可能需要一种支持所有寻址的系统属性的合适的通信协议。

图8示出了当与sudac系统70相比时被修改的sudac系统70′的示意图。当与sudac系统70相比时,缺少sudac10a,并且存在另一用户设备30b。用户设备30a如由短划线所示从位置1移动到位置2。在位置1,用户设备30a可以与sudac10b通信。因此,它可以以载波频率f2向sudac10b发送,并且可以以载波频率f1从sudac10b接收。当用户设备30a移动到sudac10c和用户设备30b处于视线中的位置2时,这不会改变。

用户设备30b可以是静止的(不移动的),并且可与sudac10c通信,与此同时以频率f3从sudac10c接收并以频率f4向sudac10c发送。当用户设备30a处于位置2时,sudac10c和用户设备30b的通信可能被以频率f2进行发送的用户设备30a干扰,其中用户设备30a的通信可能被以频率f3进行发送的sudac10c和/或以频率f4进行发送的用户设备30b干扰。备选地,用户设备30b也可以移动。

取决于载波频率f1-f4之间的关系,可能发生不同的情况:

如果所有频率都不同,则可能发生低的干扰或甚至没有干扰,从而可能不需要任何动作。在f1=f3的情况下,sudac10c可能在到sudac10b的相应前端通信链路中对用户设备30a造成干扰。用户设备30a可以发现下行链路上的干扰,并且可以检测到这是由sudac10c造成的。已知有若干种用于确定信号干扰的方法和概念。用户设备30a可以例如经由稍后描述的环回功能向用户设备30b、向基站或直接向用户设备30b发送频率改变的请求。备选地或附加地,用户设备30a可以改变其与sudac10b保持的频率设置。

如果载波频率f1等于载波频率f4,则用户设备30b可能对sudac10b前端通信链路造成干扰。用户设备30a可以在其下行链路上发现干扰,并且可以检测到这是由用户设备30b造成的。用户设备30a可以例如经由使用sudac10c的环回方法向用户设备30b发送频率改变的请求,向基站发送频率改变的请求,或经由到用户设备30b的直接链路发送频率改变的请求。作为对到用户设备30b的直接通信的备选,用户设备30a还可以利用sudac10c的前端下行链路的环回请求时隙。备选地或附加地,用户设备30a可以改变其与sudac10b使用的频率设置。

如果载波频率f2等于载波频率f3,则用户设备1可能对sudac10c前端下行链路造成干扰。这可能导致与针对以下情况所描述的类似的动作:载波频率f1等于频率f4,其中具有改变的伙伴。

如果载波频率f2等于载波频率f4,则用户设备30a可能对用户设备30b前端上行链路造成干扰。sudac10c可以检测干扰,并且检测到它由用户设备30a造成。sudac10c可以经由用户设备30a下行链路的环回时隙在载波频率f1上发送频率改变请求。备选地或附加地,sudac10c可以向用户设备30b发送干扰信息。然后,用户设备30b可以尝试经由直接链路和/或用户设备1的前端下行链路的环回请求时隙向用户设备30a发送频率改变请求。备选地或附加地,用户设备30b可以向基站发送频率改变请求或者相对于sudac10c改变其配置。

如果通信使用tdd模式,则可能发生所有频率相等的情况(例如,当tdma用于有效载荷和状态/控制复用时)。状态/控制信道可能不必以与有效载荷数据相同的频率进行发送。在这种情况下,用户设备30a可以首先检测由sudac10c和/或用户设备30b造成的干扰,并且用户设备30b可以检测由用户设备30a造成的干扰。此外,sudac10c可以检测由用户设备30a造成的干扰。这允许通信伙伴根据上述情况进行反应。换句话说,总结起来,用户设备30a和30b遇到sudac系统参与者的干扰的选项是:a)释放其自己的sudac,使其可以进入休眠模式并且可以在稍后重新获取,b)重新配置其自己的sudac的前端通信链路到具有较少或较低干扰的频率,c)直接和/或经由在干扰sudac上或到其他用户设备的环回命令和/或通过基站请求来发送频率改变的请求;d)经由对用户设备的环回命令或基站请求强制将干扰sudac关闭,可以将请求转发到其他用户设备或直接通过s6g(超高频率)提交命令到sudac(如果后端通信链路状态/控制信道已被实现)。状态控制信道的详细描述如下。

为了减少干扰的机会,当然可以将不重叠的频率范围分配给部署在不同房间中的sudac。sudas的成功自动分配取决于附加信息信道的存在,否则会发生隐藏节点问题。更简单的方法将是通过硬件开关实现所允许的频率范围的选择。此外,可以在sudac的安装时间进行分配。

虽然上述情况涉及频率1-4,但是很明显,这也适用于其中建立通信链路和/或发送消息或信号的频率范围。

图9示出了根据实施例的sudac系统90的示意性框图。sudac系统包括第一和第二bs侧sudac92a和92b,其被配置用于使用极高频率分别与基站40′建立后端间通信链路94a、94b。基站40′被配置用于从服务提供商接收信息,例如,基站40′可以是本地家庭基站,例如包括回程连接的家庭服务器,例如经由光纤、有线连接或无线连接。这可以称为毫微微基站或家庭基站。基站40′包括多个无线通信接口或天线,例如3个、4个或更多。如上所述,也可以在没有家庭基站的情况下实现sudas。

基站40′被配置用于基于与bs侧sudacs92a和92b的los连接来建立后端间链路94a和94b。因此,bs侧sudacs92a和92b可以用作基站40′的虚拟天线。当与用户设备30使用的sudac10a和10b相比时,基站40′以类似的方式利用bs侧sudac92a和92b,其中在第一侧的基站40′和bs侧sudac92a和92b以及在第二侧的用户设备30和sudac10a和10b之间的通信通过使用超高频率建立的内网链路96a-i来实现。这允许以更高效的方式将信息从基站40′分发到sudac10a和10b,因为在基站和sudac之间建立了不止一个连接链路,每个通信伙伴、用户设备30、sudac10a、10b、bs侧sudac92a和92b以及基站40′可以经由多个或甚至大量信道彼此进行通信。

bs侧sudac可以由sudac10或10′实现,sudac10或10′被配置用于使用极高频率建立到基站40′的通信链路,并且使用超高频率建立到另外的sudac10a和10b和/或到用户设备30的通信链路。简而言之,bs侧sudac92a和/92b可以是sudac10或10′,其在交换角色中与用户设备和基站进行通信。

备选地,sudac系统90可以包括仅一个bs侧sudac92a或92b和/或不同数量的sudac,例如零个、一个或多于两个。

换句话说,sudas基础设施可以用于不仅从房屋(基站)外部到内部通信,还可以用于房间之间的通信。如图9所示,家庭具有例如在客厅里终止的(光学)光纤到家连接。因此,在相应房间(例如,可能使用ehf(频带2)通信的客厅)中有一个毫微微(或家庭)基站40′,以便向客厅内的所有设备提供高数据速率。然而,为了在其他房间(例如在家庭办公室)也达到高数据速率,ehf通信是不可能的,因为它可能不会穿透墙壁。由于mimo增益太小(例如,当毫微微基站40′具有至多4个天线)时,常规wi-fi可能不会实现所期望的高数据速率。然而,毫微微bs可以使用ehf与客厅中的多个sudac进行通信,并将预编码的虚拟mimo(vmimo)信号发送到这些sudac92a和92b,sudac92a和92b然后通过s6g频带(频带1)将信号中继到家庭办公室。这里,若干个sudac10a和10b接收vmimo信号并将其通过ehf转发到用户设备30,用户设备30然后可以执行vmimo解码。当然,同样适用于另一个方向用于上行链路。这种情况可能需要资源分配,该资源分配还包括毫微微基站40′,因为它使用频带2中的链路/信道(这被称为“前端链路”,但是在这种情况下违反了其含义)。

图10示出了包括两个用户设备30a和30b以及两个sudac10a和10b的sudac系统100的示意性框图。sudac10a已经建立了与用户设备30a的前端通信链路18a和与用户设备30b的前端通信链路18b。sudac10c已经建立了与用户设备30b的前端通信链路18c和与用户设备30a的前端通信链路18d。基站40和sudac10b之间的后端通信链路14(暂时地)不活动,例如,由于用户设备30a和30b中没有一个从基站40请求服务。因此,用户设备30a和30b以及sudac10a和10b可以切换到设备到设备(d2d)操作模式,例如,基于到基站40的通信链路的丢失或不活动,或者基于由用户设备30a或30b发送的用户命令。

sudac系统100允许将信息和/或数据从一个用户设备30a或30b高效传播到另一个用户设备。这可能意在例如用于在小房间或空间内(例如,在建筑物或汽车内部)进行视频或音频广播或共享。如上所述,sudac系统100可以例如基于用户命令或基于从基站到用户设备30a或30b的通信请求或反之来切换回常规操作。资源分配可以由sudac10a、10b、用户设备30a和/或30b执行。因此,通信伙伴10a、10b、30a和30b中的至少一个可能需要知晓其余通信伙伴来确定和传播资源分配。

备选地,可以仅布置一个或两个以上的sudac。备选地或附加地,可以布置两个以上的用户设备。

换句话说,当两个ue要直接交换数据(而不是经由基站)时,与图9所示的情况类似的情况存在。这称为设备到设备(d2d)通信。汽车内有一个用例,其中视频播放器想要将视频传送到包括屏幕的后座娱乐系统。如果ue“看”不到彼此,则它们必须使用汽车中的sudas基础设施进行通信。观察到在这种情况下,两个ue/设备(通过sudac)之间的所有通信可以在ehf中进行(在s6g中,传播条件可能更好,但是在这种情况下可能所期望的数据速率不可达到)。基本上,单个sudac将足以将ehf信号从ue30a中继到30b和/或反之。然而,可能存在原因,为什么涉及多个sudac。例如,每个单独的sudac不提供足够大的带宽的信道,使得当使用单个sudac时不能达到所期望的数据速率,而是必须一起使用多个sudac。备选地或附加地,空间分集可能是另一个原因,因为人们在汽车中移动,汽车在街上移动,这种传播条件可能迅速变化。当分配ehf的资源时,可以考虑这种情况。

图11示出了用户设备30和sudac10之间的通信,特别是有效载荷和状态控制信道关联。为了清楚起见,由sudac10发送的用户信息信号32a和由用户设备30发送的用户信息信号32b被描绘为在频域中间隔开。备选地或附加地,信号32a和32b也可以在码域中、在时域中和/或在空间域中分离。信号32a和32b两者都包括状态/控制信道54a和/或54b,即被配置用于包括状态信息和/或控制信息(例如,图1中描述的控制信息24)的资源。信号32a和32b还包括有效载荷信道56a和56b,其被配置用于包括有效载荷数据,即与如电子邮件、视频、图片、消息等的服务相关的信息。

用户信息信号32a和32b以极高频率发送,并且例如可以分别在f1和f2处以不同的频率、频率范围发送。因此,可以减少或避免用户信息信号32a和32b之间的干扰。在时分多址接入(tdma)的情况下,状态/控制信道54a和/或54b可以嵌入有效载荷信道56a和/或56b中。在这种情况下,状态/控制信道54a或54b将在与相关联的有效负载相同的时隙中发送,这允许在接收时关闭所有发送器,反之亦然。这可能导致与ieee802.11ad类似地使用的方案,但具有高得多的自由度。尽管在前端通信链路中描述了状态/控制信道54a和54b,但是备选地或附加地,也可以在后端通信链路中实现状态/控制信道。

状态/控制信道54a与有效载荷信道56a相关联。有效载荷/控制信道54b与有效载荷信道56b相关联,使得sudac10和/或用户设备30可以接收关于如何继续进行相关联的状态/控制信道中的有效载荷数据的信息。这允许在保持数据本身不变的情况下转发有效载荷信道的数据。备选地,可以改变数据,并且可以经由状态/控制信道54a和/或54b发送关于改变的信息。

状态/控制信道54a和54b可以包括与信道估计相关的信息。例如,与信道估计相关的信息可以包括指示相移或允许补偿传输信道的相移的参数。基于在已知频率范围接收的接收符号与已知符号的比较,可以导出信道的失真。即,通过在状态/控制信道54a和/或54b中以已知频率发送已知符号,可以由接收通信伙伴10或30估计信道失真。备选地或附加地,与其相关的信息(例如,已经导出的信道失真)可以由发送通信伙伴10或30发送。接收伙伴10和/或30可被配置用于均衡所接收信号32b和/或32a以提高信号质量,从而提高信道吞吐量。

由于诸如衰落的信道失真可以是频率选择性的,所以均衡的可能性也可以是频率选择性的。简而言之,状态/控制信道可以允许在频率范围内(例如大约10、20或30mhz)的均衡,。状态控制信道54a和54b被示例性地描绘为当分别与有效载荷54a、56b的频率相比时被布置在较低的频率处。备选地,用户信息信号32a和/或32b的状态控制信道可以被布置在更高的频率处。可选地,第二(或甚至另外的)状态控制信道可以与有效载荷信道相关联,因为它由布置在比与其相关联的有效载荷信道56b更高的频率处的可选状态控制/信道54b′指示。第二(或甚至另外的)状态/控制信道54b′可以允许可以被均衡的增加的带宽。这可以允许增加有效载荷信道56a和/或56b的带宽。

备选地或附加地,要转发的有效载荷信息可以被分成多个部分,多个部分分别由状态/控制信道54a和/或54b、54b′划分(当考虑fdd传输时)。备选地,当传输利用tdd时,上述描述中的空分和/或码分也可以应用于相应的域,尽管例如在tdd中,状态/控制信道54a、分别地54b和可选地54’的频率范围以及有效载荷信道56a、分别地56b的频率范围是一样的。

图12示出了可以例如在sudac和用户设备之间的通信链路中在极高频率处实现的多个会聚信道的示意性结构。多个回合信道58a-c均包括指示为brc的相应会聚信道的带宽,所述多个回合信道58a-c在频域中相互邻近地布置,并且彼此间隔开会聚信道58a-c之间的带隙,所述带隙被指示为brg。备选地,会聚信道58a-c可以被布置成使得会聚信道58a-c跨频谱散布,例如使得有效载荷信道56a或56b被布置在两个会聚信道58a-c之间。会聚信道58a-c包括至少一个状态/控制信道54a、54b或54′。会聚信道58a-c的散布以及因此状态/控制信道的散布可以允许对信号失真的良好估计,如对于图11所述。

每个会聚信道58a-c可以包括多个状态/控制信道54a-c,每个状态/控制信道54a-c包括频率范围内的相应带宽,指示为bsc,其中状态/控制信道彼此分离被指示为bg的状态/控制信道之间的带隙。因此,多个状态/控制信道可以聚合成一个会聚信道58a-c,并且可以在频率范围内布置多个会聚信道58a-c。这允许将状态/控制信道54a-c灵活地分配给有效载荷信道。此外,状态/控制信道54a-c可以用作处于低活动(操作)模式(休眠模式)的sudac的唤醒信号,以用于指示相应sudac可以变为活动操作模式。带隙brg和/或bg的状态/控制信道54a-c的带宽和/或会聚信道58的带宽可以是非常灵活的。降低的带宽可以允许状态/控制信道54a-c的密度,并且因此可以允许减少会聚信道58a-c的带宽。

备选地或附加地,也可以在sudac和基站之间的后端通信链路中并且使用极高频率来实现一个或多个会聚信道。

换句话说,在频带2(极高频率)中,某些频带可以被保留为会聚信道。会聚信道的频率距离间隔例如在sudac中预定义。实际布局可以被定义为例如规则距离,所述规则距离省略某些频带,如例如ieee802.11ad的低速率信道的频率范围内的频带或完全任意的频带。在后一种情况下,sudac会聚信道的频率位置可以在用户设备和相应的sudac之间共享,作为固定的一组参数,然而其必须在所有系统配置中或在如蓝牙、有线互联网、usb等的备选接口上可用。在会聚信道58a-c内,可以提供多个状态/控制信道54a-c。

这些信道使用比发送有效载荷数据可能所需的带宽小得多的带宽。由此,可以通过频率分离大量状态控制/信道并保持相对小的带宽。时间/码-域中的附加分离仍然是可能的。状态/控制信道的目的是多方面的。它可以充当用于发现目的的信标信号,它可以提供关于sudac以及还关于sudas的状态信息和/或可以是用于获取sudac的控制的有效载荷独立接口。此外,状态/控制信道可以用于维持已建立的sudac获取,即用户接口和/或基站可以继续控制sudac。

状态/控制信道可以在时间-频率-码-空间中的有效载荷信道的附加信道中定义。信道的总带宽(由状态/控制和/或有效载荷信道组成)是可配置的。

前端通信链路可以用于例如频分双工(fdd)或时分(tdd)模式。后者可能需要sudac和ue同步其传输,而fdd允许完全异步传输。

如果在频分多址接入(fdma)模式下使用前端链路,则可以为状态/控制信道保留频谱中的一部分。状态/控制信道可以位于接近用于有效载荷的频带的良好定义的距离,使得两者可以被相同rf级接收或发送。在这种情况下,有效载荷及其相关联的状态/控制信道的传输方向(上行链路或下行链路)总是相同的。

在时分多址接入(tdma)的情况下,状态/控制信道被嵌入到有效载荷信道中。在这种情况下,状态/控制信道将在与相关联的有效载荷相同的时隙中发送,允许在接收时切换所有发送器(反之亦然)。这导致与ieee802.11ad所使用的类似的方案,但是具有高得多的自由度:多个会聚信道是可配置的,fdd被实现为会聚信道的进一步的自由度和/或会聚信道的频率位置是可配置的。

现在要注意有效载荷和状态/控制信道的关联。有效载荷信道包含意图用于bs(上行链路)或ue(下行链路)的数据。不对有效载荷进行分析,而仅直接转发或通过压缩和转发/解码和转发方法进行转发。如上所述,状态/控制信道提供接口以供ue或sudac接入传输伙伴,允许设备的同步和传播信道的估计,并向链路伙伴和其他侦听设备提供状态信息。状态/控制信道的附加功能是提供可靠和准确的信道估计所需的额外信息(例如导频符号)。为了能够提供这个,每个有效载荷信道与一个或多个状态/控制信道相关联。

如上所述的状态/控制信道针对频带2(极高频率)定义。该状态/控制信道终止/起始于sudac和ue。可以在频带1(超高频率)中建立到bs的附加状态/控制信道。为此,bs可以实现,即可以被配置用于在空间复用模式和波束成形模式之间的切换以建立与sudac的连接。仅需要sudac为频带1提供单个天线。更多的天线是可能的,但是由于亚6g链路的频率,2个天线之间的相关距离可能大于典型的sudac大小。因此,亚6g中的多个天线可能通过外部接口被提供给sudac(例如,通过线缆连接的天线),尽管具有用于多个天线的足够大的大小的sudac是可行的(例如,将sudac集成到电视机中)。最后,sudac可以操作如将它的sudas之外的其它sudac用作类似于ue的外部天线。此时,这个要求可能已经过时了。通过适配传输模式,基站可以增强不同信息到不同通信伙伴的传输。例如,当基站经由后端通信链路向用户设备发送或从用户设备接收信息时,基站可以实现空间复用。当基站向一个或多个sudac发送或从一个或多个sudac接收状态/控制信息时,基站可以实现波束成形。基站的控制器可以以恒定或可变间隔在这两种模式和/或其他模式之间切换。备选地或附加地,控制器可以被配置用于基于要发送或预期要接收的消息或信息在模式之间切换。备选地,基站可以同时实现这两个功能,例如当为每个功能使用不同的天线时。

针对某些操作模式可以禁用有效载荷和状态/控制信道两者。当sudac正在等待配置,即由用户设备或基站配置,(会聚模式)可以禁用有效载荷信道。这允许最大化可以利用单个会聚频带的sudac的数量,因为通过仅发送窄带状态/控制信道可以最小化单个信道的信道带宽要求。在单向数据传输(例如tdd模式下的广播或单向(上行链路/下行链路)时间跨度)的情况下,有效载荷信道在一个方向上被去激活。然而状态/控制信道必须是可用的,因为这是sudac和ue之间的连接所需要的。如果使用fdd,则对于这样的传输的状态/控制信道可以位于会聚信道范围中,并且不需要到有效载荷源(例如bs)的返回信道。否则它可以在fdd中使用,也可以在tdd中用于将状态信息连续反馈给有效载荷发送器(ue或sudac)。

在单向数据传输的情况下,对于没有数据传输的方向,有效载荷信道可能被禁用。在第二ue与第一ue一起使用相同的sudac搭载(fdd模式,共享相同的频率范围但使用不同的频率)的情况下,它不发送状态/控制信道以提供后端频谱的连续使用。

换句话说,用户设备可以包括常规模式,在常规模式中它发送有效载荷数据和相关联的状态/控制信道,以及搭载模式,在搭载模式中它简单地将有效载荷数据发送到例如搭载数据的另一个用户设备。

因此,会聚信道和/或有效载荷信道的状态/控制信道的带宽可以是可适配的。sudac的处理器可以被配置用于在对接收到的信号进行频率转换的同时适配信令/控制信道的参数。这允许更新或改变与可能改变的有效载荷数据相关联的相应信息。例如,sudac可以用改变的状态/控制信道指示使用搭载模式,并且扩展到相关联的用户设备的数据的另外的数据被包括在有效载荷信道中。

备选地或附加地,sudac的处理器可以被配置用于改变有效载荷信道的带宽,即增加它或减少它。如果带宽增加,则这可以在具有相应信息的状态/控制信道中指示。例如,如果使用或需要较低带宽的状态/控制信道,则现在未使用的带宽可以用于例如以较低的压缩率发送有效载荷数据,这可以允许较少的计算量和较少的时间延迟。即,这允许sudac的处理器基于来自用户设备或基站的控制信息来实现可变速率的压缩或解压缩。

备选地,如果使用或需要更高带宽的状态/控制信道,则可以减小有效载荷信道的带宽,使得更高的带宽可用于信令。然后,当比较具有相同长度的两个时间帧时,在状态/控制信道的带宽增加的第一时间帧(持续时间)中,与其中状态/控制信道的带宽不增加的时间帧(持续时间)相比,经由有效载荷信道发送较低数量的比特。备选地或附加地,还可以改变多个状态/控制信道,例如,在有效载荷信道临时与另外的状态/控制信道相关联的情况下。

备选地或附加地,状态/控制信道可以如上所述在后端通信链路中实现。sudac可以被配置用于经由控制/状态信道向基站发送或从基站接收控制数据。sudac的处理器可以被配置用于基于状态/控制信道中接收到的控制数据来适配状态/控制信道以适配基站的信道分配或带宽分配。例如,如果用户设备发送更高数据速率的请求,则sudac可以使用状态/控制信道来相应地控制基站。备选地或附加地,当被请求组织网络时,基站可以向sudac发送控制数据,使得sudac改变前端通信链路的参数或者备选地切换到休眠模式。

根据用户设备的决定(例如,通过针对高资源利用和/或基于用户命令的算法),选择哪个实例来组织网络(其可以是用户设备本身、sudac或基站),用户设备也可以请求基站控制网络。

因此,用户设备可以经由前端通信链路的状态/控制信道或经由直接链路发送控制信息以控制sudac。例如,用户设备可以经由直接链路向基站发送控制信息(与sudac相关的信息)使得基站基于控制信息来控制sudac。

图13示出了包括sudac10、用户设备30a和用户设备30b以及基站40a和基站40b的sudac系统的示意图。在无线网络中,将用户或网络节点的信息提供和传播给其他参与者可能是重要的。因此,前端通信链路和/或后端通信链路可以包括可以跳过常规通信的随机接入信道(rach)。想要将数据进一步发送到正常通信的参与者或其他参与者可以接入随机接入信道并且发送数据,如针对用户设备30a所描绘的。用户设备30a经由前端通信链路发送随机接入数据或随机接入信息62。sudac10被配置用于重发(环回)随机接入信息62,从而实现环回功能。由于无线通信可被视为广播,在范围内的所有用户设备30a和30b接收信息。用户设备30a可以使用接收到的信息来执行如信道估计的附加功能,因为它知道其已经发送的随机接入信息62。即使在用户设备30a和30b之间没有直接连接的情况下,控制sudac并且经由sudac10将其数据发送到基站40b的用户设备30b也可以通过该过程从用户设备30a接收数据。因此,用户设备30a、分别地处理器(例如,由图3所示的处理器31)可以被配置用于评估(比较)所发送的随机前端信息62和所接收的随机接入信息62,从而获得与前端信道相关的信息。备选地,可以评估随机接入信息62以从另一用户设备30b或从(另一)基站40a或40b获得信息,特别是当用户设备尚未发送随机前端信息62时。基站40a被配置用于通过发送随机后端接入信息64来接入后端随机接入信道,所述随机后端接入信息64在前端链路和/或后端链路中的重传方面可以由sudac10处理。

sudac10可以被配置为评估随机接入信息62或随机后端信息64,并且根据随机(后端)接入信息62和/或64来执行操作或者适配操作模式。所执行的操作可以是例如与指示随机(后端)接入信息62或64被正确接收的确认相关的信息的传输。备选地,所执行的操作可以是新生成的消息,其向范围内的通信伙伴30a、30b、40a和/或40b通知接收到的信息。备选地,随机接入信息62可以包括不控制sudac10的用户设备30a的优先级信息。例如,sudac10位于用户设备30a的用户的建筑物(家庭)内部。用户设备30b由客人操作。用户设备30a可以与sudac10相关联。用户设备30b可以控制sudac10,例如,由于用户设备30a不存在。如果用户设备30a开始操作(存在)和/或在用户设备30a处执行用户命令,则随机接入信息62可以包括指示sudac被请求由用户设备30a控制而不由用户设备30b控制的优先级信息。然后,sudac可以被配置为根据从用户设备30a接收的命令来改变操作(模式)。改变的操作还可以包括停止操作和/或改变为休眠模式的命令。通过随机后端接入信息64,这种命令可以备选地或附加地由基站40a和/或40b接收。

备选地或附加地,sudac10可以被配置用于在将随机接入信息62频率转换为与后端通信链路的要求兼容的随机接入信息62′之后,经由后端通信链路发送随机接入信息62。备选地或附加地,基站40a可以被配置用于经由后端通信链路的随机接入信道向sudac10发送随机接入信息。sudac10可以在后端通信链路上重发随机后端信息,这可以使得能够实现基站间通信。此外,sudac10可以被配置用于经由前端通信链路发送随机后端信息,以将信息广播到用户设备30a和/或用户设备30b。

传输的另一个特殊情况是在ehf上以及在中继的s6g侧的有效载荷信道环回。这是一个可选模式,其允许sudac还充当频带内(ehf-ehf或s6g-s6g)或频带间(ehf-s6g或反之)中继。

换句话说,这个概念的新颖之处是状态/控制信道的环回部分。如果ue想要使用sudas,仅发现所使用的sudac,并且不能建立与使用sudac的ue的直接连接,则该概念可能变得有利,

环回信息也可以由sudac处理器分析。这可以决定对一些特殊命令操作(例如将一些信息转发到后端状态/控制信道,强制到用户设备(例如,30b)等的连接释放)。通过这个,可以完成向后端侧的环回转发(或反之)(如果实现后端状态/控制接口)。然而,具有状态/控制接口的所有设备(sudac、ue、bs)必须重发环回数据作为确认和数据的中继。

图14a和图14b图示了环回功能的细节。在图14a中,用户设备30a与sudac10的控制/状态信道54a相关联。在未由用户设备30a使用的时间期间,用户设备30b发送环回请求,即随机接入信息62。允许这种传输的时间可以由用户设备30a发送的所谓的导频符号66u来指示。另一用户设备30a被配置用于根据模式(例如导频符号66u之间的时间距离)发送导频符号66u。另一用户设备30b被配置用于同步到该模式,即,导频符号66u,并且用于在为此保留的时间(或频率)间隙处发送随机接入信息62。

图14b示出sudac10的重传,其中在由sudac10发送的两个导频符号66s之间插入环回响应。因此,sudac10将环回请求62中继到其下行链路信道。备选地,sudac10还可以发送随机接入信息62的修改版本。例如,用户设备30b可以识别sudac10,并且还可以识别sudac10正在使用中,即由另一用户设备控制。随机接入信息62可以涉及请求与控制sudac10的用户设备相关的信息,涉及与关联于sudac10的基站相关的信息等。然后,sudac10的环回响应可以包括所请求的信息,即,sudac可以提供所请求的信息。备选地或附加地,sudac10可以被配置用于仅发送随机接入信息62的有效载荷部分。

备选地或附加地,导频符号66u和/或66s可以被包括在状态/控制信道中,如将在图19中描述的。

换句话说,当用户设备30a是允许发送状态、命令和命令响应信息的唯一用户设备时,用户设备30b在环回请求时隙中发送数据。该数据随后在sudac10的下行链路信道上作为环回响应被重发。指示为l1的消息还可以包含用于同步和信道估计目的的附加导频符号。

知晓sudac的前端链路配置的任何ue可以通过侦听其前端下行链路信道来与该sudac传输结构同步。然后能够将信息插入到在sudas前端下行链路信道上进一步中继的sudac前端上行链路信道。由此,可以确保特别是控制sudac的ue和发送信息的ue接收中继的消息。例如,该方法可以用于实现2个ue之间的通信,广播消息到所有侦听ue,就像单个ue的直接环回链路。

图15a示出了在上行链路方向上并且由sudac10执行的前端通信链路18到后端通信链路14的转换。sudac10接收包括状态/控制信道54和有效载荷信道56的用户信息信号32b。sudac将有效载荷56转换为有效载荷56′,例如,通过压缩和转发方法。通信信号42a以如由ftuneband2a和ftuneband1a指示的不同的频率被发送。有效载荷56′a与来自其他sudac56′b的有效载荷分离带隙bg2。有效载荷56与状态/控制信道54分离带隙bg1。带隙bg2和bg2可以包括彼此相等或不同的带宽。备选地或附加地,经由有效载荷信道56′a发送的信息可以包括sudac10经由有效载荷信道56接收接收并且聚合到有效载荷56′a的信息的多个部分。如上所述,尽管状态/控制信道54被描绘为与频域中的有效载荷信道分离,但是它们也可以例如在使用tdma传输模式时经由相同的频率来发送。

图15b描绘了sudac10在下行链路方向上的转换。通信信号42b包括中心频率ftuneband1b处的有效载荷信道56,其可以不同于图15a所示的中心频率ftuneband1a,使得信号42a和42b之间的干扰被减少或避免。sudac10将通信信号42b转换成包括状态/控制信道54和有效载荷56的用户信息信号32a,所述有效载荷56当与有效载荷56′相比时可以是例如压缩的。用户信息信号32a的中心频率被表示为ftuneband2b,并且可以不同于图15a中描绘的中心频率ftuneband2a。

图15a和图15b示例性地描绘了状态/控制信道54与有效载荷信道56、56′、56′a和/或56′b之间的关系。状态/控制信道54和有效载荷信道56可以以不同的频率发送,如图15a和图15b所描绘的。在时分多址接入(tdma)的情况下,状态/控制信道54可以被嵌入在有效载荷信道56中。在这种情况下,状态/控制信道54将在与相关联的有效载荷相同的时隙中发送,这允许在接收时关闭所有发送器,反之亦然。使用诸如cdma或sdma之类的其它调制方案可能产生类似的效果。

图16a示出了当与图13a和13b相比时被修改的情况,其中表示为brelay的有效载荷数据的带宽较大。有效载荷数据在转换为56′a和56′b(图16a)的两个有效载荷信道56a和56b中发送,或反之(图16b)。即,有效载荷信道可以包括多个不同的有效载荷信息,其中带宽brelay可以根据实际情况而变化,如上所述。不同的有效载荷信息可以被带隙分离。如在图14a和14b所示的搭载模式中,标记为有效载荷2的有效载荷数据在没有单独的状态/控制信息的情况下被发送,可以实现分离。有效载荷信道56a与有效载荷信道56b分离带隙bg3。一种选项是在频带1中(即在超高频率中)的有效载荷信号之间引入包括至少bg1+bg3+bs/c的带宽bg4的保护频带。尽管这可能是合适的,但是由于在未使用的带隙中的噪声和干扰放大引起的影响必须用合适的滤波策略来考虑。备选地,带宽bg4可以包括不同的值,例如更高的带宽,允许具有较低复杂度(频率范围中的滤波器函数的更平坦的斜率——由信道周围的虚线表示)或更低的带宽(允许通过媒介的吞吐量增加)的滤波器。例如,如果单个宽带信道要针对频带1(例如200mhz)从多个ehf有效载荷信道聚合,则带宽bg4还可以包括零值。

换句话说,搭载方法是动态地改变信道有效载荷带宽的推广。通过这种方法,使系统的中继路径最大化变得可能,因为可以以与分配后端通信链路相同的方式来分配前端通信链路。因此,可以使用具有自适应带宽的简单中继来中继多个信道。

图17a-d示出了正常分配和搭载分配之间的比较。在图17a中,示意性地示出了三个用户设备均使用信道进行通信,从而产生三个状态/控制信道54a-c和三个有效载荷信道56a-c。图17b示出了这可能导致用于后端通信链路通信的三个sudac的使用,其中每个sudac被配置用于执行到一个基站的通信。

在图17c中,描绘了通过允许搭载,需要与有效载荷信道56a-c相关联的仅一个状态/控制信道54a。基于后端通信中的一个状态/控制信道,可以将信息发送到一个基站,如图17d所示。因此,极高频率(频带1)的分配仅需要一个sudac。

换句话说,为了可预测地使用该方法,可能需要bs知晓sudas。这意味着:a)如果ue经由直接ue-bs链路和/或中继链路使用sudas,则bs查询ue,b)ue向bs发布它使用sudas(经由直接ue-bs链路和/或中继链路)和/或c)sudas向bs发布其存在(例如,通过根据所使用的移动标准或经由后端链路状态/控制信道标记有效载荷)。

已经知道了sudas的存在,bs可以分配后端通信链路信道,使得可以例如在连续的频率块中相应地分配前端通信链路。这也包括跨多个bs的分配。例如,全部连接到其自己的运营商的bs的2个ue尝试共享一个sudac。一个ue具有对sudac的控制。另一个ue发现sudac和该配置,并尝试使用搭载模式。为此,ue可以经由sudac(例如,经由环回传输)在有效频率映射上进行协商。然后,他们将计划的搭载模式发布到其相应的bs,bs提供其是否能够支持所请求的设置或提出并配置备选分配的信息。由此,可以例如通过加权算法来选择最佳设置。这甚至可能包括哪个ue控制sudac的强制改变。

状态/控制信道用于上行链路和下行链路。可以支持的信息的示例在下面提供,其中可以备选地或附加地包括定制信息。强制信息不需要一直提供,也可以根据请求进行发送(例如,干扰源图是不需要一直发送的好的候选)。

图18描绘嵌入在状态/控制信道中的同步符号的使用。导频符号66也可以在状态/控制信道54中被表示为同步标记。状态/控制信道54包含帧结构,该帧结构包括用于信道估计和信令数据67的导频符号66。信令数据67包含不同类型的部分,如图19所示。

根据图19所示的图示但不限于此,信令数据中存在五种不同类型的内容:a)固定状态数据:这些是以规则间隔发送的,b)命令数据:发送器向接收器发送命令。通常这被ue用来控制sudac,但例如当bs控制sudac,然后使用sudac相应地配置ue时,也可以从sudac到ue使用。响应数据(c)可以包含与所接收的命令相关联的数据。通常,这由sudac用来确认由ue发送的命令,但不限于此用途,因为sduac还可以向ue发送命令(或请求)。可以在为与活动sudac链路不相关联的ue保留的数据时隙中发送环回请求(d),以将命令或状态信息插入到控制/数据流中,从而创建随机接入信道。环回响应(e)可以被实现为包含来自环回请求时隙的环回数据的信道。

这个概念独立于时间-频率-码-空间中的实际实现。导频符号的实际分布可以任意定义或根据现有协议来定义。

针对实现考虑可变基础设施的网络结构,实现了网络节点的另外功能,如下面将要描述的:

为了在ue处使用sudas,必须知晓sudac的存在。因此,ue支持发现sudac的方法。ehf频带中的发现过程由ue或sudac发起。在sudac能够直接与bs通信的情况下,bs可以支持s6g频带中的类似方法。在下文中,描述了假定ue发起该过程的方法。这是一种功率高效的方法,它最小化整体辐射功率,因为它仅在它被实际需要时发现并配置sudas。该方法当然可以以如下方式扩展,即使得sudac也被允许对sudas的其他参与者进行主动发现。这当然将是更耗电的,这可能成为一个问题,特别是如果ue不断地针对sudas的存在进行侦听。

在sudac已经上电之后,它将默认进入会聚模式。之后,sudac等待,如果没有建立与ue的连接,将超时并进入休眠模式。如果连接被建立,则sudac将被配置为以不同于ue的会聚频率的频率进行接收和发送。

这意味着ue可以尝试发现可以具有四种或更多种不同状态之一的sudac:

休眠模式(其也可以被称为下电模式)的目的是在sudac不活动的时候最小化功耗。一些或全部空中接口被禁用,sudac无法被发现。休眠模式在进入可配置的时间和侦听模式后结束。

在侦听(操作)模式下,后端通信链路接口被禁用。前端下行链路接口被禁用。前端上行链路接口被启用。sudac通过会聚频率循环其状态/控制接收接口,并侦听“唤醒”命令。sudac可以分析会聚频率中的所接收功率。在功率不是由另一个sudac引起的情况下,频带可以被标记为“干扰”,并且可以在可配置数量的扫描周期内从扫描过程中被省略(备注:干扰源表可以通过状态/控制信道来发送)。在转变通过所有会聚频率加上其最后的活动频率后,sudac进入休眠模式。如果发现唤醒命令,sudac在发现唤醒的频率处/附近进入会聚模式。如果允许sudac进行主动发现,则sudac可能进入发现模式。进入发现模式也可以被如按钮之类的外部接口强制进行

在可选的发现-(操作)模式下,后端通信链路上行链路接口被禁用。后端通信链路下行接口被禁用。有效载荷信道被禁用。前端下行链路接口在会聚信道中低干扰频率处启用。发送唤醒命令,并启用前端上行链路接口。执行会聚信道的扫描以检测干扰、sudac或ue。如果没有检测到sudac或ue,则针对下行链路接口的配置提供干扰信息。如果接收到ue或其他sudac的状态和控制信息,则存储有关网络布局的信息。在给定的时间之后,在没有检测到附加的sudac或ue的情况下,sudac进入休眠模式。

在会聚-(操作)模式中,后端通信链路上行链路接口被禁用,后端通信链路下行链路接口被启用。ue根据bs配置来配置sudac的后端通信链路频率(如果实现了bs-sudac状态/控制信道,则这也可以由bs本身完成)。sudac连续不断地测量后端通信链路的质量(例如功率、snr等)。有效载荷信道被禁用,并且前端下行链路接口被启用。发送sudac的状态/控制信息,其包括后端下行链路的质量指示符。前端上行链路接口被启用。接收ue的状态和控制信息。根据ue的命令,sudac进入活动模式。为此,频率可以改变,因为在会聚频带内不允许有效载荷。为此,前端频率由ue配置。为了决定频率,ue可以扫描频率区并选择具有低干扰的频率,使用其已经存储或由其他ue、sudac或bs提供的网络布局的知识。然而,ue仍然可以通过扫描干扰来确认频率分配的有效性。在可配置的时间量内没有接收到ue的状态/控制时,sudac进入休眠模式。

在活动(操作)模式中,所有空中接口都被启用。有效载荷和状态/控制信道根据配置被启用。在对可配置的时间量内没有接收到ue的状态/控制时,sudac禁用所有空中接口并进入休眠模式。

为了发现下电的sudac,ue的第一步是唤醒所有可达的下电sudac,并强制其进入会聚模式。这是通过在会聚频率处发送唤醒命令来完成的。这可以在sudac的休眠周期的持续时间内完成,以确保信号被所有可用的sudac接收。ue以至少一个会聚频率发送唤醒命令。通过针对干扰功率扫描候选频率并选择具有足够低干扰功率的频率来完成该频率的选择。扫描频率范围还包括预期sudac的唤醒应答的频带。在fdd模式中,这是与请求频率相比的另一个频率,在tdd模式中,这显然是与请求频率相同的频率。

备选地,sudac可以针对活动(接收功率)扫描s6g或ehf频带以唤醒并在会聚信道上发送状态/控制。然后,ue可以简单地扫描状态/控制(即,经由状态/控制信道发送的信息)。当然,sudac也可以连续不断地或离散地扫描所使用的会聚频率。这将是状态/控制的发送,并在转到下一个频率之前等待响应。

为了在会聚模式中发现sudac,ue针对接收到的控制信道扫描其选定的会聚确认频率。该频率在tdd的情况下与唤醒频率相同,或者在fdd中是具有与唤醒命令频率的已知相对位置的不同频率(例如由唤醒命令定义)。随机接入信道(rach)协议用于发现应答唤醒命令的多个sudac。在接收到下行链路控制信道之后,ue根据如例如最佳snr的一些决定规则,发送上行链路控制信道,并将所选择的sudac配置成不同的前端通信链路频率。然后,ue可以通过在该信道上有规律地发送状态/控制消息来保持已经获取的sudac。在这样禁止所获取的sudac回退到休眠模式的同时,ue可以尝试发现另外的sudac。

可以由扫描ehf频带并搜索前端通信链路中的发送功率的ue发现活动sudac。如果找到具有显著功率的有效载荷信道,则ue尝试对sudac控制信道进行解码,该sudac控制信道是在距有效载荷信道的载波频率的良好定义的频率距离处或在取决于sudac传输能力的有效载荷频率处找到的。在找到sudac控制信道的情况下,ue分析内容以决定sudac是否可以搭载使用,这意味着sudac的未使用的有效载荷带宽由第二ue使用,而不提供状态/控制信道。

在使用sudas时,发现过程由ue有规律地发起,以确保在ue移动的同时正在检测新的sudac,并且可以对新的资源重新分配做出决定。该发现过程还包括用于活动sudac的ehf频带的规则扫描,以使ue能够可以以更好的连接切换到sudac。这当然必须与目前使用其他sudac的ue协商。

值得注意的是,其他应用当然可以使用由sudas提供的基础设施。例如,室内导航可以基于由sudas提供的状态/控制信道。

在所有可达的sudac被发现之后,必须通过资源分配和信道化以最佳方式分配资源。可能被考虑的要点是:a)后端通信链路带宽是系统中最有限的资源,b)系统有利地能够服务于多个ue,c)该系统有利地能够服务于潜在地来自多个移动网络运营商的多个bs,d)网络拓扑不是静态的,因为ue可以移动或者ue的周围环境可以改变(例如身体移动),e)ue所要求的数据速率(因此链路质量)随时间而改变,f)sudac和ue可以充当彼此的干扰源(在ehf处)和/或g)其他设备可以充当sudac的干扰源,其中ue可以决定哪个sudac用于数据传输以及哪个sudac要释放。这可以与bs协作完成。协作的类型取决于sudac的能力。

前端状态/控制信道可以使用空间mimo技术或波束成形,因为可以在sudac和ue中提供ehf的所需天线,即可以根据分配方案来发送状态/控制信道。对于亚6g频带,sudac将大部分仅并入单个天线。在这种情况下,bs可以仅对后端状态/控制信道应用波束成形技术。这意味着在状态/控制信道在后端通信链路中实现的情况下,bs可以在mimo和波束成形模式之间辨别。在sudac的情况下,bs将以不同的频率发送波束成形的状态/控制信道,而dsudac可以备选地根据要发送什么类型的数据在空间复用或空时编码和波束成形之间进行切换。对于状态/控制数据,bs切换到波束成形模式,同时对于发送有效载荷数据,使用空间复用或空时编码mimo模式。

在后端状态/控制信道可用的情况下,sudac可以由bs、ue或两者配置。在使用由asudac和dsudac组成的混合sudas,或者ue配置前端通信链路的资源分配,同时bs配置后端通信链路的资源分配的情况下,协商可以直接在ue和bs之间或经由单独sudac进行。

关于所使用的sudac以及它们的t-f资源的配置的决定是在阶段过程中完成的。阶段1是基于前端链路的质量和可用性。ue能够通过分析下行链路状态控制信道来决定前端链路质量。ue可以通过在上行链路信道上将测试数据发送给sudac并分析环回的信号来使用环回方法接收关于上行链路信道质量和信道失真的信息。备选地,sudac可以通过分析ue上行链路状态/控制数据并将分析结果作为状态信息包括在前端下行链路状态/控制信道中来提供质量信息。以这种方式,ue可以决定仅使用具有良好前端连接的sudac。备选地,bs可以通过从sudac和ue接收质量信息来决定所使用的前端通信链路资源。所使用的前端通信链路(tdd或fdd)的类型由sudac的能力和网络布局的整体规划决定。在sudas内允许不同的链路类型的混合。

链路评估的阶段2是分析下行链路和上行链路中的后端链路的质量(例如信噪比-snr)。根据sudac类型,sudac可能能够直接向ue提供后端下行链路的质量指示符(例如所接收功率、snr)。备选地,ue可以计算通过前端下行链路提供的中继的有效载荷上的质量测量。这样,ue可以选择使用具有到bs的良好下行链路连接的sudac。后端上行链路的质量只能由bs评估,所述bs将其接收条件反馈回ue。为此,sudac的传输功率可以由ue或bs配置,以提供用于在bs处实现良好mimo矩阵的最佳功率分配。

在建立sudac和bs之间的状态/控制信道的情况下,可以通过像在前端通信链路中一样分析信道来估计信道的质量。

除此之外,ue可以与bs协作来分配频率资源。这允许在资源分配意义上优化从ue到bs的整体传输。

可以允许最大数量的ue共享sudas。在多个ue正在使用一个sudas并启用搭载模式的情况下,ue可以请求bs(或bs决定)分配在彼此旁边的传输频率,使得单个sudac可以发送多个ue的有效载荷数据。在sudac在tdd模式中应从不同的不同步的bs发送有效载荷信道(这意味着这些信道必须在不同的频率上)的情况下,这些信道也可以被频带2中的频率分离,以禁止符号干扰。在由频率选择性衰落或干扰引起的不良的bs至sudac连接的情况下,ue可以请求bs在频带1中移位上行链路频率,以避免不良的后端通信链路。在由频率选择性衰落或干扰引起的不良的sudac至bs连接的情况下,bs可以决定在频带1中移位后端通信链路频率。

备选地或附加地,也可以从基站向不同的用户设备装置实施搭载传输。sudac可以在两个有效载荷信道中接收有效载荷信息,这两个有效载荷信道可以被布置成彼此相邻或间隔开,即,其它信道被布置在其间。sudac可以被配置为将不同的有效载荷信息聚合到一个有效载荷信道,并且将有效载荷信道发送到控制sudac的用户设备装置和/或另一用户设备。因此,搭载模式可以与载波聚合结合实现,以将专用于不同有效载荷信道的载波频率(或其他资源)聚合到前端通信链路中的一个信道。asudac可以在频域中布置彼此相邻的有效载荷信道。dsudac可以执行其他信号处理操作以获得一个前端通信信号。这也适用于在基站(上行链路)的方向上的通信。

可以实现附加功能,例如,bs可以请求ue关闭或启用sudac。在支持后端通信链路上的状态/控制的sudac的情况下,可以允许bs进行sudac的配置。这特别允许bs关闭仅在后端通信链路上提供干扰的故障sudac。

这种协作可能到实际上一个或多个bs(甚至可能在不同的移动网络中)完成了所有的资源分配为止。针对此的情况是所有的ue向bs提供关于所发现的sudac的信息。然后,bs为这些sudac分配前端和后端频率。然后将信息发布给ue和所有可达到的sudac。由此,可以优化整体网络布局,并且例如减少干扰。此外,由于bs具有sudac配置的知识,它能够向ue提供此信息,因此这些可以优化其发现策略。在实现bs和sudac之间的状态/控制信道的情况下,bs可以直接配置整个sudas避免隐藏节点的问题。由于bs知道可用的sudac和ue的数量,所以可以将sudac与ue相关联并且确保公平的资源提供。此外,bs能够调节前端和后端通信链路中的传输功率,或者在具有压缩/解码和转发能力的sudac的情况下,调节所使用的压缩/解码配置。最后,bs甚至可以使用sudac主动发现模式来测量sudac之间的接收条件,并应用该知识来针对sudas前端通信链路应用波束成形。

在支持多个ue中,可以看到sudas的非常重要的方面。在下面的示例中,给出了2个ue来演示所使用的方法。所提供的方案当然可以推广到多于2个ue。

假设两个ue看到相同的sudas,例如,ue1通过上述的压缩和转发方法来接入sudas,并且ue2尝试接入sudas。

倘若所有sudac由ue1使用,并且在唤醒已经发出之后在会聚信道上没有发现响应。则ue2扫描ehf频带(频带2)中的活动sudac。如果它发现活动sudac,则它读取前端通信链路状态控制信道,并识别正在使用sudac和信道配置的ue。

ue2的选项是:a)在搭载模式中使用sudac,倘若这通过信道设置和sudac能力是可能的。为了增强这种模式的成功机会,ue2向bs发布其意图,这可能重新分配后端通信链路资源。然后ue2指导sudac和ue1切换到搭载模式(例如通过环回请求)。在选项b)中,ue2然后可以向ue1发出sudac释放请求。这可以在sudac上行链路控制信道频率上完成。ue2需要与状态控制信道的结构同步,然后使用环回频率或时隙将数据传送到sudac。然后将该数据环回到ue1。ue1对请求进行解码,并可以遵循或拒绝该请求。在前端上行链路状态/控制信道中传送遵循和拒绝。在选项c)中,ue2可以尝试在频带2中打开到ue1(例如经由802.11ad)的直接链路,并直接与ue1协商。在选项d)中,ue2向bs发送资源请求,bs将该请求中继到ue1。在选项e)中,并且在存在一些空闲sudac的情况下,ue2获取这些空闲sudac。在配置它们之后,ue2可以尝试通过向bs发出资源状态请求来找到活动的sudac。bs随后提供来自ue1的sudac使用信息。备选地或附加地,ue2可以对整个频带2中的所使用的sudac执行扫描,以随后与ue1协商以释放一个或多个sudac。备选地或附加地,ue2可以执行读取由所获取的sudac提供的网络拓扑信息。

在选项f),可以在sudac内实现优先级方案(可由用户潜在地配置),使得可以强制进行从使用sudac的ue的释放。为此,具有较高优先级的ue向sudac发出获取码。备选地,优先级处理可由bs完成。向bs发送请求以进行优先级重新分配,并且bs向具有较低优先级的ue发送释放请求。在选项g)中,并且在所使用的sudac中没有重叠的情况下,两个ue配置它们“看见”的sudac。在选项h)中,移动的ue可以遇到sudac,所述sudac充当对其正在使用的sudas的干扰。

图20a示出了滤波器25的示意性实现。滤波器25可以被配置用于滤波,即衰减,在由有效载荷信道1和有效载荷信道2(即有效载荷信道56a和56b)定义的频率范围之外的频率。如图20a所示的实现可以是模拟带通滤波器,其使在有效载荷信道56a和56b之间的带隙不衰减。

图20b示出了利用两个滤波器25a和25b进行滤波的实现,每个滤波器滤波(即衰减)相应有效载荷信道56a或56b之外的频率,使得有效载荷信道56a和56b之间的未使用的带宽电被衰减。这也可以表示为根据信道布局布置并被实现为用于完整传输带宽的一个信道滤波器的多信道滤波器。优选地,这种结构可以利用数字滤波器来实现,因为由有效载荷信道56a以及可选地有效载荷信道56b所获取的带宽可以随时间而变化。动态信道配置可以有利地与数字滤波器一起考虑,因为它们便宜、更灵活并且可以在需要更少的空间的情况下被实现。

换句话说,可以特别考虑asudac,因为它们放大并转发在s6g和毫米频带中的模拟信号。必须采取以下的预防措施:sudac不能对bs-ue链路造成过多的干扰。如果在ehf频带有强大的带内干扰源,则可能是这种情况。为了避免这种情况,可以进一步限制sudac的最大eirp(eirp=等效各向同性辐射功率),或者可以实现允许bs关闭sudac的方法。完成此操作的一个示例方式是bs请求从ue关闭sudac。即使ue无法到达sudac,只需要停止发送前置上行链路状态/控制信道,其将在超时后强制sudac进入休眠模式。

sudac的一个挑战是,如果使用相同的天线或具有相同频率特性的天线进行发送和接收,可能需要提供一些频率自适应预选择器滤波器来抑制ehf链路上的可能的自干扰。由于在模拟域中实现这种滤波器至少是非常昂贵的,所以提出了ehf频带的分区。由此,发送和接收可以被解耦合。

此外,也可能的是,针对大的但仅部分使用的有效载荷带宽抑制该频带的未使用部分中的信号。取决于sudac的实现,这可以通过模拟或数字域中的可选择滤波器组来完成。

可以看出,对上行链路或下行链路的影响可以通过具有所需带宽的信道滤波器来补偿。倘若信道正在动态变化,如果以纯模拟方式完成,则这会导致硬件成本高昂。或者定义固定信道带宽粒度(例如5mhz)。然后可以使用仅由少量滤波器组成的滤波器组。数字化sudac可以通过对有效载荷信号的数字滤波以简单的方式来实现这一点。

此外,可以考虑sudac可能是故障的。因此,启动sudac需要bs和ue之间的交互。ue启用单个sudac,并等待来自bs的新的传输设置有效的确认。在出现错误的情况下,bs通知ue,ue进而禁用sudac,可能通过非易失性方法将sudac标记为故障以阻止进一步的传输测试。

图21显示了在德国(2014年)的lte情况下超高频率中的频率分配的示意概述。指示为提供商1-4的不同提供商的基站利用频谱的不同频率。这可能导致以下情况,其中sudac只能用一个无线通信接口与一个基站进行通信。备选地,当无线通信接口被配置用于在两个提供商的频率之间的边界处进行通信时,这样的消息可以被这两个基站接收,其中接收限于使用相应频率的提供商的基站。

如上所述,sudac并入了由后端/前端通信链路组成的至少一个中继链路。这些链路可以彼此独立配置。后端通信链路使用频带1,而前端通信链路使用频带2。用于频带1的所使用频谱由bs的细节定义。如果实现所需的状态/控制信道,则前端通信链路的所使用频谱可以由ue、sudac以及bs配置。作为一个示例,lte后端通信链路频谱分配在[5]中提供。

一般来说,预期与频带1相比,大得多的带宽可用于频带2中的传输。假设sudac由频带2中的链路来控制和配置,则需要一种允许以高效的方式建立这样的控制链路的方法。在整个可用频率范围内扫描一些信标信号不被看作是高效的,因为这是一个耗时的任务,特别是如果rf级提供窄带宽。此外,使用非常大的带宽不被认为是有利的,因为这将显著地增加sudac的rf级复杂性以及由此总体成本。在ieee802.11ad中,提出了一种减少的带宽用于发现和协商的方案。这被称为低速率信道,并假定了lrp而不是经由高速率物理层(hrp)完成的高速大量数据事务。

上面的描述参考了与sudac系统内的通信和sudac系统的组件相关的多个细节。当与已知概念相比时,其差异包括但不限于下面描述的细节。

关于在ehf(或用于dsudac的s6g)中的发现并与802.11ad相反,sudas通过允许ue根据需要连接到sudas来提供低功率节省方法。允许sudac长时间下电,从而最小化整体功耗。被动检测的基本思想已经被例如ieee802.15.3所覆盖。与该方法不同的是,检测覆盖了一组可定义的频带(会聚频率)和最后使用的频率。会聚信道可以被自由配置(频率位置、所使用带宽、状态/控制信道的数量),并可以调整到给定的干扰条件。sudas发现可以由用于中继信号的两个终端点(bs和ue)完成。在不存在到bs的状态/控制信道的情况下,ue可以将sudac上的信息传送到可以与其他ue或sudac共享它的bs。在会聚信道上进行发现的ue自动地要求以该频率接收信号的所有sudac。只有没有被要求的sudac可以侦听在会聚信道处的唤醒命令。sudac可以自己发现网络,而不要求设备(sudac或ue)。由此,它们可以获取关于本地存储并且可以提供给其他sudac或ue的网络布局的信息(这种状态信息的存储和分发当然不是新的)。通过侦听活动信道,可以为ue提取足够的信息,以决定是否值得尝试请求要求对sudac的控制,或者是否可以仅仅附着到sudac(搭载)。发现和同步在每个链路并在每个传输方向进行fdd的情况下完成。

关于信道化,有效载荷带宽是高度可配置的,因为通过s6g中的mimo技术和ehf频带中的过度带宽使用两者提供了高数据吞吐量。不存在针对有效载荷传输的强制性的固定频率网格。有效载荷和状态/控制信道相关联,但彼此独立。所发送的有效载荷可以仅是原始接收到的有效载荷信号的频移、信道滤波和放大(纯粹在模拟域中完成)版本。在这种情况下,状态/控制信道与有效载荷在频率上分离。如果sudac提供有效载荷数字化,则可以应用压缩和转发/解码和转发方案。状态/控制信道可以在频率上分离,但也可以注入有效载荷信道中。在没有用于发现过程的有效载荷的情况下,可以使用状态/控制信道。针对搭载模式,状态/控制信道可以关闭。如果sudac提供数字化并且bs支持这种模式,则可以实现后端通信链路状态/控制信道。状态/控制信道保持sudac活动。在太多干扰的情况下,这在sudac变得通过ehf(或者在实现后端状态/控制信道的情况下为s6g)不可达到的情况下提供自动关闭机制。可以在波束成形和mimo模式之间执行切换,以允许在波束成形模式中在bs和sudac之间的直接连接,同时在mimo模式中发送有效载荷。启用tdd和fdd的混合模式使用(特别是dsudac)

关于资源分配,bs积极参与资源分配过程。因此,可以采取行动来优化并控制s6g链路上的总体传输,这可以通过与ue的协作来完成(请求ue将sudac配置到某个设置),或者可以通过越过ue并通过后端直接配置sudac来完成。ue控制(或与sudac和其他ue协商)ehf的资源分配,甚至可以请求对bs资源分配的修改。可以根据实际的干扰情况选择前端链路,从而避免具有高干扰的频带。利用搭载模式,已经设计了一种甚至能够从多个移动网络内聚合载波的模拟载波聚合方法。sudac中继链路的使用被专门分配给一个ue,直到该ue主动地丢弃sudac或停止发送状态/控制信道。搭载模式不被认为对排他性有害。然而,提供了2个ue之间的切换机制。如果在sudac中实现有效载荷环回,则它可以充当后端上的bs到bs中继的频移。由此,来自不同运营商的bs可以实现资源共享的通信接口。在前端,它可以充当ehf到ehf中继的频移,其例如可以用来增强ieee802.11ad接入点的覆盖范围。在同步网络和过剩的sudac的情况下,2个(或更多个)sudac可以将相同的s6g信号中继到相同的ehf频率,并应用方法来提供建设性的干扰。可能相同的信号在不同的频率处以不同的相移同时进行中继。此外,sudac可以在tdd和fdd模式之间进行转换。如果为两者分配了不同的频率,则可以中继不同的不同步bs。

关于传输协议,ehf频带中的数据中继由环回支持,以在不具有对彼此的直接接入的ue之间提供通信链路。例如,如果ue由不同的bs服务,则可能发生这种情况。这导致在rach信道内注入的rach。sudac提供固定的传输延迟,因为在此层上未预见到重传。数据的重传和确认由ue和bs处理。状态/控制通过状态/控制信道确认。中继没有附加的路由开销作为配置,状态/控制与有效载荷信道分离,有效载荷的路由由上行链路和下行链路频率定义。

图22示出了用于信号转发的方法2200(例如使用sudac)的示意性流程图。在步骤2210中,使用超高频率,以便与基站建立至少一个后端通信链路。在步骤2220中,使用极高频率,以便与用户设备建立至少一个前端通信链路。

在步骤2230中,极高频率被频率转换为超高频,并且经由前端通信链路接收到的用户信息信号至少部分地被转发,作为要经由后端通信链路发送的通信信号。在步骤2240中,超高频率被频率转换为极高频率,并且经由后端通信链路接收的通信信号至少部分地被转发作为要经由前端通信链路发送的用户信息信号。

在步骤2250中,从用户信号提取控制信息,并且基于控制信息来控制用户设备的第一或第二无线通信接口的转发参数。

在步骤2260中,在极高频率处接收到的用户信息信号被频率转换为在超高频率处的通信信号,或在极高频率处的通信信号被频率转换为在超高频率处的通信信号。对步骤2260备选地或附加地,在步骤2270中,在极高频率处接收的用户信息信号被数字化,并且数字化通信信号被模拟化以获得在超高频率处的通信信号。基于数字化用户信息信号生成数字化通信信号。

图23示出了利用用户设备发送或接收信号的方法2300的示意性流程图。在步骤2310中,使用超高频率以便建立与基站的至少一个直接通信链路。

在步骤2320中,使用极高频率,以便与sudac建立至少一个前端通信链路。

在步骤2330中,利用与基站相关联的用户设备经由前端通信链路至少部分地接收用户信号。

在步骤2340中,基于从与另一基站相关联的另一用户设备接收到的信息来生成用户信息信号,使得用户信息信号包括与用户设备相关的信息和与另一用户设备相关的信息。

图24示出了利用基站发送或接收信号的方法2400的示意性流程图。在步骤2410中,控制基站的多个无线通信接口,从而获得多个无线通信接口的多天线功能。

在步骤2420中,经由多个无线通信接口中的至少一个接收控制信息,控制信息和与基站通信的sudac或用户设备相关。

在步骤2430中,基于控制信息来适配多天线功能的传输特性。

尽管sudac和基站的用户设备的无线通信接口已经被示出为外部组件,但是无线通信接口也可以是相应装置的外壳内部的内部组件。

虽然以上描述涉及控制sudac和/或基站的用户设备,但是可以实现包括信息的双向传输的协议,使得可以通过网络节点之间的协作获得资源分配。每个网络节点可以扫描其信道并确定发送功率中的哪一个存在和/或其中例如信噪比对于通信足够好。sudac可以通过侦听来确定这样的信息。用户设备可以协调资源分配,包括对与其相关的基站的控制。备选地或附加地,用户设备可以控制基站,使得基站导出最佳分配并实现它。

虽然已经在装置的上下文中描述了一些方面,但是将清楚的是,这些方面还表示对应方法的描述,其中,块或设备对应于方法步骤或方法步骤的特征。类似地,在方法步骤的上下文中描述的方面也表示对相应块或项或者相应装置的特征的描述。

取决于某些实现要求,可以在硬件中或在软件中实现本发明的实施例。可以使用其上存储有电子可读控制信号的数字存储介质(例如,软盘、dvd、cd、rom、prom、eprom、eeprom或闪存)来执行该实现,该电子可读控制信号与可编程计算机系统协作(或者能够与之协作)从而执行相应方法。

根据本发明的一些实施例包括具有电子可读控制信号的数据载体,该电子可读控制信号能够与可编程计算机系统协作从而执行本文所述的方法之一。

通常,本发明的实施例可以实现为具有程序代码的计算机程序产品,程序代码可操作以在计算机程序产品在计算机上运行时执行方法之一。程序代码可以例如存储在机器可读载体上。

其他实施例包括存储在机器可读载体上的计算机程序,该计算机程序用于执行本文所述的方法之一。

换言之,本发明方法的实施例因此是具有程序代码的计算机程序,该程序代码用于在计算机程序在计算机上运行时执行本文所述的方法之一。

因此,本发明方法的另一实施例是包括其上记录有计算机程序的数据载体(或者数字存储介质或计算机可读介质),该计算机程序用于执行本文所述的方法之一。

因此,本发明方法的另一实施例是表示计算机程序的数据流或信号序列,所述计算机程序用于执行本文所述的方法之一。数据流或信号序列可以例如被配置为经由数据通信连接(例如,经由互联网)传送。

另一实施例包括处理装置,例如,计算机或可编程逻辑器件,所述处理装置被配置为或适于执行本文所述的方法之一。

另一实施例包括其上安装有计算机程序的计算机,该计算机程序用于执行本文所述的方法之一。

在一些实施例中,可编程逻辑器件(例如,现场可编程门阵列)可以用于执行本文所述的方法的功能中的一些或全部。在一些实施例中,现场可编程门阵列可以与微处理器协作以执行本文所述的方法之一。通常,方法优选地由任意硬件装置来执行。

上述实施例对于本发明的原理仅是说明性的。应当理解的是:本文所述的布置和细节的修改和变形对于本领域其他技术人员将是显而易见的。因此,旨在仅由所附专利权利要求的范围来限制而不是由借助对本文的实施例的描述和解释所给出的具体细节来限制。

文献

[1]ieee802.11-10/0259r02

[2]ieeep802.15.3/d17草案

[3]ieee802.15′/3c

[4]normanabramson,afids会议论文集(hrsg.):alhoasystem-anotheralternativeforcomputercommunications.37,afips出版社,1970年,第281-285页。

[5]德文文献:frequenzverteilungsuntersuchung(bk1-11/001),amtsblattnr.23/2011derbundesnetzagentur

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1