用于控制发射功率的方法、移动台和基站与流程

文档序号:13883804阅读:339来源:国知局
用于控制发射功率的方法、移动台和基站与流程

本公开涉及通信技术领域,更具体地,涉及用于控制发射功率的方法、移动台和基站。



背景技术:

随着通信技术的快速发展,能同时或部分支持各种技术的通信系统,包括但不限于全球移动通信(gsm)、长期演进(lte)、宽带码分多址(wcdma)、时分同步码分多址(td-scdma)以及码分多址(cdma)等。利用这些通信系统,各种用户终端可以进行语音或数据通信。所述用户终端可以为手机、平板计算机等。此外,物联网的发展使得对机器类通信的需求也逐渐增加。相应地,诸如家用电器、医疗设备、监控设备、智能电表之类的用户设备也要通过各种通信系统进行数据传输。因此,有数量庞大的用户设备要接入到通信系统的基站,因此众多通信设备厂商竞相提出与第五代移动通信相关的技术。

关于移动通信系统相关的接入技术中涉及非正交多址接入。在用户采用非正交多址接入(non-orthogonalmultipleaccess:noma)技术的通信系统中,提出了通过发射功率对多个移动台进行区分,以便在传输上行链路数据时,将不同移动台的数据复用到相同的子频带上进行发送,从而增加了无线基站可支持同时调度的移动台的数目。但是对于如何确定移动台的发射功率,进而使得基站侧依据接收功率区分在同一时间同一频率接入的多个用户设备还没有具体的解决方案。而如果不采用功率控制(例如,每个用户均采用最大发射功率发送信号),将导致采用noma接入技术的相邻小区间产生严重干扰。如果直接采用现有lte系统提供的开环功率控制,将可能导致在基站侧接收的多个用户设备的发射功率之间没有足够的差异,进而导致在基站侧采用功率区分用户的难度很大。



技术实现要素:

本公开实施例提供了用于非正交多址接入领域的控制发射功率的方法、移动台和基站,其使得用户设备以合适的发射功率与基站通信,从而实现了在基站端采用较为简单的设备而达到区分不同接入用户的技术目的。

第一方面,本公开的实施例公开了一种用于控制发射功率的方法,应用于移动台,该方法包括:获取功率控制图案,该功率控制图案是与控制发射功率的方案相关的信息;根据所述功率控制图案确定用于该移动台的基准功率控制参数;以及基于所述基准功率控制参数确定所述移动台的发射功率。

结合第一方面,在第一方面的一种实现方式中,所述移动台属于功率控制组,该功率控制组内的移动台对应于相同的功率控制图案,所述获取功率控制图案包括:获取用于该功率控制组的功率控制图案。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述获取用于该功率控制组的功率控制图案包括:预先定义的各个功率控制组与各个功率控制图案的对应关系;确定所述移动台所属的功率控制组;基于所述对应关系确定与所述移动台所属的功率控制组对应的功率控制图案。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述获取用于该功率控制组的功率控制图案包括:获取当移动台的目标接收信号电平、和路径损耗因子作为功率控制图案;其中,所述根据所述功率控制图案确定用于该移动台的基准功率控制参数包括:基于当移动台的目标接收信号电平、和路径损耗因子来计算基准发射功率。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述获取用于该功率控制组的功率控制图案包括:预先定义多个发射功率集合;从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合,作为所述功率控制图案,所选择的发射功率集合包括至少一个发射功率值,其中,所述根据所述功率控制图案确定用于该移动台的基准功率控制参数包括:确定所选择的发射功率集合中的发射功率值,作为所述移动台的基准功率控制参数。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述预先定义多个发射功率集合包括:预先定义各自具有不同数目的发射功率值的多个发射功率集合;所述从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合包括:当所述移动台所属的功率控制组距离通信基站远时,选择具有较少发射功率值的发射功率集合;当所述移动台所属的功率控制组距离通信基站近时,选择具有较多发射功率值的发射功率集合。

结合第一方面,在第一方面的另一实现方式中,所述获取功率控制图案包括:获取发射功率偏移图案作为所述功率控制图案,所述发射功率偏移图案是与移动台的发射功率的偏移相关的图案信息。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述获取发射功率偏移图案作为所述功率控制图案包括:获取公共基准阈值;基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案,每个发射功率偏移集合包括至少两个发射功率偏移值。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述根据所述功率控制图案确定用于该移动台的基准功率控制参数包括:基于所选择的发射功率偏移集合中的发射功率偏移值的数量计算用于访问其中的每个发射功率偏移值的访问概率;以及根据所述访问概率从所选择的发射功率偏移集合中选择发射功率偏移值。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述基于所述基准功率控制参数确定所述移动台的发射功率包括:基于所述移动台的初始发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述移动台属于功率控制组,该功率控制组内的各个移动台对应于相同的功率控制图案,所述获取功率控制图案包括:获取用于该功率控制组的功率控制图案。

结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述移动台属于功率控制组,该功率控制组内的各个移动台对应于相同的功率控制图案,所述获取功率控制图案包括:获取用于该功率控制组的功率控制图案

第二方面,本公开的实施例提供了一种用于控制移动台的发射功率的方法,应用于基站,该基站将其覆盖区域内的多个移动台划分到不同的功率控制组,该方法可包括:判断所述移动台所属于的功率控制组;确定用于所述功率控制组的功率控制图案;确定用于所述功率控制组的基准功率控制参数;向所述移动台发送控制指令,该控制指令用于指令所述移动台基于基准功率控制参数发射功率信号。

结合第二方面,在第二方面的一种实现方式中,所述确定用于所述功率控制组的功率控制图案包括:确定当移动台的目标接收信号电平、和路径损耗因子;其中,所述确定用于所述功率控制组的基准功率控制参数包括:确定移动台的路径损耗;和基于所述目标接收信号电平、路径损耗因子、和路径损耗来计算基准发射功率。

结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述确定移动台的路径损耗包括:在不存在移动台的历史上行传送数据的情况中,基于该移动台所属的功率控制组的其它移动台的历史上行传送数据来计算移动台的路径损耗;在存在移动台的历史上行传送数据的情况中,基于该移动台的历史上行传送数据来计算其路径损耗。

第三方面,本公开实施例提供了一种移动台,该移动台可包括:图案获取单元,用于获取功率控制图案,该功率控制图案是与用于控制发射功率的方案相关的信息;基准确定单元,用于根据所述功率控制图案确定用于该移动台的基准功率控制参数;以及发射功率确定单元,用于基于所述基准功率控制参数确定所述移动台的发射功率。

结合第三方面,在第三方面的一种实现方式中,所述移动台属于功率控制组,该功率控制组内的移动台对应于相同的功率控制图案,所述图案获取单元获取用于该功率控制组的功率控制图案。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述图案获取单元包括:预定义模块,用于确定预先定义的各个功率控制组与各个功率控制图案的对应关系;分组确定模块,用于基于所述移动台的参考信号接收功率确定所述移动台所属的功率控制组;以及图案确定模块,用于基于所述对应关系确定与所述移动台所属的功率控制组对应的功率控制图案。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述图案获取单元所获取的功率控制图案包括当移动台的目标接收信号电平、和路径损耗因子;其中,所述基准确定单元基于当移动台的路径损耗为零时的目标接收信号电平、和路径损耗因子来计算基准发射功率。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述图案获取单元包括:预定义模块,用于预先定义多个发射功率集合;集合选择模块,用于从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合,作为所述功率控制图案,所选择的发射功率集合包括至少一个发射功率值,其中,所述基准确定单元确定所选择的发射功率集合中的各个发射功率值,作为所述移动台的基准功率控制参数。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述预定义模块预先定义各自具有不同数目的发射功率值的多个发射功率集合;所述集合选择模块在所述移动台所属的功率控制组距离通信基站远时,选择具有较多发射功率值的发射功率集合,并且在所述移动台所属的功率控制组距离通信基站近时,选择具有较少发射功率值的发射功率集合。

结合第三方面,在第三方面的另一种实现方式中,所述图案获取单元获取发射功率偏移图案作为所述功率控制图案,所述发射功率偏移图案是与移动台的发射功率的偏移相关的图案信息。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述图案获取单元包括:接收模块,用于接收取决于路径损耗的公共基准阈值;选择模块,用于基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案,每个发射功率偏移集合包括至少两个发射功率偏移值。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述基准确定单元通过如下操作确定用于该移动台的基准功率控制参数:基于所选择的发射功率偏移集合中的发射功率偏移值的数量计算用于访问其中的每个发射功率偏移值的访问概率;根据所述访问概率从所选择的发射功率偏移集合中选择发射功率偏移值。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述基准确定单元基于从基站接收的下行链路控制信息从所选择的发射功率偏移集合中选择发射功率偏移值。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述发射功率确定单元基于所述移动台的初始发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率。

结合第三方面及上述实现方式,在第三方面的另一种实现方式中,所述移动台属于功率控制组,该功率控制组内的各个移动台对应于相同的功率控制图案,所述图案获取单元获取用于该功率控制组的功率控制图案。

第四方面,本公开实施例提供了一种基站,其覆盖区域内的多个移动台被划分为不同的功率控制组,该基站包括:分组判断单元,用于判断所述移动台所属于的功率控制组;图案确定单元,用于确定所述功率控制组的功率控制图案;以及基准确定单元,用于确定所述功率控制组的基准功率控制参数;以及发送单元,用于向所述移动台发送控制指令,该控制指令用于指令所述移动台基于基准功率控制参数发射功率信号。

结合第四方面,在第四方面的一种实现方式中,,所述图案确定单元包括:图案参数获取模块,用于获取当移动台的目标接收信号电平、和路径损耗因子;路径损耗确定模块,用于确定移动台的路径损耗,其中,所述基准确定单元基于所述目标接收信号电平、路径损耗因子、和路径损耗来计算基准发射功率。

结合第四方面及上述实现方式,在第四方面的一种实现方式中,在不存在移动台的历史上行传送数据的情况中,路径损耗确定模块基于该移动台所属的功率控制组的其它移动台的历史上行传送数据来计算移动台的路径损耗;在存在移动台的历史上行传送数据的情况中,路径损耗确定模块基于该移动台的历史上行传送数据来计算其路径损耗。

在根据本公开实施例的用于控制上行发射功率的方法、移动台及基站的技术方案中,基于由用户确定自身的发射功率或者由基站向移动台发送各移动台的发射功率,使得位于非正交多址接入的多个用户的发送信息在基站端的接收信号的功率具有较明显的差异,从而既改善了现有基站对不同接入用户设备的区分而且简化了基站区分不同用户时结构的复杂程度。

附图说明

为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1a和图1b是示意性图示了根据本公开实施例的应用场景的示意图。

图2是示意性图示了根据本公开实施例的用于控制发射功率方法的流程图。

图3是示意性图示了实施例一提供的用于控制发射功率方法的流程图。

图4是示意性图示了实施例二提供的用于控制发射功率方法的流程图。

图5是示意性图示了实施例三提供的用于控制发射功率方法的流程图。

图6是示意性图示了实施例四提供的用于控制发射功率方法的流程图。

图7是示意性图示了根据本公开实施例的移动台的组成框图。

图8是示意性图示了实施例的移动台的组成框图。

图9是示意性图示了移动台包含的图案获取单元的组成框图一。

图10是示意性图示了移动台包含的图案获取单元的组成框图二。

图11是示意性图示了根据本公开实施例的基站的组成框图。

图12是示意性图示了移动台的硬件组成示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。

随着智能终端、平板电脑和社交网络等的兴起,移动业务需求将爆炸性增长,无线数据流量和信令对移动通信网络带来了前所未有的冲击。据国际电信联盟预测,到2020年移动通信网络的数据业务容量需求将达到4g商用网络的1000倍。4g技术难以满足上述发展需求。此外,随着物联网的快速发展,未来的移动通信除了解决人与人的通信,还需要解决人与物,物与物的通信,比如智能电网、智能交通等应用。总之,未来移动通信需要适应多样化的移动业务和场景,提升用户体验。

为了实现提升通信容量,目前比较一致的思路是从如下三个方面着手解决该问题:物理层无线传输,频谱资源扩展,网络构架。而本发明实施例提供的技术方案可以更好提升频谱资源的利用率,从而解决如何高效的采用日益枯竭的频率资源传输更加高速的数据信息。

本发明实施例的技术方案是基于非正交多址接入的相关的技术。在多用户叠加传输中应用非正交多址接入能够增加系统吞吐量和提高频谱效率。目前有多种方式实现非正交多址接入noma,其中在功率域上实现非正交多址是业界研究的重点。在功率域上实现非正交多址接入(noma)允许多个用户通过功率域的复用在相同的空间层实现时间和频率资源的共享,进而提升了通信系统同时接入用户的数量并为每个用户提供的可用带宽也由此增加,而本发明以下实施例的技术方案也正是基于在功率域上实现非正交多址接入的技术背景。在非正交多址接入技术中增加功率域的目的是可用利用每个用户不同的路径损耗来实现多用户复用。

图1a是示意性图示了根据本公开实施例的应用场景的示意图。如图1所示,通信系统(例如该通信系统可以为第五代移动通信系统也可以为采用非正交多址接入的其它通信系统)中的基站101覆盖一椭圆形的小区,且有七个用户设备(102、103、104、105、106、107、108)位于该小区的不同位置中。虽然图1a中的用户设备为手机,但是本发明的以下实施例中涉及的用户设备并不仅仅包含手机终端。以下实施例中涉及的用户设备可以为具有数据采集和处理能力的任何物理设,例如,可以包括无人机等。此外,本发明提供的实施例也不限定一个小区中接入的用户设备的具体数量。此外,当各个用户设备(102、103、104、105、106、107、108)进入所述小区时,可以接到基站101的广播信息。用户设备(102、103、104、105、106、107、108)基于接收的广播信息了解所述基站101的基本情况或者接收该基站发送的针对一个用户或多个用户的与上行或下行功率控制相关的信息(例如,所述相关信息可以包括本发明实施例中提供的功率控制图案或者功率控制组等相关信息),且这些用户设备(102、103、104、105、106、107、108)可以向基站101发送初始接入信号(在本发明的实施例中需要记录初始接入功率pk_init),以请求接入基站101。基站101响应于所述初始接入信号与用户设备(102、103、104、105、106、107、108)进行通信信息交互,并向用户设备(102、103、104、105、106、107、108)分配资源,该处的资源可以包括:用户的接入频段,接入时间或者用户的发射功率(例如,本发明如下实施例四提供的基站向用户设备发送各个用户设备的发射功率)等。从而使得用户设备(102、103、104、105、106、107、108)接入到基站101以进行后续的通信。在图1a中七个用户设备(102、103、104、105、106、107、108)与基站101的距离可能不同。

此外,图1a中七个用户设备(102、103、104、105、106、107、108)基于非正交多址接入技术接入通信系统的基站101,该非正交多址接入技术可以利用每个用户不同的路径损耗来实现多用户复用。也就是说基站101可以利用其接收的来自于多个用户的上行信号的功率的差异而区分每一个用户设备。本发明以下实施例能基于基站和用户的互动信息而确定各用户设备的发射功率(即控制各个用户设备的上行发送功率),进而使得基站侧可以利用接收功率的差异而区分接入的多个用户设备。具体概括为本发明以下公开的实施例首先确定用户设备(102、103、104、105、106、107、108)各自的发射功率,随后基站101再依据其接收的各个用户设备(102、103、104、105、106、107、108)的接收功率区分来自于不同用户设备的各个信号。

图1b示意性图示了根据本公开的某些实施例的用于确定采用非正交多址接入技术的上行链路的发射功率的背景图。参考图1b,该图示意性的示出了本公开实施例中在确定各用户发射功率时可能基于的分组处理的思想(即以下实施例中提供的移动台所属的功率控制组,具体可以参考如下实施例一或实施例二等),也就是说在以下若干实施例中在确定用户发射功率时需要首先将用户设备划分为若干功率控制组,随后基站101再将各个功率控制组作为功率控制图案的接收对象,之后由用户设备基于接收的来自于基站101的功率控制图案或基站根据自身得到的功率控制图案而最终确定上行链路的发射功率(如图中箭头示出了上行链路的传输方向,即从用户设备向基站传输信息的方向)。但是并非本发明提供的所有的实施例均要基于图1b示出的分组策略,在以下某些实施例中并不需要预先对用户设备分组不用引入功率控制组而直接由各个用户设备确定自身的发射功率(例如,如下实施例三等)。

此外,图1b示出的三个分组(如图1b中虚线圈示出,每一个虚线圈内的多个用户设备组成一个功率控制组)可以是根据用户设备与基站的距离划分而得到的多个功率控制组,也就是说在图1b中根据用户设备距离基站的远近将所有接入该基站101的用户设备划分为三个组。但是应当注意本公开的实施例并不对分组的具体数目以及分组的原则和依据做限定。也就是说,根据具体场景的需要可以将用户设备划分为大于3个分组的任何数目,当然也可以划分为两组或者不分组。又例如,还可以将位于不同区域但是远近相同的用户设备划分为不同的分组,所以距离不是划分功率控制组的唯一和必要依据。例如,在图1b中将七个用户设备根据它们距离基站的远近划分为三个功率控制组,为了本公开实施例的描述方便可以将三个功率控制组分别命名为中心用户组1(包括手机103、手机106、手机107和手机108),中间用户组2(包含手机105和手机104)以及边缘用户组3(包含设备102),在以下涉及分组处理时的某些实施例中还将继续采用该处定义的三个分组的名称。

图2是示意性图示了根据本公开实施例的用于控制发射功率的方法200的流程图。该用于控制发射功率的方法200可以应用于图1所示的各个用户设备(例如,移动台)。

如图2所示,用于控制发射功率的方法200可包括:获取功率控制图案,该功率控制图案是与控制发射功率的方案相关的信息(s210);根据所述功率控制图案确定用于该移动台的基准功率控制参数(s220);以及基于所述基准功率控制参数确定所述移动台的发射功率(s230)。

在s210中,所述移动台属于功率控制组,该功率控制组内的移动台对应于相同的功率控制图案,所述获取功率控制图案包括:获取用于该功率控制组的功率控制图案。此时获取用于该功率控制组的功率控制图案的步骤可以包括:预先定义的各个功率控制组与各个功率控制图案的对应关系;确定移动台所属的功率控制组;以及基于所述对应关系确定与移动台所属的功率控制组对应的功率控制图案。例如,可以在移动台接入基站时,由基站根据移动台的位置信息来确定分组以及对应各组的功率控制图案。此外,移动台可以从基站接收高层信令,并从高层信令中确定移动台的功率控制图案,例如,基站可以在高层信令中给出功率控制图案的编号而移动台接收高层信息并解析得到功率控制图案对应的编号等。又例如,基站101可以向每组功率控制组内的移动台传递相同的功率控制图案,进而各移动台响应于基站发送的功率控制图案而获取各自的功率控制图案。本发明实施例对分组的数目以及分组的依据不做限定。例如,可以根据移动台与基站的距离将所有移动台划分为中心用户设备、第一中间用户设备、第二中间用户设备以及边缘用户设备四组功率控制组,且该四组功率控制组距离基站的距离越来越远(即中心用户设备的与基站的距离小于第一中间用户设备与基站的距离,第一中间用户设备与基站的距离小于第二中间用户设备与基站的距离,第二中间用户设备与基站的距离小于边缘用户设备与基站的距离)。

此外,在步骤s210中,所述移动台也可以不属于任何功率控制组,这时基站101可以向所有用户设备发送各自的功率控制图案或者向所有用户发送同样的功率控制图案,随后再由各个用户设备即移动台根据功率控制图案确定用于该移动台的基准功率控制参数并最终得到移动台发射功率。

在步骤s220中,所述基准功率控制参数可以包括各移动台基于接收的功率控制图案获得基准发射功率;也可以是移动台从发射功率集合中选择的发射功率;又或者是基于所选择的发射功率偏移集合中的发射功率偏移值的数量计算用于访问其中的每个发射功率偏移值的访问概率,并根据所述访问概率从所选择的发射功率偏移集合中选择发射功率偏移值等。

在步骤s230中,基于所述基准功率控制参数确定所述移动台的发射功率的步骤可以包括:基于所述移动台的初始发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率。例如,初始发射功率可以为用户设备初始接入基站的发射功率。

以下通过图3和图4详细描述以分组(即将所有移动台划分为多个功率控制组)为处理对象时图2对应方法的具体实施例。

实施例一

图3是示意性图示了以分组为处理对象时图2的用于控制发射功率的方法的一个实施例的流程图,其中图3示出的s311是图2示出的用于获取功率控制图案的示例,图3示出的s321是图2示出的用于确定用于移动台的基准功率控制参数的示例,图3示出的s331是图2示出的用于基于所述基准功率控制参数确定所述移动台的发射功率的示例。此外,s311中的目标接收信号电平和路径损耗因子对应图2记载的功率控制图案。参考图3,用于控制发射功率的方法可以包括:获取移动台的目标接收信号电平、和路径损耗因子作为每组功率控制组的功率控制图案(s311);基于当移动台的目标接收信号电平、和路径损耗因子来计算基准发射功率(s321);以及将该基准发射功率作为移动台的实际发射功率(s331)。此外,为了实现图3的用于控制发射功率的方法,在s311之前移动台还可以包括如下处理:预先定义的各个功率控制组与各个功率控制图案的对应关系;确定移动台所属的功率控制组;基于所述对应关系确定与移动台所属的功率控制组对应的功率控制图案。之后基站再将功率控制图案发送到对应的功率控制组。再之后才是功率控制组中的移动台获得功率控制图案,而具体到本实施例中即获取移动台的目标接收信号电平和路径损耗因子。

在s321中移动台可以根据如下公式计算基准发射功率:

·pi=min{pmax,10log10(mi)+p0+α*pli}

其中,参数p0表示当移动台路径损耗为零时的目标接收信号电平;α表示路径损耗因子,该参数可以为基于部分传送功率控制(ftpc,fractionaltransmissionpowercontrol)方法得到的路径损耗因子;pmax为最大发射功率;pli表示第i个用户的路径损耗,该路径损耗即电波在空间中传输产生的损耗,它反映出电波在宏观范围内的空间距离上接收信号电平平均值的变化趋势;mi表示单位带宽,其可以是一个或多个资源块。

实施例二

图4是示意性图示了以分组为处理对象时图2的用于控制发射功率的方法的另一个实施例的流程图,其中图4示出的s411是图2示出的用于获取功率控制图案的示例,图4示出的s421是图2示出的用于确定用于移动台的基准功率控制参数的示例,图4示出的s431是图2示出的用于基于所述基准功率控制参数确定所述移动台的发射功率的示例。此外图2示出的功率控制图案对应于图4中s421中的与移动台所属的功率控制组对应的发射功率集合。如图4所示,用于控制发射功率的方法可以包括:预先定义多个发射功率集合(s411);从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合,作为所述功率控制图案,所选择的发射功率集合包括至少一个发射功率值(s421);确定所选择的发射功率集合中的发射功率值(该发射功率值可以直接作为移动台的实际发射功率),作为所述移动台的基准功率控制参数(s431)。此外,为了实现图4的用于控制发射功率的方法,在s411之前移动台还可以包括如下处理:预先定义的各个功率控制组与各个功率控制图案的对应关系;确定移动台所属的功率控制组;基于所述对应关系确定与移动台所属的功率控制组对应的功率控制图案。

在s411中可以由基站预先定义多个发射功率集合ptotal,其中多个发射功率集合ptotal包括多个功率集合且任意一个功率集合可以表示为pset_i,即ptotal={pset_1,pset_2,…,pset_m}。此外,发射功率集合ptotal包含的功率集合的数量m至少应等于分组的数量(即发射功率集合的总数量m大于或等于划分得到的功率控制组的总数目)。在本实施例中可以采用基站向移动台发送的信令携带功率控制组所选择的功率集合。具体可以为基站向移动台组成的各个功率控制组传输功率集合的序号,随后移动台在获得信令消息后解析得到功率集合序号再通过功率集合序号获得移动台所在功率控制组所对应的具体的功率集合pset_i,其中参数i大于1且小于等于m。

此外,在s411预先定义多个发射功率集合可以包括(图中未示出):预先定义各自具有不同数目的发射功率值的多个发射功率集合。此时s421中的从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合包括:当所述移动台所属的功率控制组距离通信基站远时,选择具有较少发射功率值的发射功率集合;当所述移动台所属的功率控制组距离通信基站近时,选择具有较多发射功率值的发射功率集合。结合图1b说明本发明提供的一个具体示例,在该示例中多个发射功率集合包括3个发射功率集合,分别为第一功率集合,第二功率集合以及第三功率集合。其中第一功率集合中包括4个不同的发射功率值,第二功率集合中包括2个不同的发射功率值,而第三功率集合中包含1个发射功率值。如图1b所示该示例对应的功率控制组也有三个,此时根据上述原则可知图1b示出的中心用户组1会选择第一功率集合(即移动台所在功率控制组距离基站最近时,则选择具有最多发送功率值的第一功率集合),中间用户组2会选择第二功率集合而边缘用户组3会选择第三功率集合(即移动台所在功率控制组距离基站最远时,则选择具有最少发送功率值的第三功率集合)。采用该示例主要目的是为具有较多接入用户的功率控制组分配具有较多发送功率值的功率集合供各移动台选择,这样可以有效改善在接收端区分具有相似路径损耗的一个的功率控制组的用户的效率和准确度。

另外,当移动台从多个发射功率集合中获得其自身对应的功率集合后,该移动台还可以随机从选择的功率集合包含的多个发射功率值中随机选择一个作为其实际发射功率值(图中未示出),且该步骤可以对应于图2中s230示出的基于所述基准功率控制参数确定所述移动台的发射功率的步骤。此外,移动台还可以基于所选择的功率集合中的发射功率值的数量计算用于访问其中的每个发射功率值的访问概率并根据所述访问概率从所选择的功率集合中选择发射功率值。另外,该移动台还可以从基站接收下行链路控制信息并基于所述下行链路控制信息从所选择的功率集合中选择发射功率值。此时的下行链路控制信息可以包括与自动重传请求相关的信息。

下面通过图5详细描述当不对移动台进行分组时图2对应方法的一个具体实施例。

实施例三

在该实施例中图2涉及的获取功率控制图案的具体实施方式可以包括:获取发射功率偏移图案作为所述功率控制图案,所述发射功率偏移图案是与移动台的发射功率的偏移相关的图案信息。

图5是示意性图示了不以分组为处理对象时图2的用于控制发射功率的方法的一个实施例的流程图,其中图5示出的s510是图2示出的用于获取功率控制图案的示例,图5示出的s520是图2示出的用于确定用于移动台的基准功率控制参数的示例,图5示出的s530是图2示出的用于基于所述基准功率控制参数确定所述移动台的发射功率的示例。此外图2示出的功率控制图案对应于图5中s520中的从至少两个候选的发射功率偏移集合中选择发射功率偏移集合。如图5所示,用于控制发射功率的方法可以包括:获取取决于路径损耗的公共基准阈值(s510);基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案,每个发射功率偏移集合包括至少两个发射功率偏移值(s520);从选择得到的发射功率偏移集合中选择一个发射功率偏移作为基准功率控制参数,并基于基准功率参数确定移动台的实际发射功率(s530)。

在图5示出的s510中的公共基准阈值可以为与路径损耗相关的阈值。例如,该公共基准阈值可以为基于多个移动台的参考信号接收功率rsrp得到的平均参考信号接收功率。

在图5示出的s520中的从至少两个候选的发射功率偏移集合中选择发射功率偏移集合具体可以为:当s510中的公共基准阈值为平均参考信号接收功率时,从由第一发射功率偏移集合和第二发射功率偏移集合这两个候选发射功率偏移集合中选择发射功率偏移集合的具体步骤可以包括:计算移动台的参考信号接收功率,将计算得到的该移动台的参考信号接收功率与公共基准阈值(即平均参考信号接收功率)进行比较,当前者大于后者时该移动台选择第一发射功率偏移集合,否则该移动台选择第二发射功率偏移集合。此外,每个候选的发射功率偏移集合中又分别包含多个发射功率偏移。

在图5示出的s530具体包括从s520选择得到的发射功率偏移集合中选择一个发射功率偏移作为基准功率控制参数。其中s530选择发射功率偏移的方式可以采用如下第一示例和第二示例。但是以下两个示例并不是要限制s530的实现手段,也可以采用随机选择的方法等实现s530,具体为移动台从所选择的发射功率偏移集合中随机地选择一个发射功率偏移作为基准功率控制参数。

作为s530的第一示例,在s530中根据所述功率控制图案确定用于该移动台的基准功率控制参数可以包括:基于所选择的发射功率偏移集合中的发射功率偏移值的数量计算用于访问其中的每个发射功率偏移值的访问概率;以及根据所述访问概率从所选择的发射功率偏移集合中选择发射功率偏移值。

上述示例中的访问概率的计算公式可以为:

(np-1)/n;

其中,n表示发射功率偏移值的数量;np表示一个预定值。

作为s530的第二示例,在s530中根据所述功率控制图案确定用于该移动台的基准功率控制参数还可以包括:从基站接收下行链路控制信息;以及基于所述下行链路控制信息从所选择的发射功率偏移集合中选择发射功率偏移值。

上述示例二中的下行链路控制信息可以包括与自动重传请求相关的信息。其中,当自动重传请求harq反馈越多,则说明移动台发射失败,因此需要增加移动台的发射功率,此时移动台应该从发射功率偏移集合中选择能够增加其发射功率的发射功率偏移值;而当自动重传请求harq反馈很少,则说明移动台发射成功概率很大,因此不需要增加移动台的发射功率,此时移动台可以从发射功率偏移集合中选择能够保持其发射功率的发射功率偏移值,或者移动台也可以尝试选择减小其发射功率的发射功率偏移值。

在图5示出的s530基于基准功率参数确定移动台的实际发射功率具体可以包括:基于所述移动台的初始发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率。

例如,可以采用如下公式获得移动台的发射功率:

pk_actual=pk_init+δpk(1)

其中,pk_init用户接入基站时最初的发射功率,δpk表示移动台选择的发射功率偏移值δpk,k表示发射功率偏移集合中第k个发射功率偏移值。

另外,s530基于基准功率参数确定移动台的实际发射功率还可以采用如下公式得到移动台的发射功率(对应于图2的s230):

pk_actual=pk_ref+δpk(2)

其中,pk_ref用户可以为基准发射功率,δpk表示移动台选择的发射功率偏移值δpk。

上述公式(2)中的计算发射功率pk_actual的方法是根据上述实施例一或实施例二的方案与实施例三的部分方案而得到的。具体可以简述为:首先采用实施例一或者实施例二的完整的技术方案确定上述公式中的基准发射功率pk_ref,随后在至少一个功率控制组中采用实施例三提供的选择发射功率偏移值的技术方案选择δpk,最后再基于得到的基准发射功率pk_ref以及发射功率偏移值和上述公式确定移动台的实际发射功率pk_actual。其中以实施例二为例具体包括:首先采用实施例二的整个技术方案:预先定义多个发射功率集合(对应于图4的s411);从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合,作为所述功率控制图案,所选择的发射功率集合包括至少一个发射功率值(对应于图4的s421);移动台从选择的发射功率集合中选择的发射功率值作为实际发射功率值,将该处的实际发射功率值作为上述公知中参数pk_ref的值。其次,从多个功率控制组中至少选择一个功率控制组再针对选择的功率控制组再采用实施例三的部分技术方案而选择得到发射功率偏移值,具体为:获取针对某一功率控制组的公共基准阈值(对应于图5的s510);基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案,每个发射功率偏移集合包括至少两个发射功率偏移值(对应于图5的s520);根据所述功率控制图案确定用于该移动台的基准功率控制参数(对应于图5的s530),具体为从所选择的发射功率偏移集合中选择发射功率偏移值。再将选择的发射功率偏移值作为上述公式中发送偏移量δpk的值。最后,根据上述公式(2)得到被选择的功率控制组中所有移动台的实际发射功率pk_actual。而对于没有选中的功率控制组,其组内的移动台的实际发射功率可以继续采用公式(1)来确定,或者直接将采用实施例一或实施例二确定的基准参考功率作为移动台的实际发射功率。另外也可首先采用实施例三的部分方案选择功率偏移值δpk,然后再依据实施例一或实施例二的方案得到实际发射功率作为上述公式(2)中的基准发射功率pk_ref,最后再依据公式(2)得到移动台的实际发射功率。针对实施例一与实施例三结合的方案可以参考上述实施例二与实施例三结合的方案描述,在此不做赘述。

本实施例通过上述采用实施例一或实施例二与实施例三结合的技术方案,可以显著提高基站侧依据接收功率区分具有较多接入用户的功率控制组中的不同用户设备的准确率和效率。

此外,实施例三涉及的发射功率偏移图案也可以作为每个功率控制组的功率控制图案,且针对具有同样功率控制图案的功率控制组也可以单独实施图5示出的用于控制发射功率的方法。以上内容虽然仅以移动台不属于任何功率控制组为例说明了具体的技术方案,而对于属于某个功率控制组的移动台也可以借鉴上述各实施例而得到移动台的发射功率(此时仅需要将每个功率控制组分别采用图5的示出的方法即可),具体实现细节不在赘述。

实施例四

下面结合图6公开一种在基站侧确定移动台发射功率的实施例

图6是示意性图示了用于控制发射功率的方法的一个实施例的流程图。该用于控制移动台的发射功率的方法600应用于基站,该基站将其覆盖区域内的多个移动台划分到不同的功率控制组。该方法600可以包括:判断所述移动台所属于的功率控制组(s610);确定用于所述功率控制组的功率控制图案(s620);确定用于所述功率控制组的基准功率控制参数(s630);以及向所述移动台发送控制指令,该控制指令用于指令所述移动台基于基准功率控制参数发射功率信号(s640)。

对于s610的实现方式可以参考上述实施例中的相关描述,在此不做赘述。

在s620中的确定用于所述功率控制组的功率控制图案可以包括:确定当移动台的目标接收信号电平、和路径损耗因子。此时s630所述的确定用于所述功率控制组的基准功率控制参数可以包括:确定移动台的路径损耗;和基于所述目标接收信号电平、路径损耗因子、和路径损耗来计算基准发射功率。另外,所述确定移动台的路径损耗的步骤可以包括:在不存在移动台的历史上行传送数据的情况中,基于该移动台所属的功率控制组的其它移动台的历史上行传送数据来计算移动台的路径损耗;或在存在移动台的历史上行传送数据的情况中,基于该移动台的历史上行传送数据来计算其路径损耗。另外,移动台可以将计算得到的基准发射功率作为实际发射功率。

在s640可以直接将在s630中计算得到的基准发射功率作为控制指令内容的一部分。之后移动台接收该控制指令并解析得到基准发射功率,并将该基站发送功率作为移动台的实际发射功率。

下面介绍与实施例四相关的其它实施例

图6示出的实施例的技术方案也可以与实施例三的技术方案结合而得到确定移动台实际发射功率的另一实施例。此时移动台可以根据如下公式计算其实际发射功率:

pk_actual=pk_ref+δpk(3)

其中,pk_ref用户可以为基准发射功率,δpk表示移动台选择的发射功率偏移值δpk。

具体为:首先移动台采用图6提供的技术方案得到上述公式(3)中基准发射功率pk_ref的值。其次,选择至少一个功率控制组再针对选择的功率控制组中移动台采用实施例三的部分技术方案,具体处理过程可以包括:获取针对某一功率控制组的公共基准阈值(对应于s510);基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案(对应于s520);从所选择的发射功率偏移集合中选择发射功率偏移值(对应于s530)。将选择的发射功率偏移值作为上述公式(3)中δpk的值。最后,根据上述公式(3)得到选择的功率控制组中所有移动台的发射功率pk_actual。而对于没有选择的功率控制组也可以继续采用公式(1)确定移动台的发射功率,或者直接将采用实施例一或实施例二确定的基准参考功率作为移动台的实际发射功率。

此外,在一些实施例中,应用于基站的用于控制移动台的发射功率的方法600可以仅包括:判断所述移动台所属于的功率控制组(s610);确定用于所述功率控制组的功率控制图案(s620);以及将所述功率控制图案发送到移动台。之后可以由用户侧设备(即移动台)根据接收的功率控制图案确定发射功率信号。例如,采用实施例一,实施例二以及实施例三的方案就可以实现由移动台根据各自的功率控制图案确定其自身发射功率。

为了达到最优的技术效果,本公开的实施例的最优技术方案可以包括:首先在基站侧采用路径损耗差异有效区分不同功率控制组的用户(具体参考上述实施例一和实施例二),其次在同一个功率控制组内利用各用户随机选择的功率偏移值进一步增加对同一功率控制组内多个用户的区分度(具体参考实施例三选择功率偏移值的相关内容)。但是本公开的实施例针对功率控制组内用户较少时也可以仅采用路径损耗区分不同功率控制组的用户(例如仅采用实施例一、实施例二或实施例四等方案),对于一个功率控制组内的用户区分也可以进一步借助路径损耗区分。此外,对于接入用户不多的基站也可以单独采用随机选择功率偏移值而得到实际发射功率的技术方案而在基站侧达到有效区分用户设备(例如,单独采用实施例三)。其中,该段的记载仅仅用于列举本公开实施例的某些应用场景,并不是要穷尽所有的应用场景与实施例的对应关系,本领域技术人员可以根据具体情况灵活选择上述一个实施例或者多个实施例的组合实施例。

下面结合图7-图11详细说明本公开实施例的移动台以及基站的组成。

图7是示意性图示了根据本公开实施例的移动台700的组成框图。该移动台与图1所示的各个用户设备对应,且该移动台700可以用于执行上述实施例一、实施例二或实施三等相关实施例的技术方案。

如图7所示,移动台700可包括:图案获取单元710,用于获取功率控制图案,该功率控制图案是与用于控制发射功率的方案相关的信息;基准确定单元720,用于根据所述功率控制图案确定用于该移动台的基准功率控制参数;以及发射功率确定单元730,用于基于所述基准功率控制参数确定所述移动台的发射功率。

移动台700属于功率控制组,该功率控制组内的移动台对应于相同的功率控制图案。此时图案获取单元710可以获取用于该功率控制组的功率控制图案。例如,可以在移动台接入基站时,由基站根据移动台的位置信息来确定分组以及对应各组的功率控制图案。此外,移动台可以从基站接收高层信令,并从高层信令中确定移动台的功率控制图案,例如,基站可以在高层信令中给出功率控制图案的编号而移动台接收高层信息并解析得到功率控制图案对应的编号等。

图案获取单元710可以包括多种实现方式。下面将结合图8-图11介绍图案获取单元710的三种实现框图。此外以下的第一示例和第二示例的方案中涉及的移动台均属于某个功率控制组,而第三示例的方案涉及的移动台可以不属于任何一个功率控制组。针对涉及的功率控制组的分组方法和原则可以参考上述相关记载,在此不做赘述。

图8示出了图案获取单元710的第一示例,参考图8示出的图案获取单元810可以包括:预定义模块812,用于确定预先定义的各个功率控制组与各个功率控制图案的对应关系;分组确定模块814,用于确定所述移动台所属的功率控制组;以及图案确定模块816,用于基于所述对应关系确定与所述移动台所属的功率控制组对应的功率控制图案。

此外,图案获取单元810所获取的功率控制图案包括移动台的目标接收信号电平、和路径损耗因子。此时,图7示出的基准确定单元720还基于移动台目标接收信号电平、和路径损耗因子来计算基准发射功率。

图9示出了图案获取单元710的第二示例,参考图9可知图案获取单元910可以包括:预定义模块912,用于预先定义多个发射功率集合;以及集合选择模块914,用于从所述多个发射功率集合中选择与所述移动台所属的功率控制组对应发射功率集合,作为所述功率控制图案,所选择的发射功率集合包括至少一个发射功率值。此时,图7示出的基准确定单元720确定所选择的发射功率集合中的各个发射功率值,作为所述移动台的基准功率控制参数。

在图9中的预定义模块912可以预先定义各自具有不同数目的发射功率值的多个发射功率集合。此时图9示出的集合选择模块914在所述移动台所属的功率控制组距离通信基站远时,选择具有较多发射功率值的发射功率集合,并且在所述移动台所属的功率控制组距离通信基站近时,选择具有较少发射功率值的发射功率集合。可以结合图1b说明本发明提供的一个具体示例,在该示例中多个发射功率集合包括3个发射功率集合,分别为第一功率集合,第二功率集合以及第三功率集合。其中第一功率集合中包括4个不同的发射功率值,第二功率集合中包括2个不同的发射功率值,而第三功率集合中包含1个发射功率值。如图1b所示该示例对应的功率控制组也有三个,此时根据上述原则可知图1b示出的中心用户组1会选择第一功率集合(即移动台所在功率控制组距离基站最近时,则选择具有最多发送功率值的第一功率集合),中间用户组2会选择第二功率集合而边缘用户组3会选择第三功率集合(即移动台所在功率控制组距离基站最远时,则选择具有最少发送功率值的第三功率集合)。采用该示例主要目的是为具有较多接入用户的功率控制组分配具有较多发送功率值的功率集合供各移动台选择,这样可以有效改善在接收端区分具有相似路径损耗的一个的功率控制组的用户的效率和准确度。

图10示出了图案获取单元710的第三示例,在该示例中涉及的图案获取单元获取发射功率偏移图案作为所述功率控制图案,所述发射功率偏移图案是与移动台的发射功率的偏移相关的图案信息。

如图10示出的示例的图案获取单元1010,该图案获取单元1010可以包括:接收模块1012,用于接收取决于路径损耗的公共基准阈值;以及选择模块1014,用于基于所述公共基准阈值和所述移动台的路径损耗,从至少两个候选的发射功率偏移集合中选择发射功率偏移集合作为功率控制图案,每个发射功率偏移集合包括至少两个发射功率偏移值。

当采用示例的图案获取单元1010时,图7示出的基准确定单元720可以通过如下操作确定用于该移动台的基准功率控制参数:基于所选择的发射功率偏移集合中的发射功率偏移值的数量计算用于访问其中的每个发射功率偏移值的访问概率;以及根据所述访问概率从所选择的发射功率偏移集合中选择发射功率偏移值。此外,图7示出的基准确定单元720还可以基于从基站接收的下行链路控制信息从所选择的发射功率偏移集合中选择发射功率偏移值。

当采用示例的图案获取单元1010时,图7示出的发射功率确定单元730可以基于所述移动台的初始发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率,此时的具体计算公式可以参考上述公式(1)。对于公式(1)中涉及的相关参数的获取也可以参考相关实施例,在此不做赘述。

此外,当采用示例的图案获取单元1010时,图7示出的发射功率确定单元730还可以基于所述移动台的基准发射功率和所选择的发射功率偏移值来计算所述移动台的发射功率,此时的具体计算公式可以参考上述公式(2)。对于公式(2)中涉及的相关参数的获取也可以参考相关实施例,在此不做赘述。

另外,图10示出的示例方案涉及的移动台还可以属于功率控制组,该功率控制组内的各个移动台对应于相同的功率控制图案,所述图案获取单元获取用于该功率控制组的功率控制图案。

图11是示意性图示了根据本公开实施例的基站1110的组成框图。该基站1110与图1所示的基站101对应,且该基站1110可以用于执行上述图6对应实施例的相关技术方案。

如图11所示,基站1110可包括:分组判断单元1111,用于判断所述移动台所属于的功率控制组;图案确定单元1120,用于确定所述功率控制组的功率控制图案;基准确定单元1130,用于确定所述功率控制组的基准功率控制参数;以及发送单元1140,用于向所述移动台发送控制指令,该控制指令用于指令所述移动台基于基准功率控制参数发射功率信号。

在图11示出的图案确定单元1120可以包括:图案参数获取模块1121,用于获取当移动台的目标接收信号电平、和路径损耗因子;路径损耗确定模块1122,用于确定移动台的路径损耗。此时图11示出的基准确定单元1120基于所述目标接收信号电平、路径损耗因子、和路径损耗来计算基准发射功率。其中,路径损耗确定模块1121可以在不存在移动台的历史上行传送数据的情况中,路径损耗确定模块1121基于该移动台所属的功率控制组的其它移动台的历史上行传送数据来计算移动台的路径损耗。此外,路径损耗确定模块1121在存在移动台的历史上行传送数据的情况中,路径损耗确定模块1121基于该移动台的历史上行传送数据来计算其路径损耗。

发送单元1140可以将通过基准确定单元1130计算得到的基准发射功率作为控制指令内容的一部分。之后移动台接收该控制指令并解析得到基准发射功率,并将该基站发送功率作为移动台的实际发射功率。或者移动台在解析得到基准发射功率后,在结合上述实施例四公开的公式(3)以及确定功率偏移值的相关技术方案确定移动台的实际发射功率。

图12是示意性图示了根据本公开实施例的移动台1210的框图。

如图12示,该移动台1210可以包括:存储器1202,用于存储程序代码;处理器1203,用于执行所述程序代码以实现结合图2至图5描述的方法。

存储器1202可以包括只读存储器和随机存取存储器中的至少一个,并向处理器1203提供指令和数据。存储器1202的一部分还可以包括非易失行随机存取存储器(nvram)。

处理器1203可以是通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现成可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者任何常规的处理器等。

结合本发明实施例所公开的方法的步骤可以直接体现为由处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1202中,处理器1203读取存储器1202中的信息,结合其硬件完成上述方法的步骤。

在公开了上面的移动台700和移动台1210之后,包括所述移动台任一个的用户设备都也处于本公开实施例的公开范围。

此外图11示出的基站也可以包含图12示出的处理器或存储器,且基站中处理器和存储器所要实现的功能及结构与图12移动台的功能和结构相类似,在此不做赘述。此外,基站中的处理器可以用于执行图6实施例对应的方法。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1