信息传输的方法和通信设备与流程

文档序号:17756637发布日期:2019-05-24 21:21阅读:254来源:国知局
信息传输的方法和通信设备与流程

本申请涉及通信领域,特别涉及一种信息传输的方法和通信设备。



背景技术:

在lte中,针对物理下行共享信道(physicaldownlinksharedchannel,pdsch)传输,所有数据流来自同一个网络设备,网络设备发送的下行数据的初始化加扰值cinit可以根据以下公式确定:

对于物理上行共享信道(physicaluplinksharedchannel,pusch)传输,终端设备发送的上行数据的初始化加扰值cinit可以根据以下公式确定:

其中,nrnti表示终端设备的网络临时标识;q表示码字(0:单码字/0,1:复用模式);ns表示时隙号;表示小区id。

根据上述描述可以看出lte中,不管是上行数据还是下行数据传输,其用于数据加扰的初始化加扰值均是固定的,均可以使用上述对应公式确定。

在新空口(newradio,nr)系统中,现有标准讨论中,用于数据加扰的初始加扰值至少取决于无线资源控制(radioresourcecontrol,rrc)配置的扰码标识(scramblingid,scid)。然而在rrc连接不可以用,例如,在终端设备初始接入小区,但还没有rrc连接建立的时候,或者在终端设备处于rrc未激活(rrcinactive)状态,或者rrc信令为配置scid时,终端设备无法通过rrc获取上述scid,使得终端设备无法根据该scid确定用于数据加扰的初始加扰值,影响网络性能。



技术实现要素:

本申请提供一种信息传输的方法和通信设备,能够提升网络性能。

第一方面,提供了一种信息传输的方法,包括:在确定高层信令没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理,其中,所述扰码标识用于所述通信设备确定用于数据加扰或解扰的第一初始加扰值,所述第二初始加扰值与小区标识、无线网络临时标识和保留比特中的至少一项或者至少两项相关。

结合第一方面,在第一方面的一种实现方式中,所述通信设备为网络设备,或者,所述通信设备为终端设备。

例如,以上行数据传输为例,在通信设备为网络设备时,网络设备确定如果高层没有配置扰码标识,则该网络设备使用第二初始加扰值对接收到的上行数据进行解扰处理。相对应的,在通信设备为终端设备时,终端设备确定如果高层信令没有配置扰码标识,则该终端设备使用第二初始加扰值对发送的上行数据进行加扰处理。

再例如,以下行数据传输为例,在通信设备为网络设备时,网络设备确定如果高层没有配置扰码标识,则该网络设备使用第二初始加扰值下行数据进行加扰处理。相对应的,在通信设备为终端设备时,终端设备确定如果高层信令没有配置扰码标识,则该终端设备使用第二初始加扰值对接收的下行数据进行解扰处理。

可选地,作为另一实施例,当通信设备确定如果高层信令配置有扰码标识的情况下,则该通信设备根据该扰码标识确定用于数据加扰或解扰的第一初始化加扰值,并根据该第一初始化加扰值对发送的数据进行加扰处理或对接收的数据进行解扰处理。

因此,本申请实施例,在确定如果高层没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

结合第一方面,在第一方面的一种实现方式中,所述第二初始加扰值的净荷大小(payloadsize)与所述第一扰码标识的净荷大小相同;

或者,所述第二初始加扰值的净荷大小(payloadsize)与所述第一初始加扰值的净荷大小相同。

结合第一方面,在第一方面的一种实现方式中,在所述第二初始加扰值与所述无线网络临时标识有关时,当所述无线网络临时标识的净荷小于所述第一扰码标识的净荷时,所述第二初始加扰值与所述无线网络临时标识和填充零比特(zeropadding)相关,其中所述填充零比特的个数为所述第一扰码标识的净荷与所述无线网络临时标识的净荷差。

结合第一方面,在第一方面的一种实现方式中,所述第二初始加扰值与小区标识和所述无线网络临时标识相关,所述第二初始加扰值是所述终端设备根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识和所述无线网络临时标识两者中的一个,b表示所述两者中的另外一个,n为0到127中的任意一整数。

可选地,作为另一实施例,n可以取值为b转换成二进制后的比特数。

结合第一方面,在第一方面的一种实现方式中,所述第二初始加扰值与小区标识、所述无线网络临时标识和保留比特相关,所述第二初始加扰值是所述终端设备根据以下公式确定的:

cinitdefault=a*2n+m+b*2m+c

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识、所述无线网络临时标识和所述保留比特三者中的一个,b表示所述三者中除a之外的两者中的一个,m和n为0到127中的任意一整数,c表示所述三者中除a和b之外的一个。

结合第一方面,在第一方面的一种实现方式中,所述第二初始加扰值与所述小区标识或所述无线网络临时标识,以及保留比特相关,所述第二初始加扰值是所述终端设备根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识或所述无线网络临时标识,b表示所述所述保留比特,n为0到127中的任意一整数。

可选地,作为另一实施例,无线网络临时标识为rnti,其中,所述rnti与所述终端设备数据传输的特征有关。也就是说,rnti随着终端设备数据传输的特征的变化而可能不同。

因此,本申请实施例,在确定如果高层没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

第二方面,提供了一种信息传输的方法,该方法包括:终端设备接收高层信令,所述高层信令用于指示第一标识和第二标识,

所述终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,其中,所述第一发送信息或者第一接收信息对应第一天线端口或第一天线端口集合,所述第二发送信息或者第二接收信息对应第二天线端口或第二天线端口集合,所述第一天线端口或第一天线端口集合与所述第二天线端口或第二天线端口集合为非准共址qcl关系。

应理解,第一天线端口或第一天线端口集合可以对应第一网络设备,第二天线端口或第二天线端口集合可以对应第二网络设备。

也就是说,终端设备可以在同一时域资源上使用所述第一标识与第一网络设备通信,并使用所述第二标识与第二网络设备通信。

具体地,终端设备通过高层信令获取到第一标识和第二标识后,所述终端设备在同一时域资源(例如,同一时隙(slot))上使用所述第一标识与第一网络设备通信,例如,发送第一发送信息或者接收第一接收信息,并使用所述第二标识与第二网络设备通信,,例如,发送第二发送信息或者接收第二接收信息。

因此,本申请实施例通过高层信令配置两个标识,使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

结合第二方面,在第二方面的一种实现方式中,所述第一发送信息或者接收到的信息和所述第一发送信息或者接收到的信息包括以下信息中的至少一项:

下行共享信道数据信息pdsch、上行共享信道数据信息pusch、下行控制信道信息pdcch、上行控制信道pucch、上行探测信道srs、上行随机接入信道prach、上行或者下行解调参考信号dmrs、下行信道测量参考信号csi-rs、下行相位跟踪信息ptrs、下行跟踪信号trs。

结合第二方面,在第二方面的一种实现方式中,所述第一标识为第一序列生成标识,所述第一序列生成标识用于确定第一基序列,所述第二标识为第二序列生成标识,所述第二序列生成标识用于确定第二基序列,

其中,所述终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,包括:

所述终端设备根据所述第一序列生成标识和所述第二序列生成标识分别确定所述第一基序列和所述第二基序列;

所述终端设备对所述第一基序列和所述第二基序列进行循环移位分别生成第三序列和第四序列;

所述终端设备在所述同一时域资源上通过第一物理上行控制信道pucch发送所述第三序列对应的数据反馈信息,并通过第二pucch发送根据所述第四序列对应的数据反馈信息,其中,所述第一发送信息为第三序列对应的数据反馈信息,所述第二发送信息为第四序列对应的数据反馈信息。

结合第二方面,在第二方面的一种实现方式中,

所述高层信令用于配置所述第一pucch所占用的时频资源以及所述第一pucch传输的数据反馈信息所使用的所述第一序列生成标识,所述第二pucch所占用的时频资源以及所述第二pucch传输的数据反馈信息所使用的所述第二序列生成标识。

应理解,在本申请实施例中,配置第一pucch和第二pucch的高层信令可以是同一个高层信令(例如,rrc信令),也可以是不同的高层信令(例如,rrc信令)。本申请实施例并不限于此。

应理解,上文描述了针对两个pucch的情况下,高层信令在配置pucch资源时配置相对应的序列生成标识的方案。可选地,类似地,在本申请实施例中,也可以不同考虑pucch的个数情况,即在高层配置pucch资源时,也同时配置该pucch资源传输的数据反馈信息所使用的序列生成标识(也可以称为该pucch对应的序列生成标识)。

结合第二方面,在第二方面的一种实现方式中,所述方法还包括:

所述终端设备接收通过第一pdcch资源和第二pdcch资源分别传输的第一下行控制信息dci和第二dci,

其中,所述第一pucch承载的数据反馈信息对应所述第一dci调度的数据,所述第一dci调度的数据对应所述第一天线端口或第一天线端口集合,所述第二pucch承载的数据反馈信息对应所述第二dci调度的数据,所述第二dci调度的数据对应所述第二天线端口或第二天线端口集合。

例如,终端设备接收第一网络设备发送的第一dci,第二网络设备发送的第二dci,然后,终端设备根据该第一dci和第二dci确定pucch资源,例如,pucch资源0和pucch资源2分别发送反馈信息,具体的,分别使用第一序列生成标识和第二序列生成标识在pucch资源0和pucch资源2分别发送反馈信息。

因此,应用上述场景一中,终端设备发送多个pucch给不同网络设备时,例如,两个网络设备同时调度同一终端设备,且该终端设备的pucch资源直接由rrc信令配置,两网络设备通过在rrc信令中增加每组pucch资源对应的序列生成标识,保证终端设备发送的到两个网络设备的pucch所使用的基序列不同,从而保证pucch序列复用终端设备的容量,实现传输到两网络设备的两个pucch之间较小干扰,提升网络性能。

结合第二方面,在第二方面的一种实现方式中,所述高层信令用于指示物理下行控制信道pdcch对应的控制资源集,以及所述控制资源集中的第一pdcch资源对应的pucch资源上传输的数据反馈信息所使用的所述第一序列生成标识,第二pdcch资源上传输的数据反馈信息所使用的所述第二序列生成标识。

因此,多dci独立调度时,即每个网络设备独立发送一个pdcch给同一终端设备,此时每个pdcch占用不同的coreset,由rrc信令配置。此时,在本coreset内承载的dci,用于调度下行数据,与之对应的pucch便可使用该coreset内配置的序列生成id。

例如,在rrc信令配置coreset时,同时配置生成id,从而可以确定在该coreset内的dci对应的pucch所使用的id。

结合第二方面,在第二方面的一种实现方式中,所述高层信令还用于指示所述第一序列生成标识与所述第一pucch的对应关系以及所述第二序列生成标识与所述第二pucch的对应关系。

具体而言,网络设备可以通过高层信令直接配置终端设备两个序列生成标识。同时在高层信令中指示序列生成标识和同一个slot内的两个pucch的对应关系。

例如若同一个slot的两个pucch分别为短(short)pucch和长(long)pucch,则rrc信令配置shortpucch采用序列生成id1,且此id1可以使用服务小区id,rrc信令配置longpucch采用序列生成id2,且此id2可以使用协作小区id。

本申请实施例通过这种方法,即可保证同一slot内的两个pucch不会出现相互干扰的情况,而且在被多基站同时调度时,发送的资源不会相互影响。

上文描述了本申请实施例中pucch传输dci对应的反馈信息的情况,类似的,终端设备在发送用于pucch解调的dmrs也采用上述方式发送,也就是说,本申请实施例中也可以通过高层信令配置两个id,以使得终端设备按照上述类似过程分别确定序列并通过两个上行信道发送。具体的过程可以参见上文中的描述,为了避免重复,此处不再赘述。

结合第二方面,在第二方面的一种实现方式中,

所述第一标识为第一扰码标识,所述第二标识为第二扰码标识,所述第一扰码标识和所述第二扰码标识分别用于所述终端设备确定用于数据加扰的第一初始化加扰值和第二初始化加扰值,

其中,所述终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,包括:

所述终端设备分别使用所述第一扰码标识和所述第二扰码标识分别生成所述第一初始化加扰值和所述第二初始化加扰值,

所述终端设备在同一时域资源内使用所述第一初始化加扰值生成第一发送数据或者用于解扰第一接收数据,并使用所述第二初始化加扰值生成第二发送数据或者用于解扰第二接收数据,其中,所述第一发送信息为所述第一发送数据,所述第一接收信息为所述第一接收数据,所述第二发送信息为所述第二发送数据,所述第二接收信息为所述第二接收数据。

换句话说,所述终端设备在同一时域资源内使用所述第一初始化加扰值与所述第一网络设备通信,并使用所述第二初始化加扰值与所述第二网络设备通信。

具体而言,网络设备通过高层信令给终端设备配置至少两个不同的扰码标识,进而,终端设备可以使用该两个扰码标识对向两个网络设备传输的上行数据分别进行加扰处理。或者,终端设备可以使用该两个数据扰码标识对接收的两个网络设备发送的下行数据分别进行解扰处理。

结合第二方面,在第二方面的一种实现方式中,

所述高层信令还用于指示所述第一扰码标识和第一天线端口或第一天线端口组的对应关系,以及所述第二扰码标识与第二天线端口或第二天线端口组的对应关系。

应理解,本申请实施例中,天线端口可以为dmrs天线端口,ptrs天线端口或trs天线端口;天线端口组可以为dmrs天线端口组,ptrs天线端口组或trs天线端口组,本申请实施例并不限于此。

因此,终端设备可以根据该两个加扰标识对向两个网络设备传输的上行数据分别进行加扰处理。或者,终端设备可以使用该两个数据扰码标识对接收的两个网络设备发送的下行数据分别进行解扰处理。

因此,本申请实施例中,在终端设备与两个网络设备通信时,使用两个扰码标识对与两个网络设备通信的数据分别进行加扰或解扰处理,因此,降低了信号间干扰,提升网络性能。

结合第二方面,在第二方面的一种实现方式中,所述第一标识和所述第二标识相同。

具体的,高层信令配置的两个标识可以相同也可以不同,本申请实施例并不限于此。

例如,对于同一小区多网络设备(即多个网络设备的小区id相同)的情况,高层信令将配置的序列生成id配置为相同的id,从而实现在该场景下的pucch传输。但因为是多网络设备调度,可以考虑发送的pucch采用不同的基序列,实现pucch正交,避免相互干扰。

本申请实施例通过这种方法,使得高层信令配置更加灵活,能够满足5g(nr)的密集基站场景的需求。

第三方面,提供了一种信息传输的方法,该方法包括:网络设备生成高层信令,所述高层信令用于指示第一标识和第二标识,

所述网络设备向终端设备发送所述高层信令,以便所述终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,其中,所述第一发送信息或者第一接收信息对应第一天线端口或第一天线端口集合,所述第二发送信息或者第二接收信息对应第二天线端口或第二天线端口集合,所述第一天线端口或第一天线端口集合与所述第二天线端口或第二天线端口集合为非准共址qcl关系。

因此,本申请实施例通过高层信令配置两个标识,使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

应理解,第三方面网络设备执行的方法与第二方面终端设备执行的方法对应,第三方面侧的相应描述可以参考第二方面中的描述,为避免重复,在第三方面中适当省略详细描述。

结合第三方面,在第三方面的一种实现方式中,所述第一标识为第一序列生成标识,所述第一序列生成标识用于确定第一基序列,所述第二标识为第二序列生成标识,所述第二序列生成标识用于确定第二基序列,

所述第一基序列和所述第二基序列用于中等生合并通过循环移位分别生成第三序列和第四序列;

所述第三序列和所述第四序列分别用于终端设备在同一时域资源上通过第一物理上行控制信道pucch发送所述第三序列对应的数据反馈信息,并通过第二pucch发送根据所述第四序列对应的数据反馈信息,其中,所述第一发送信息为第三序列对应的数据反馈信息,所述第二发送信息为第四序列对应的数据反馈信息。

结合第三方面,在第三方面的一种实现方式中,所述高层信令用于配置所述第一pucch所占用的时频资源以及所述第一pucch传输的数据反馈信息所使用的所述第一序列生成标识,所述第二pucch所占用的时频资源以及所述第二pucch传输的数据反馈信息所使用的所述第二序列生成标识。

结合第三方面,在第三方面的一种实现方式中,所述终端设备还接收有接收通过第一pdcch资源和第二pdcch资源分别传输的第一下行控制信息dci和第二dci,

其中,所述第一pucch承载的数据反馈信息对应所述第一dci调度的数据,所述第一dci调度的数据对应所述第一天线端口或第一天线端口集合,所述第二pucch承载的数据反馈信息对应所述第二dci调度的数据,所述第二dci调度的数据对应所述第二天线端口或第二天线端口集合。

结合第三方面,在第三方面的一种实现方式中,所述高层信令还用于指示所述第一序列生成标识与所述第一pucch的对应关系以及所述第二序列生成标识与所述第二pucch的对应关系。

结合第三方面,在第三方面的一种实现方式中,所述第一标识为第一扰码标识,所述第二标识为第二扰码标识,所述第一扰码标识和所述第二扰码标识分别用于所述终端设备确定用于数据加扰的第一初始化加扰值和第二初始化加扰值,

所述第一初始化加扰值和所述第二初始化加扰值分别用于所述终端设备在同一时域资源内使用所述第一初始化加扰值生成第一发送数据或者用于解调第一接收数据,并使用所述第二初始化加扰值生成第二发送数据或者用于解调第二接收数据,其中,所述第一发送信息为所述第一发送数据,所述第一接收信息为所述第一接收数据,所述第二发送信息为所述第二发送数据,所述第二接收信息为所述第二接收数据。

结合第三方面,在第三方面的一种实现方式中,所述高层信令还用于指示所述第一扰码标识和第一天线端口或第一天线端口组的对应关系,以及所述第二扰码标识与第二天线端口或第二天线端口组的对应关系。

结合第三方面,在第三方面的一种实现方式中,所述第一标识和所述第二标识相同。

第四方面,提供了一种通信设备,所述通信设备包括用于执行第一方面或第一方面任一种可能实现方式中方法的各个模块或单元。

第五方面,提供了一种终端设备,所述终端络设备包括用于执行第二方面或第二方面任一种可能实现方式中的方法的各个模块或单元。

第六方面,提供了一种网络设备,所述网络设备包括用于执行第三方面或第一方面任一种可能实现方式中方法的各个模块或单元。

第七方面,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该第一终端设备执行第一方面及其可能实现方式中的方法。

第八方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该第一网络设备执行第二方面及其可能实现方式中的方法。

第九方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该第二终端设备执行第三方面及其可能实现方式中的方法。

在一种可能的设计中,上述通信设备实现的方案可以由芯片实现。

在一种可能的设计中,上述终端设备实现的方案可以由芯片实现。

在一种可能的设计中,上述网络设备实现的方案可以由芯片实现。

第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。

第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。

附图说明

图1是本申请实施例可应用的一种通信系统的示意图。

图2是本申请实施例可应用的另一通信系统的示意图。

图3是根据本申请一个实施例的信息传输的方法的示意性流程图。

图4是根据本申请另一实施例的信息传输的方法的示意性流程图。

图5是根据本申请一个实施例的通信设备的示意框图。

图6是根据本申请一个实施例的终端设备的示意框图。

图7是根据本申请一个实施例的网络设备的示意框图。

具体实施方式

下面将结合附图,对本申请中的技术方案进行描述。

本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,适用于长期演进(longtermevolution,lte)系统、未来的第五代(5thgeneration,5g)系统(有时也称为新无线(newradio,nr)系统)、各种演进或融合的系统。

本申请实施例中的网络设备可以是具有无线收发功能的设备,包括但不限于:基站、、中继站、接入点、车载设备、可穿戴设备以及未来5g网络中的网络侧设备或者未来演进的公用陆地移动通信网络(publiclandmobilenetwork,plmn)中的网络设备、wifi系统中的接入点、以及用户设备(userequipment,ue)等。例如,nr系统中传输点(trp或tp)、nr系统中的基站(gnb)、5g系统中的基站的一个或一组(包括多个天线面板)天线面板等,本申请实施例对此并未特别限定。

本申请实施例中的终端设备为具有无线收发功能的设备,包括但不限于ue、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(sessioninitiationprotocol,sip)电话、无线本地环路(wirelesslocalloop,wll)站、个人数字处理(personaldigitalassistant,pda)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、无人机设备、智能家居以及未来网络中的终端设备或者未来演进的plmn中的终端设备等,本申请实施例对此并不限定。

本申请实施例可以适应于上述任意通信系统,例如,本申请实施例可以适用于lte系统以及后续的演进系统如5g等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用massivemimo技术的无线网络、应用分布式天线技术的无线网络等。

图1是本申请实施例可应用的通信系统的示意图。如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。

网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、pda和/或用于在无线通信系统100上通信的任意其它适合设备。

如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。

例如,在频分双工(frequencydivisionduplex,fdd)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。

再例如,在时分双工(timedivisionduplex,tdd)系统和全双工(fullduplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。

被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。

在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。

此外,该通信系统100可以是公共陆地移动网络plmn网络或者设备对设备(devicetodevice,d2d)网络或者机器对机器(machinetomachine,m2m)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。

图2示出了适用于本申请实施例的另一无线通信系统200示意性框图。该无线通信系统200可以包括至少两个网络设备210,220,例如第一网络设备210和第二网络设备220,以及一个或多个终端设备230。该终端设备230可以是移动的或固定的。第一网络设备210和第二网络设备220均可以与终端设备230通过无线空口进行通信。第一网络设备210和第二网络设备220可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。

本领域的技术人员可以清楚理解,本申请中“第一”、“第二”等各种数字编号仅仅是为了描述方便进行地区分,并不作为对本申请实施例的限定。

该无线通信系统200可以支持comp传输,即至少两个网络设备(传输点)采用协同多点传输方式向终端设备传输下行数据,换句话说,该终端设备230可以在相同载波上与第一网络设备210通信,也可以与第二网络设备220通信,其中,协同多点传输方式可以采用空间分集和/或空间复用等技术实现,本申请对此不做限定。

本申请中的“协作多点传输”包括但不限于联合传输jt。jt包括相干jt和非相干jt(ncjt),两者的区别在于ncjt对来自多个协作tp的不同的mimo数据流分别做波束赋形,相干jt对来自多个协作tp的所有mimo数据流做联合做波束赋形。

在本申请实施例中,第一网络设备可以作为服务网络设备,该第二网络设备可以为协作网络设备;或者,第一网络设备可以为协作网络设备,第二网络设备为服务网络设备。

以第一网络设备为服务网络设备,第二网络设备为协作网络设备为例,该第二网络设备的数量可以是一个或多个,且第一网络设备的天线端口与第二网络设备天线端口满足不同准共址(quasi-co-location,qcl)。第一网络设备和第二网络设备也可以都为服务网络设备,本申请实施例并不限于此。

本申请实施例中qcl的定义可以参考lte中的定义,即从qcl的天线端口发送出的信号会经过相同的大尺度衰落,大尺度衰落包括以下一项或多项:时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延等。本申请实施例中qcl的定义还可以参考5g中qcl的定义,在新无线nr系统中,对qcl的定义与lte系统类似,但增加了空域信息,如:从qcl的天线端口发送出的信号会经过相同的大尺度衰落,其中,大尺度衰落包括以下参数中的一项或多项:时延扩展、多普勒扩展、多普勒频移、平均信道增益、平均时延和空域参数等,空域参数则可以为如发射角(aoa)、到达角(aod)、信道相关矩阵,功率扩展谱,空间滤波器,空间滤波参数,或,空间接收参数等中的一项或多项。

在应用协同多点传输的场景中,该服务网络设备可以向终端设备发送控制信令,该协作网络设备可以向终端设备发送数据;或者,该服务网络设备可以向终端设备发送控制信令,该服务网络设备和该协作网络设备可以同时向该终端设备发送数据,或者,该服务网络设备和该协作网络设备可以同时向终端设备发送控制信令,并且该服务网络设备和该协作网络设备可以同时向该终端设备发送数据。本申请实施例对此并未特别限定。该服务网络设备和协作网络设备之间以及多个协作网络设备之间可以进行通信,例如通过x2接口进行控制消息的传递。

换句话说,在协同多点传输场景中,可以支持网络设备联合调度,也可以支持网络设备的单独调度。在网络设备的联合调度中,可以通过其中一个网络设备发送dci,两个网络设备联合发送数据;在网络设备的单独调度中,两个网络设备分别单独发送dci,两个网络设备联合发送数据。

前文已说明,在新空口(newradio,nr)系统中,现有标准讨论中,用于数据加扰的初始加扰值至少取决于无线资源控制(radioresourcecontrol,rrc)配置的扰码标识(scramblingid,scid)。然而如果高层没有配置扰码标识(例如,rrc连接不可以用,在终端设备初始接入小区,但还没有rrc连接建立的时候,或者在终端设备处于rrc未激活(rrcinactive)状态),或者rrc信令为配置scid时,终端设备无法通过rrc获取上述scid,使得终端设备无法根据该scid确定用于数据加扰的初始加扰值,影响网络性能。

针对上述问题,本申请实施例提出在高层没有配置扰码标识时,使用第二初始加扰值(该第二初始加扰值可以为默认值)对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

以下,为了便于理解和说明,作为示例而非限定,对本申请中的信息传输的方法进行详细说明。

图3是根据本申请一个实施例的信息传输的方法300的示意性流程图。如图3所述的方法可以应用于图1或图2所示的系统架构中,具体的,如图3所示的方法300可以由通信设备执行,该通信设备可以为网络设备或终端设备,本申请实施例并不限于此,具体地,如图3所示的方法300,包括:

310,通信设备确定高层信令没有配置扰码标识。

320,通信设备使用第二初始加扰值对数据进行加扰或解扰处理,其中,所述扰码标识用于所述通信设备确定用于数据加扰的第一初始化加扰值,所述第二初始加扰值与小区标识、无线网络临时标识rnti和保留比特中的至少一项或者至少两项相关。

例如,以上行数据传输为例,在通信设备为网络设备时,网络设备确定如果高层没有配置扰码标识,则该网络设备使用第二初始加扰值对接收到的上行数据进行解扰处理。相对应的,在通信设备为终端设备时,终端设备确定如果高层信令没有配置扰码标识,则该终端设备使用第二初始加扰值对发送的上行数据进行加扰处理。

再例如,以下行数据传输为例,在通信设备为网络设备时,网络设备确定如果高层没有配置扰码标识,则该网络设备使用第二初始加扰值下行数据进行加扰处理。相对应的,在通信设备为终端设备时,终端设备确定如果高层信令没有配置扰码标识,则该终端设备使用第二初始加扰值对接收的下行数据进行解扰处理。

可选地,作为另一实施例,当通信设备确定如果高层信令配置有扰码标识的情况下,则该通信设备根据该扰码标识确定用于数据加扰或解扰的第一初始化加扰值,并根据该第一初始化加扰值对发送的数据进行加扰处理或对接收的数据进行解扰处理。

因此,本申请实施例,在确定如果高层没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

应理解,本申请实施例中小区标识可以为所述通信设备所在的小区的标识。

可选地,作为另一实施例,所述第二初始加扰值的净荷大小(payloadsize)与所述第一扰码标识的净荷大小相同;

或者,所述第二初始加扰值的净荷大小(payloadsize)与所述第一初始加扰值的净荷大小相同。

可选地,作为另一实施例,在所述第二初始加扰值与所述无线网络临时标识有关时,当所述无线网络临时标识的净荷小于所述第一扰码标识的净荷时,所述第二初始加扰值与所述无线网络临时标识和填充零比特(zeropadding)相关,其中所述填充零比特的个数为所述第一扰码标识的净荷与所述无线网络临时标识的净荷差。

应理解,本申请实施例中,第二初始加扰值可以与小区标识、无线网络临时标识和保留比特中的两项或三相相关。

例如,所述第二初始加扰值与小区标识和无线网络临时标识相关。

具体地,所述第二初始加扰值是所述通信设备根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识和无线网络临时标识两者中的一个,b表示所述两者中的另外一个,n为0到127中的任意一整数。

可选地,作为另一实施例,n可以取值为b转换成二进制后的比特数。

应理解,本申请实施例中,符号“*”表示“相乘”,a和b均表示十进制数值。

无线网络临时标识可以为终端设备的无线网络临时标识rnti,例如,可以用字母nrnti表示,小区标识例如可以用字母表示。

可选地,无线网络临时标识可以放在公式的前面,即a为nrnti,b为在n1表示的比特数时,那么上述确定第二初始加扰值的公式可以变形如下:

可选地,小区标识可以放在公式的前面,即a为b为nrnti,在n2表示nrnti的比特数时,那么上述确定第二初始加扰值的公式可以变形如下:

应理解,上文仅描述了第二初始加扰值与所述通信设备所在的小区的标识和无线网络临时标识相关的情况。

可选地,本申请实施例中,为了前向兼容性或者后续其它用途,本申请实施例中的第二初始加扰值还可以与保留比特(reserved)相关。其中,保留比特的位数可以根据具体实际情况而定,本申请实施例并不限于此。

可选地,作为另一实施例,上述描述的确定第二初始加扰值的公式可以做相应的变形,例如,将上述两个公式中的或nrnti替换成保留比特。

例如,所述第二初始加扰值与所述小区标识或所述无线网络临时标识,以及保留比特相关,所述第二初始加扰值是所述终端设备根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识或所述无线网络临时标识,b表示所述所述保留比特,n为0到127中的任意一整数。例如,n表示b转换成二进制后的比特数。

应理解,上述n、n1、n2可以取0-127中的任意数值(包括0以及127),本申请实施例并不限于上述列子。

上文描述了第二初始加扰值与上述三者中的两者相关的例子,可选地,作为另一实施例,所述第二初始加扰值与所述小区标识、无线网络临时标识和保留比特三者相关,相应的,所述第二初始加扰值是所述终端设备根据以下公式确定的:

cinitdefault=a*2n+m+b*2m+c

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识、无线网络临时标识和所述保留比特三者中的一个,b表示所述三者中除a之外的两者中的一个,c表示所述三者中除a和b之外的一个,m和n为0到127中的任意一整数。

例如,n可以取b转换成二进制后的比特数,m可以取c转换成二进制后的比特数。

应理解,本申请实施例中,符号“*”表示“相乘”,a和b均表示十进制数值。

例如,无线网络临时标识可以用字母nrnti表示,小区标识例如可以用字母表示,保留比特为可以表示为reserved,当即a为nrnti,b为在n1表示的比特数,n3表示保留比特数时,那么上述确定第二初始加扰值的公式可以变形如下:

应理解,根据实际情况,或者参数的重要程度,上述a、b、c三者的位置可以互换,本申请实施例并不限于此。

应理解,上述m、n、n3可以取0-127中的任意数值(包括0以及127),本申请实施例并不限于上述列子。

可选地,上文描述了第二初始加扰值与上述三项中两个或三项相关的情况,可选地,第二初始加扰值也可以仅与该三项中的一个项相关,具体的,在与一项相关时,第二初始加扰值可以按照上述公式类似确定,或者按照与rrc配置的扰码标识确定第一初始加扰值的方式确定,或者直接将该一项参数作为该第二初始加扰值,本申请实施例并不限于此。

可选地,作为另一实施例,无线网络临时标识为rnti,其中,所述rnti与所述终端设备数据传输的特征有关。也就是说,rnti随着终端设备数据传输的特征的变化而可能不同。

举例而言,在lte中,pdcch调度的pdsch或者pusch总共涉及到的rnti有如下八种:在nr中,可能针对更多的输出传输定义更多的rnti,本发明对此不做限定。1.c-rnti;2.temporaryc-rnti;3.ra-rnti;4.p-rnti;5.si-rnti;6.tpc-pucch-rnti;7.tpc-pusch-rnti;8.sps-rnti。

本申请实施例中的rnti可以为上八种中的任意一种。其中,上述8种rnti中:c-rnti,temporaryc-rnti和ra-rnti是由mac配置的。p-rnti和si-rnti是固定的,其余的由l3配置。

具体地,该8种rnti与终端设备数据传输的特征的对应关系可以如表1所示。

表1

需要说明的是,由于pdcch按照专用空间和公共空间进行区分,下面按照专用空间和公共空间分析rnti与dci的关系。

其中专用空间涉及的rnti包括1.c-rnit,2.sps-rnti。

c-rnti对应的dci格式有:format0,format1,format1a,format1b,format1d,format2,format2a。

sps-rnti对应dci格式有:format0,format1,format1a,format2,format2a。

公共空间涉及的rnti包括:1.c-rnti,2.temporaryc-rnti,3.ra-rnti,4.p-rnti,5.si-rnti,6.tpc-pucch-rnti,7.tpc-pusch-rnti,8.sps-rnti。

根据上述描述可以得出:

1.c-rnti对应的dci格式有:format0,format1a。

2.temporayc-rnti对应的dci格式有:format0。

3.ra-rnti对应的dci格式有:format1a,format1c。

4.p-rnti对应的dci格式有:format1a,format1c。

5.si-rnti对应的dci格式有:format1a,format1c。

6.tpc-pucch-rnti对应的dci格式为:format3/3a。

7.tpc-pusch-rnti对应的dci格式为:format3/3a。

8.sps-rnti对应的dci格式为:format0,format1a。

根据上文中rnti和dci的对应关系可以进行以下归类:由于format0,format1a,format3/3a的payloadsize相同,将它们归为一类,称为第一类dci。其余dci的payloadsize各不相同,归为一类称为第二类dci。

对于专用空间的第一类dci(即format0/1a)来说,它们可以不光可以由c-rnti来进行加掩,还可以使用sps-rnti进行加掩。即上行format0和下行的format1a都可以使用持续调度这种方式。对于专用空间的第二类dci来说,它们也可以用c-rnti和sps-rnti进行加掩来进行加掩,但是可以使用持续调度的只有format1,format2/2a。对于公共空间的第一类dci来说,涉及到的rnti有c-rnti,temporaryc-rnti,ra-rnti,p-rnti,si-rnti,tpc-pucch-rnti,tpc-pusch-rnti,sps-rnti。应注意,tpc-pucch-rnti,tpc-pusch-rnti只对应format3/3a,即任何用tpc-pucch-rnti,tpc-pusch-rnti进行解掩得到的都是format3/3a。而temporaryc-rnti只对应format0,即只在上行时使用。sps-rnti对应format0,format1a,这与专用空间的情况一样。ra-rnti,p-rnti,si-rnti这三个rnti都对应format1a。对于公共空间的第二类dci(只有format1c)来说,只有ra-rnti,p-rnti,si-rnti这三个dci,它们对应的dci格式是format1c。因此,根据上述描述可以得出如表2所示的rnti与dci的对应关系。

表2

应理解,上文表1和表2中仅以lte举例描述rnti的相关特征,在实际应用中rnti可以中不受此限定,lte中rnti的定义可以在nr中继承,也可以改变,具体可以根据实际情况而定,本申请实施例并不限于此。

因此,本申请实施例,在确定如果高层没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

在本申请的另外一种实施例中,在如图2所示的联合传输场景下,例如在非相干传输(non-coherentjt,ncjt)情况下,不同的网络设备可以在同一载波内相同的时频资源上向同一终端设备传输不同的调度信息(pdcch或dci),终端设备可以通过pucch向该两个网络设备反馈2个不同的上行信息(例如,ack/nack和或csi)。此时,如果使用现有的lte技术,即只配置一个虚拟小区id,则在时频资源相同的情况下,传输给两个不同小区的pucch,其基序列相同,终端设备可以通过不同的循环移位保证正两个上行信息的正交,然而,这种方式导致终端设备发送的pucch的容量降低。

类似的,终端设备在发送用于pucch解调的dmrs也采用上述方式发送,即根据某一id(例如,小区id,或者高层配置的id)确定基序列,循环以为获得序列,并通过上行信道发送。然后,同样的,这种方式导致终端设备发送的上行信道的容量降低,因此,如何提终端设备复用pucch的容量,成为亟待解决的问题。

另外,现有标准中规定,终端设备需要根据高层配置的扰码标识确定用于数据加扰或解扰的初始化加扰值。在如图2所示的联合传输场景下,终端设备可以同时接收两个网络设备通过pdsch发送的下行数据,终端设备也可以同时通过pusch向两个网络设备发送上行数据,在终端设备与两个网络设备通信时,仅使用同一个扰码标识对数据进行加扰或解扰会使得信号间干扰严重,影响网络性能。

综上可以得出,现有方案中终端设备使用一个标识(例如,虚拟小区id)通过pucch反馈dci的调度信息。终端设备同样也是使用一个标识(例如,加扰标识)对通过pdsch接收下行数据进行解扰,或者对通过pusch发送的上行数据进行加扰。然而,上述两种场景下,仅使用一个标识通信的方案难以满足联合传输的需求,影响网络性能。

针对上述问题,本申请实施例提出了在上述两种场景下均通过高层信令为终端设备配置两个标识,以使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

以下,为了便于理解和说明,作为示例而非限定,对本申请中的信息传输的方法进行详细说明。

图4是根据本申请一个实施例的信息传输的方法400的示意性流程图。如图4所述的方法可以应用于图2所示的系统架构中,具体的,如图4所示的方法400包括:

410,网络设备生成高层信令。

具体地,所述高层信令用于指示第一标识和第二标识。

例如,该高层信令可以为rrc信令,该网络设备可以为联合传输的两个网络设备中的任意一个,该网络设备也可以是其他的网络设备,本申请实施例并不限于此。例如,该网络设备可以为与该终端设备建立rrc连接的网络设备。

420,网络设备向终端设备发送该高层信令。

430,该终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息。

其中,所述第一发送信息或者第一接收信息对应第一天线端口或第一天线端口集合,所述第二发送信息或者第二接收信息对应第二天线端口或第二天线端口集合,所述第一天线端口或第一天线端口集合与所述第二天线端口或第二天线端口集合为非准共址qcl关系。

应理解,第一天线端口或第一天线端口集合可以对应第一网络设备,第二天线端口或第二天线端口集合可以对应第二网络设备。

也就是说,终端设备可以在同一时域资源上使用所述第一标识与第一网络设备通信,并使用所述第二标识与第二网络设备通信。

具体地,终端设备通过高层信令获取到第一标识和第二标识后,所述终端设备在同一时域资源(例如,同一时隙(slot))上使用所述第一标识与第一网络设备通信,例如,发送第一发送信息或者接收第一接收信息,并使用所述第二标识与第二网络设备通信,,例如,发送第二发送信息或者接收第二接收信息。

因此,本申请实施例通过高层信令配置两个标识,使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

应理解,上文描述了终端设备配置两个标识的情况,可选地,当终端设备与三个或多个网络设备同时通信时,网络设备也可以同样配置三个或多个标识,以使得终端设备与该三个或多个终端设备在同一时域资源上通信,本申请实施例并不限于此。

可选地,作为另一实施例,所述第一发送信息或者第一接收信息,和所述第二发送信息或者第二接收信息可以包括以下信息中的至少一项:

下行共享信道数据信息pdsch、上行共享信道数据信息pusch、下行控制信道信息pdcch、上行控制信道pucch、上行探测信道srs、上行随机接入信道prach、上行或者下行解调参考信号dmrs、下行信道测量参考信号csi-rs、下行相位跟踪信息ptrs、下行跟踪信号trs。

以下为了便于描述,下面结合联合传输场景下终端设备对多个dci的调度反馈场景(以下简称为场景一),以及联合传输场景下的上下行数据传输场景(以下简称为场景二),分别描述本申请实施例的信息传输的方法。

首先,描述场景一中信息传输的方法。

为了使得本申请实施例的场景一中的方案更容易理解,下面介绍本申请实施例中序列生成标识的相关内容。

对于pucch格式(formats)1a和1b,分别对应了1和2比特(bit)的传输比特b(0),...,b(mbit-1),该传输比特可以对应dci调度的ack、nack、uci、csi等。比特块b(0),...,b(mbit-1)将通过表3(对应现有标准中的表5.4.1-1)被调制成复值符号d(0),具体地调制方案可以参考标准中的表5.4-1,此处不再赘述。

表3

终端设备通过每一个天线端口的pucch传输信号将有复值符号d(0)和长为12的循环移位序列相乘得到,具体地,传输信号可以根据以下公式确定:

其中,为上行参考信号序列,是对基序列进行循环移位得到的。

其中,根据基序列的长度,可以通过以下两种情况生成基序列(1)基序列的长度大于等于(2)基序列的长度小于

(1)基序列长度大于等于(为一个rb所包含的子载波个数):基序列将有以下公式获得:

其中,为参考信号的长度(子载波个数),为小于等于的最大质数。qthrootzadoff-chu序列由此公式指出:

其中,q为:

(2)基序列长度小于对于两种情况,基序列有如下公式给出:

分别对应由表4(对应标准中表5.5.1.2-1)和表5(对应标准中表5.5.1.2-2)给出:

表4,的定义

表5,的定义

而对于每种参考信号序列长度,都有至少30个基序列可以使用。这些序列被分为30组,其取值范围是0~29(u取值0~29对应该30个基序列)。对于长度大于或等于72的参考信号的基序列而言,可用的基序列大于60个,此时每个组合group包含2个基序列(这就是v的含义,此时其值为0或1)。

则每个slot上使用的组合(groupnumber)u的计算公式为:

u=(fgh(ns)+fss)mod30

其中,fgh(ns)为组跳模式,进一步可由此式表示:

这里,c的初始值

而fss为序列移位模式,fss对应于pucch,pusch和srs的定义不同,对于pucch,有定义:

为用于确定序列生成的虚拟小区id。对于pucch传输,有如下定义:

如果高层没有配置值(ifnovalueforisconfiguredbyhigherlayers)

否则(otherwise)

因此,u和给定的小区id相对应,从而基序列和上行参考信号序列和给定的小区id相对应,即从天线端口输出的和给定小区id相对应,且lte中只定义了一个小区id,即不存在多个小区id确定一个的情况。

根据以上分析,可以得出,终端设备为了通过pucch传输反馈信息需要确定循环移位序列,而循环移位序列由基序列循环移位得到,并且,由于基序列与序列生成标识(该序列生成标识为高层配置的值或者小区id)对应。因此,只要确定了序列生成标识根据上文描述的相反过程进行推算既可以确定反馈信息。

应理解,上文描述了dci调度的ack、nack、uci、csi等信息的发送方法,可选地,pucch传输的解调dmrs可以采用类似的方式发送。

因此,基于以上分析,本申请实施例在场景一中配置两个序列生成标识以用于pucch传输反馈信息,以满足联合传输的需求,提升网络性能。

相应的,作为另一实例,所述第一标识为第一序列生成标识,所述第一序列生成标识用于确定第一基序列,所述第二标识为第二序列生成标识,所述第二序列生成标识用于确定第二基序列,其中,在430中:所述终端设备根据所述第一序列生成标识和所述第二序列生成标识分别确定所述第一基序列和所述第二基序列;所述终端设备对所述第一基序列和所述第二基序列进行循环移位分别生成第三序列和第四序列;所述终端设备在所述同一时域资源上通过第一物理上行控制信道pucch向所述第一网络设备发送所述第三序列对应的数据反馈信息,并通过第二pucch向所述第二网络设备发送根据所述第四序列对应的数据反馈信息,其中,所述第一发送信息为第三序列对应的数据反馈信息,所述第二发送信息为第四序列对应的数据反馈信息。

可选地,作为另一实施例所述高层信令用于配置所述第一pucch所述占用的时频资源以及所述第一pucch传输的数据反馈信息所使用的所述第一序列生成标识,所述第二pucch所占用的时频资源以及所述第二pucch传输的数据反馈信息所使用的所述第二序列生成标识。

应理解,在本申请实施例中,配置第一pucch和第二pucch的高层信令可以是同一个高层信令(例如,rrc信令),也可以是不同的高层信令(例如,rrc信令)。本申请实施例并不限于此。

应理解,上文描述了针对两个pucch的情况下,高层信令在配置pucch资源时配置相对应的序列生成标识的方案。可选地,类似地,在本申请实施例中,也可以不同考虑pucch的个数情况,即在高层配置pucch资源时,也同时配置该pucch资源传输的数据反馈信息所使用的序列生成标识(也可以称为该pucch对应的序列生成标识)。

可选地了,作为另一实施例,所述方法还可以包括:所述终端设备接收通过第一pdcch资源和第二pdcch资源分别传输的第一下行控制信息dci和第二dci,其中,所述第一pucch承载的数据反馈信息对应所述第一dci调度的数据,所述第一dci调度的数据对应所述第一天线端口或第一天线端口集合,所述第二pucch承载的数据反馈信息对应所述第二dci调度的数据,所述第二dci调度的数据对应所述第二天线端口或第二天线端口集合。

例如,以高层信令为rrc信令为例,该rrc信令用于配置多个pucch资源,以及该多个pucch资源上使用的序列生成标识。其中该多个pucch资源包括第一pucch资源和第二pucch资源。

具体地,rrc信令配置的每个pucch资源内容可以包括:时域上的slot号和symbol号,频域上的rb数,码域上使用的循环移位数以及序列生成时需要的序列生成标识。

具体地,该rrc信令用于配置所述第一pucch所述占用的时频资源以及所述第一pucch时频资源上使用的所述第一序列生成标识,所述第二pucch所占用的时频资源,以及所述第二pucch时频资源上使用的所述第二序列生成标识。

例如:当两个网络设备发送多个dci同时调度终端设备,则该两个网络设备可以通过x2接口进行交互,将pucch资源分成两组相互正交的两组(例如,pucchgroup1和pucchgroup2)。在分组后,网络设备通过rrc信令配置pucch资源,例如,如表6所示,终端设备通过rrc信令为ue配置四组pucch参数,并通过dci内的2比特(bit)触发终端所使用的其中一组pucch资源,具体配置设计如下表所示:

表6

如表6所示,dci内2bit对应的pucch的请求字段‘00’和‘01’对应pucchgroup1的两个相互正交的不同资源,即pucch资源0和pucch资源1,且均对应网络设备1/序列生成标识(id)1;pucch的请求字段‘00’和‘10’分别对应了pucchgroup1和pucchgroup2,且分别对应了网络设备1/序列生成id1和网络设备2/序列生成id2。因此,每组通过rrc信令配置的pucch资源内容包括:时域上的slot号和symbol号,频域上的rb数,码域上使用的循环移位数以及基序列生成时需要的序列生成id,从设计的表格也可以看出,每组pucch资源均对应了一个序列生成id。

例如,终端设备接收第一网络设备发送的第一dci,第二网络设备发送的第二dci,然后,终端设备根据该第一dci和第二dci确定pucch资源,例如,pucch资源0和pucch资源2分别发送反馈信息,具体的,分别使用第一序列生成标识和第二序列生成标识在pucch资源0和pucch资源2分别发送反馈信息。

因此,应用上述场景一中,终端设备发送多个pucch给不同网络设备时,例如,两个网络设备同时调度同一终端设备,且该终端设备的pucch资源直接由rrc信令配置,两网络设备通过在rrc信令中增加每组pucch资源对应的序列生成标识,保证终端设备发送的到两个网络设备的pucch所使用的基序列不同,从而保证pucch序列复用终端设备的容量,实现传输到两网络设备的两个pucch之间较小干扰,提升网络性能。

上文中针对场景一,描述了网络设备通过在rrc配置pucch资源的同时,配置序列生成标识的方案。

可选地,本申请实施例中,针对上述场景一,还可以在rrc配置pdcch资源的同时,配置序列生成标识。

相应的,作为另一实施例,所述高层信令用于指示物理下行控制信道pdcch对应的控制资源集,以及所述控制资源集中的第一pdcch资源对应的pucch资源上传输的数据反馈信息所使用的所述第一序列生成标识,第二pdcch资源上传输的数据反馈信息所使用的所述第二序列生成标识。

应理解,本申请实施例中控制资源集合(controlresourceset)定义如下:

控制信道可以划分为多个控制资源集合,每个控制资源集合是一组reg的集合。终端设备可以在一个或多个控制资源集合上监听pdcch。在本发明实施例中,对于网络设备而言,控制资源集合可以理解为发送控制信道所占的资源;对于终端设备而言,每个终端设备的pdcch的搜索空间都属于该控制资源集合。或者说,网络设备可以从该控制资源集合中确定发送pdcch使用的资源,终端设备可以从该控制资源集合中确定pdcch的搜索空间。其中,控制资源集合可以包括时频资源,例如,频域上可以是一段带宽,或者一个或者多个子带等;时域上可以是时间单元的个数,例如,子帧或者时隙或者微时隙中的符号个数;时频域上可以是连续或不连续的资源单元,例如,连续的资源块(resourceblock,rb)或者不连续的rb。

应理解,上述列举的频域资源、时域资源、时频域资源的具体内容仅为示例性说明,而不应对本发明实施例构成任何限定。例如,rb的定义可以为现有lte协议中定义的资源,也可以为未来协议中定义的资源,或者,还可以使用其他的命名来替代。又例如,时间单元,可以是子帧,也可以是时隙(slot),还可以是无线帧、微时隙(minislot或subslot)、多个聚合的时隙、多个聚合的子帧、符号等等,甚至还可以是传输时间间隔(transmissiontimeinterval,tti),本申请实施例对此并未特别限定。

因此,在场景一中多dci独立调度时,即每个网络设备独立发送一个pdcch给同一终端设备,此时每个pdcch占用不同的coreset,由rrc信令配置。此时,在本coreset内承载的dci,用于调度下行数据,与之对应的pucch便可使用该coreset内配置的序列生成id。

例如,在rrc信令配置coreset时,同时配置生成id,从而可以确定在该coreset内的dci对应的pucch所使用的id。

上文分别描述了场景一通过rrc信令配置pucch资源时配置序列生成标识,以及通过rrc信令配置pdcch资源时配置序列生成标识的方案。

可选地,本申请实施例还可以通过高层信令直接配置两个序列生成标识。

相应地,作为另一实施例,所述高层信令还用于指示所述第一序列生成标识与所述第一pucch的对应关系以及所述第二序列生成标识与所述第二pucch的对应关系。

具体而言,网络设备可以通过高层信令直接配置终端设备两个序列生成标识。同时在高层信令中指示序列生成标识和同一个slot内的两个pucch的对应关系。

例如若同一个slot的两个pucch分别为短(short)pucch和长(long)pucch,则rrc信令配置shortpucch采用序列生成id1,且此id1可以使用服务小区id,rrc信令配置longpucch采用序列生成id2,且此id2可以使用协作小区id。

本申请实施例通过这种方法,即可保证同一slot内的两个pucch不会出现相互干扰的情况,而且在被多基站同时调度时,发送的资源不会相互影响。

应理解,在场景一中高层信令配置的两个标识可以相同也可以不同,本申请实施例并不限于此。

例如,对于同一小区多网络设备(即多个网络设备的小区id相同)的情况,高层信令将配置的序列生成id配置为相同的id,从而实现在该场景下的pucch传输。但因为是多网络设备调度,可以考虑发送的pucch采用不同的基序列,实现pucch正交,避免相互干扰。

本申请实施例通过这种方法,使得高层信令配置更加灵活,能够满足5g(nr)的密集基站场景的需求。

上文描述了场景一中pucch传输dci对应的反馈信息的情况,类似的,终端设备在发送用于pucch解调的dmrs也采用上述方式发送,也就是说,本申请实施例中也可以通过高层信令配置两个id,以使得终端设备按照上述类似过程分别确定序列并通过两个上行信道发送。具体的过程可以参见上文中的描述,为了避免重复,此处不再赘述。

上文描述了场景一中信息传输的方法,下面描述场景二(联合传输场景下的上下行数据传输场景)中的信息传输的方法。

具体地,作为另一实施例,所述第一标识为第一扰码标识,所述第二标识为第二扰码标识,所述第一扰码标识和所述第二扰码标识分别用于所述终端设备确定用于数据加扰的第一初始化加扰值和第二初始化加扰值,

其中,在430中,所述终端设备分别使用所述第一扰码标识和所述第二扰码标识分别生成所述第一初始化加扰值和所述第二初始化加扰值,

所述终端设备在同一时域资源内使用所述第一初始化加扰值生成第一发送信息或者用于解调第一接收信息,并使用所述第二初始化加扰值生成第二发送信息或者用于解调第二接收信息。

换句话说,所述终端设备在同一时域资源内使用所述第一初始化加扰值与所述第一网络设备通信,并使用所述第二初始化加扰值与所述第二网络设备通信。

具体而言,网络设备通过高层信令给终端设备配置至少两个不同的扰码标识,进而,终端设备可以使用该两个扰码标识对向两个网络设备传输的上行数据分别进行加扰处理。或者,终端设备可以使用该两个数据扰码标识对接收的两个网络设备发送的下行数据分别进行解扰处理。

应理解,本申请实施例中,用于pdsch传输的两个扰码标识和用于pusch传输的两个扰码标识可以相同,即共用相同的2个扰码标识;可选地,用于pdsch传输的两个扰码标识和用于pusch传输的两个扰码标识也可以分别配置。

可选地,作为另一实施例,

所述高层信令还用于指示所述第一扰码标识和第一天线端口或第一天线端口组的对应关系,以及所述第二扰码标识与第二天线端口或第二天线端口组的对应关系。

应理解,所述第一天线端口或第一天线端口组对应所述第一网络设备,所述第二天线端口或第二天线端口组对应所述第二网络设。

具体而言,网络设备通过高层信令直接给终端设备配置两个加扰标识,并在高层信令中指示两个加扰标识与同一个slot内的两个天线端口或两个天线端口组的一一对应关系。且该两个天线端口或天线端口组为非qcl的。也就是说,该两个天线端口组可以对应两个网络设备。

应理解,本申请实施例中,天线端口可以为dmrs天线端口,ptrs天线端口或trs天线端口;天线端口组可以为dmrs天线端口组,ptrs天线端口组或trs天线端口组,本申请实施例并不限于此。

因此,终端设备可以根据该两个加扰标识对向两个网络设备传输的上行数据分别进行加扰处理。或者,终端设备可以使用该两个数据扰码标识对接收的两个网络设备发送的下行数据分别进行解扰处理。

因此,本申请实施例中,在终端设备与两个网络设备通信时,使用两个扰码标识对与两个网络设备通信的数据分别进行加扰或解扰处理,因此,降低了信号间干扰,提升网络性能。

应理解,上文中图图1至图4的例子,仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。

应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。

上文中,结合图1至图4详细描述了本发明实施例的信息传输的方法,下面结合图5至图7描述本发明实施例的设备。

图5示出了根据本申请实施例的通信设备500的示意性框图,具体地,如图5所示,该通信设备500包括:处理器510,可选地,该通信设备500还可以包括收发器520,该收发器520可以进行发送或接收信号或数据。

可选地,该通信设备还可以包括存储器530等部件。存储器主要用于存储软件程序和数据。处理器510可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。

该通信设备500可以为网络设备也可以为终端设备。

在通信设备500为网络设备时,可选地,收发器520可以称为远端射频单元(remoteradiounit,rru)、收发单元、收发机、或者收发电路等等。收发器520可以包括至少一个天线和射频单元,收发器520可以用于射频信号的收发以及射频信号与基带信号的转换。可选地,该网络设备可以包括基带单元(basebandunit,bbu),该基带单元包括该处理器510。该基带单元可以用于进行基带处理,如信道编码,复用,调制,扩频等,以及对网络设备进行控制。该收发器520与该基带单元可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。

在一个示例中,基带单元可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。

在一个示例中,基带单元可以被重构为前述的du和cu功能实体。

基带单元包括处理器510。处理器510可以用于控制网络设备执行前述各方法实施例中的相应操作。可选地,基带单元还可以包括存储器,用以存储必要的指令和数据。

在通信设备500为终端设备时,可选地,收发器520可以包括控制电路和天线,其中,控制电路可用于基带信号与射频信号的转换以及对射频信号的处理,天线可用于收发射频信号。处理器510可用于对通信协议以及通信数据进行处理,以及对整个通信设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信端设备执行前述方法实施例中的相应操作。

具体的,处理器510用于在确定高层信令没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理,其中,所述扰码标识用于所述通信设备确定用于数据加扰或解扰的第一初始加扰值,所述第二初始加扰值与小区标识、无线网络临时标识和保留比特中的至少一项或者至少两项相关。

因此,本申请实施例,在确定如果高层没有配置扰码标识时,通信设备使用第二初始加扰值对数据进行加扰或解扰处理。解决了现有技术中终端设备无法确定用于数据加扰的初始加扰值的问题。

可选地,作为另一实施例,所所述第二初始加扰值的净荷大小(payloadsize)与所述第一扰码标识的净荷大小相同;

或者,所述第二初始加扰值的净荷大小(payloadsize)与所述第一初始加扰值的净荷大小相同。

可选地,作为另一实施例,所述第二初始加扰值与小区标识和所述无线网络临时标识相关,所述第二初始加扰值是所述处理器根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识和所述无线网络临时标识两者中的一个,b表示所述两者中的另外一个,n为0到127中的任意一整数。

可选地,作为另一实施例,所述第二初始加扰值与小区标识、所述无线网络临时标识和保留比特相关,所述第二初始加扰值是所述处理器根据以下公式确定的:

cinitdefault=a*2n+m+b*2m+c

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识、所述无线网络临时标识和所述保留比特三者中的一个,b表示所述三者中除a之外的两者中的一个,m和n为0到127中的任意一整数,c表示所述三者中除a和b之外的一个。

可选地,作为另一实施例,所述第二初始加扰值与所述小区标识或所述无线网络临时标识,以及保留比特相关,所述第二初始加扰值是所述处理器根据以下公式确定的:

cinitdefault=a*2n+b

其中,cinitdefault表示所述第二初始加扰值,a表示所述小区标识或所述无线网络临时标识,b表示所述所述保留比特,n为0到127中的任意一整数。

可选地,作为另一实施例,所述第二初始加扰值与所述无线网络临时标识有关,

当所述无线网络临时标识的净荷小于所述第一扰码标识的净荷时,所述第二初始加扰值与所述无线网络临时标识和填充零比特(zeropadding)相关,其中所述填充零比特的个数为所述第一扰码标识的净荷与所述无线网络临时标识的净荷差。

应理解,图5所示的通信设备500能够实现图3方法实施例中涉及通信设备的各个过程。通信设备500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。

图6示出了根据本申请实施例的终端设备600的示意性框图,具体地,如图6所示,该终端设备600包括:处理器610和收发器620。

可选地,收发器620可以包括控制电路和天线,其中,控制电路可用于基带信号与射频信号的转换以及对射频信号的处理,天线可用于收发射频信号。

可选地,该终端设备还可以包括存储器660等部件。存储器主要用于存储软件程序和数据。处理器610可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。

处理器610可用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行前述方法实施例中的相应操作。

所述收发器用于接收高层信令,所述高层信令用于指示第一标识和第二标识,

所述处理器用于在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,其中,所述第一发送信息或者第一接收信息对应第一天线端口或第一天线端口集合,所述第二发送信息或者第二接收信息对应第二天线端口或第二天线端口集合,所述第一天线端口或第一天线端口集合与所述第二天线端口或第二天线端口集合为非准共址qcl关系。

因此,本申请实施例通过高层信令配置两个标识,使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

可选地,作为另一实施例,所述第一标识为第一序列生成标识,所述第一序列生成标识用于确定第一基序列,所述第二标识为第二序列生成标识,所述第二序列生成标识用于确定第二基序列,

其中,所述处理器具体用于根据所述第一序列生成标识和所述第二序列生成标识分别确定所述第一基序列和所述第二基序列;

对所述第一基序列和所述第二基序列进行循环移位分别生成第三序列和第四序列。

在所述同一时域资源上通过第一物理上行控制信道pucch发送所述第三序列对应的数据反馈信息,并通过第二pucch发送根据所述第四序列对应的数据反馈信息,其中,所述第一发送信息为第三序列对应的数据反馈信息,所述第二发送信息为第四序列对应的数据反馈信息。

可选地,作为另一实施例,所述高层信令用于配置所述第一pucch所占用的时频资源以及所述第一pucch传输的数据反馈信息所使用的所述第一序列生成标识,所述第二pucch所占用的时频资源以及所述第二pucch传输的数据反馈信息所使用的所述第二序列生成标识。

可选地,作为另一实施例,所述收发器还用于接收通过第一pdcch资源和第二pdcch资源分别传输的第一下行控制信息dci和第二dci,

其中,所述第一pucch承载的数据反馈信息对应所述第一dci调度的数据,所述第一dci调度的数据对应所述第一天线端口或第一天线端口集合,所述第二pucch承载的数据反馈信息对应所述第二dci调度的数据,所述第二dci调度的数据对应所述第二天线端口或第二天线端口集合。

可选地,作为另一实施例,所述高层信令还用于指示所述第一序列生成标识与所述第一pucch的对应关系以及所述第二序列生成标识与所述第二pucch的对应关系。

可选地,作为另一实施例,所述第一标识为第一扰码标识,所述第二标识为第二扰码标识,所述第一扰码标识和所述第二扰码标识分别用于所述终端设备确定用于数据加扰的第一初始化加扰值和第二初始化加扰值,

其中,所述处理器具体用于分别使用所述第一扰码标识和所述第二扰码标识分别生成所述第一初始化加扰值和所述第二初始化加扰值,

所述终端设备在同一时域资源内使用所述第一初始化加扰值生成第一发送数据或者用于解扰第一接收数据,并使用所述第二初始化加扰值生成第二发送数据或者用于解扰第二接收数据,其中,所述第一发送信息为所述第一发送数据,所述第一接收信息为所述第一接收数据,所述第二发送信息为所述第二发送数据,所述第二接收信息为所述第二接收数据。

可选地,作为另一实施例,所述高层信令还用于指示所述第一扰码标识和第一天线端口或第一天线端口组的对应关系,以及所述第二扰码标识与第二天线端口或第二天线端口组的对应关系。

可选地,作为另一实施例,所述第一标识和所述第二标识相同。

应理解,图6所示的终端设备600能够实现图4方法实施例中涉及终端设备的各个过程。终端设备60中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。

图7示出了根据本申请实施例的网络设备700的示意性框图,具体地,如图7所示,该网络设备700包括:处理器710和收发器720。

可选地,该网络设备还可以包括存储器730等部件。存储器主要用于存储软件程序和数据。处理器710可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。

可选地,收发器720可以称为远端射频单元(remoteradiounit,rru)、收发单元、收发机、或者收发电路等等。收发器720可以包括至少一个天线和射频单元,收发器720可以用于射频信号的收发以及射频信号与基带信号的转换。

可选地,该网络设备可以包括基带单元(basebandunit,bbu),该基带单元包括该处理器710。该基带单元可以用于进行基带处理,如信道编码,复用,调制,扩频等,以及对网络设备进行控制。该收发器720与该基带单元可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。

在一个示例中,基带单元可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。

在一个示例中,基带单元可以被重构为前述的du和cu功能实体。

基带单元包括处理器710。处理器710可以用于控制网络设备执行前述各方法实施例中的相应操作。可选地,基带单元还可以包括存储器,用以存储必要的指令和数据。

具体的,所述处理器用于生成高层信令,所述高层信令用于指示第一标识和第二标识,

所述收发器用于向终端设备发送所述高层信令,以便所述终端设备在同一时域资源上根据所述第一标识生成第一发送信息或者用于解调第一接收信息,并根据所述第二标识生成第二发送信息或者用于解调第二接收信息,其中,所述第一发送信息或者第一接收信息对应第一天线端口或第一天线端口集合,所述第二发送信息或者第二接收信息对应第二天线端口或第二天线端口集合,所述第一天线端口或第一天线端口集合与所述第二天线端口或第二天线端口集合为非准共址qcl关系。

因此,本申请实施例通过高层信令配置两个标识,使得终端设备可以根据该两个标识与两个网络设备通信,能够满足联合传输的需求,提升网络性能。

可选地,作为另一实施例,所述第一标识为第一序列生成标识,所述第一序列生成标识用于确定第一基序列,所述第二标识为第二序列生成标识,所述第二序列生成标识用于确定第二基序列,

所述第一基序列和所述第二基序列用于中等生合并通过循环移位分别生成第三序列和第四序列;

所述第三序列和所述第四序列分别用于终端设备在同一时域资源上通过第一物理上行控制信道pucch发送所述第三序列对应的数据反馈信息,并通过第二pucch发送根据所述第四序列对应的数据反馈信息,其中,所述第一发送信息为第三序列对应的数据反馈信息,所述第二发送信息为第四序列对应的数据反馈信息。

可选地,作为另一实施例,所述高层信令用于配置所述第一pucch所占用的时频资源以及所述第一pucch传输的数据反馈信息所使用的所述第一序列生成标识,所述第二pucch所占用的时频资源以及所述第二pucch传输的数据反馈信息所使用的所述第二序列生成标识。

可选地,作为另一实施例,所述终端设备还接收有接收通过第一pdcch资源和第二pdcch资源分别传输的第一下行控制信息dci和第二dci,

其中,所述第一pucch承载的数据反馈信息对应所述第一dci调度的数据,所述第一dci调度的数据对应所述第一天线端口或第一天线端口集合,所述第二pucch承载的数据反馈信息对应所述第二dci调度的数据,所述第二dci调度的数据对应所述第二天线端口或第二天线端口集合。

可选地,作为另一实施例,所述高层信令还用于指示所述第一序列生成标识与所述第一pucch的对应关系以及所述第二序列生成标识与所述第二pucch的对应关系。

可选地,作为另一实施例,所述第一标识为第一扰码标识,所述第二标识为第二扰码标识,所述第一扰码标识和所述第二扰码标识分别用于所述终端设备确定用于数据加扰的第一初始化加扰值和第二初始化加扰值,

所述第一初始化加扰值和所述第二初始化加扰值分别用于所述终端设备在同一时域资源内使用所述第一初始化加扰值生成第一发送数据或者用于解调第一接收数据,并使用所述第二初始化加扰值生成第二发送数据或者用于解调第二接收数据,其中,所述第一发送信息为所述第一发送数据,所述第一接收信息为所述第一接收数据,所述第二发送信息为所述第二发送数据,所述第二接收信息为所述第二接收数据。

可选地,作为另一实施例,所述高层信令还用于指示所述第一扰码标识和第一天线端口或第一天线端口组的对应关系,以及所述第二扰码标识与第二天线端口或第二天线端口组的对应关系。

可选地,作为另一实施例,所述第一标识和所述第二标识相同。

应理解,图7所示的网络设备700能够实现图4方法实施例中涉及网络设备的各个过程。网络设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。

应理解,上述本发明实施例中的处理器可以通过处理单元或芯片实现,可选地,处理单元在实现过程中可以由多个单元构成。

应理解,上述本发明实施例中的收发器可以通过收发单元或芯片实现,可选地,收发器可以由发射器或接收器构成,或由发射单元或接收单元构成。

应理解,本发明实施例中的处理器和收发器可以通过芯片实现。

本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例中的信息传输的方法。

应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。

例如,该处理装置可以是现场可编程门阵列(field-programmablegatearray,fpga),可以是专用集成芯片(applicationspecificintegratedcircuit,asic),还可以是系统芯片(systemonchip,soc),还可以是中央处理器(centralprocessorunit,cpu),还可以是网络处理器(networkprocessor,np),还可以是数字信号处理电路(digitalsignalprocessor,dsp),还可以是微控制器(microcontrollerunit,mcu),还可以是可编程控制器(programmablelogicdevice,pld)或其他集成芯片。

本发明实施例还提供了一种通信设备,包括处理单元和收发单元。该处理单元和该收发单元可以是软件实现也可以是硬件实现。在硬件实现的情况下,该处理单元可以是上文描述的处理器,该收发单元可以是上文描述的收发器。

应理解,上文中描述的本申请实施例的各个实施例中,处理器可以是cpu,该处理器还可以是其他通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现成可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。

存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。

在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

应注意,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digitalsignalprocessor,dsp)、专用集成电路(applicationspecificintegratedcrcuit,asic)、现成可编程门阵列(fieldprogrammablegatearray,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-onlymemory,rom)、可编程只读存储器(programmablerom,prom)、可擦除可编程只读存储器(erasableprom,eprom)、电可擦除可编程只读存储器(electricallyeprom,eeprom)或闪存。易失性存储器可以是随机存取存储器(randomaccessmemory,ram),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的ram可用,例如静态随机存取存储器(staticram,sram)、动态随机存取存储器(dynamicram,dram)、同步动态随机存取存储器(synchronousdram,sdram)、双倍数据速率同步动态随机存取存储器(doubledataratesdram,ddrsdram)、增强型同步动态随机存取存储器(enhancedsdram,esdram)、同步连接动态随机存取存储器(synchlinkdram,sldram)和直接内存总线随机存取存储器(directrambusram,drram)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。

本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中的信息传输的方法。

本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例中的信息传输的方法。

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digitalsubscriberline,dsl))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digitalvideodisc,dvd))、或者半导体介质(例如,固态硬盘(solidstatedisk,ssd))等。

在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。

还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。

应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。

另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

应理解,在本发明实施例中,“与a相应的b”表示b与a相关联,根据a可以确定b。但还应理解,根据a确定b并不意味着仅仅根据a确定b,还可以根据a和/或其它信息确定b。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。

所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。

作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括ram、rom、eeprom、cd-rom或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(dsl)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、dsl或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(disk)和碟(disc)包括压缩光碟(cd)、激光碟、光碟、数字通用光碟(dvd)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。

总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1