对用于基于波束的系统中的无线电链路监测的移动参考信号的增强的制作方法

文档序号:17983595发布日期:2019-06-22 00:15阅读:185来源:国知局
对用于基于波束的系统中的无线电链路监测的移动参考信号的增强的制作方法

本公开总体上涉及无线通信系统,并且更具体地涉及配置无线设备以在这样的系统中执行无线电链路监测(rlm)的接入节点。



背景技术:

lte中的无线电链路监测(rlm)

由第三代合作伙伴计划(3gpp)开发的长期演进(lte)无线系统是广泛部署的第四代无线通信系统。在lte及其前身系统中,无线设备(在3gpp文档中称为“用户设备”或“ue”)中的rlm功能的目的是在rrc_connected(rrc连接)模式下监测服务小区的下行链路无线电链路质量。该监测基于小区特定参考信号(crs),所述小区特定参考信号始终与给定lte小区相关联并且是根据物理小区标识符(pci)导出的。当ue处于rrc_connected模式时,rlm进而使ue能够确定其与其服务小区是同步还是不同步的,如3gppts36.213,v14.0.0中所述。

出于rlm的目的,将ue对下行链路无线电链路质量的估计(该估计基于其对crs的测量)分别与不同步阈值qout和同步阈值qin进行比较。在来自服务小区的假设的物理下行链路控制信道(pdcch)传输的块错误率(bler)方面,这些阈值被标准化。具体而言,qout对应于10%bler,而qin对应于2%bler。无论是否使用不连续接收(drx),都适用相同的阈值水平。

基于crs的下行链路质量与假设的pdcchbler之间的映射取决于ue实现。但是,如3gppts36.521-1,v14.0.0中所述,通过针对各种环境定义的一致性测试来验证性能。此外,如图1所示,基于整个频带上的crs的参考信号接收功率(rsrp)来计算下行链路质量,因为pdcch是在整个频带上发送的。

在没有配置drx的情况下,当在最后200毫秒时段上估计的下行链路无线电链路质量变得比阈值qout差时,发生不同步。类似地,在不使用drx的情况下,当在最后100毫秒时段上估计的下行链路无线电链路质量变得比阈值qin好时,发生同步。在检测到不同步时,ue发起同步评估。由ue的物理层向其高层(higherlayers)内部报告不同步和同步的发生,其进而可以应用第3层(即,高层)过滤来评估无线电链路故障(rlf)。高层rlm过程示于图2中。

当使用drx时,不同步评估时段和同步评估时段被扩展,以实现足够的ue功率节省,并且不同步评估时段和同步评估时段取决于所配置的drx周期长度。每当发生不同步时,ue就开始同步评估。因此,相同时段(tevaluate_qout_drx)被用于评估不同步和同步。然而,在启动rlf定时器(t310)直到其到期时,同步评估时段被缩短至100毫秒,这与没有使用drx的情况相同。如果定时器t310由于n311个连续同步指示而停止,则ue根据基于drx的时段(tevaluate_qout_drx)来执行同步评估。

lte中的用于rlm的整个方法(即,测量crs以“估计”pdcch质量)依赖于下述假设:ue连接到lte小区,单个连接实体发送pdcch和crs两者。

5g开发

在题为新无线电(nr)的新5g无线电接入技术的研究项目中,多个公司已就以下设计原则达成初步协议;nr的超精益设计;和波束成形的大量使用。多个公司已经表达了在设计rlm时应当考虑波束成形这样的观点,而在lte中不是这样的情况。另外,已经表达了关于ue应当如何测量小区质量的担忧。

以下是nr的一些原则,与lte中的现有解决方案相比,nr可能需要新的rlm解决方案。还描述了用于nr的基于波束的移动性解决方案的一些方面,其使用跨越不同步的和/或不共享相同基带的和/或经由非理想回程链接的传输接收点(trp)的rrc信令。

5gnr中的超精益设计

预计nr将是超精益系统,这意味着“始终开启传输(always-ontransmission)”的最小化,旨在实现节能的面向未来的系统。3gpp中的早期协议表明这一原则得到了认可,并且人们普遍认为nr应当是一个精益系统。在ran1#84bis中,关于超精益设计,ran1一致同意nr应努力最大化可灵活利用或留空的时间和频率资源的量,不在未来造成向后兼容性问题。空白资源可用于将来使用。nr还应努力最小化始终开启信号(always-onsignal)的传输,并将用于物理层功能(信号、信道、信令)的信号和信道限制在可配置/可分配的时间/频率资源内。

5gnr中的波束成形

人们普遍认为nr将考虑高达100ghz的频率范围。与当前分配给lte的频带相比,新频带中的一些频带将具有更具挑战性的传播特性,例如更低的衍射和更高的室外/室内穿透损耗。因此,信号绕过拐角传播和穿透墙壁的能力较低。此外,在高频带中,大气/雨的衰减和较高的体损耗使得nr信号的覆盖甚至更加时好时坏。幸运的是,在更高频率下的操作使得可以使用更小的天线元件,这使得具有许多天线元件的天线阵列成为可能。这种天线阵列有利于波束成形,其中使用多个天线元件形成窄波束,从而补偿具有挑战性的传播特性。由于这些原因,人们普遍认为nr将依靠波束成形来提供覆盖,这意味着nr常常被称为基于波束的系统。

还众所周知的是,nr中应支持不同的天线架构:模拟、混合和数字。这意味着在可以同时覆盖多少方向方面存在一些限制,尤其是在模拟/混合波束成形的情况下。为了在给定的传输点(trp)/接入节点/天线阵列处找到良好的波束方向,通常采用波束扫描过程。波束扫描过程的典型示例是节点指向几个可能的方向中的每一个方向上的包含同步信号和/或波束识别信号的波束,一次一个方向或几个方向。这在图3中示出,其中每个示出的波瓣表示一个波束,并且波束可以以扫描方式,或者同时,或以某种组合,连续发送。如果相同的覆盖特性适用于每个波束中的同步信号和波束识别信号,则ue不仅可以与trp同步,还可以获得给定位置处的最佳波束知识。

如上所述,lte中的公共信号和信道以全向方式发送,即,不使用波束成形。在nr中,由于基站处可以使用许多天线以及它们可以被组合到波束成形信号和信道的不同方式,在lte中做出的这种假设可能不再有效。nr波束成形的设计原则的主要结果是,虽然在lte中很清楚可以使用crs质量来估计pdcch的质量,但是这在nr中变得不清楚,原由是信道和参考信号进行波束成形可以采用不同方式。换句话说,不能假设将以与发送pdcch相同的方式发送任何特定参考信号这一一般情形。从ue的视角来看,这种模糊性是由于下述事实:网络可以经由不同种类的波束成形方案发送参考信号和信道,其中波束成形方案通常是基于实时网络要求确定的。这些要求例如可以包括:参考信号与控制信道对无线电开销的不同的容忍级别,或者参考信号与控制信道的不同的覆盖要求。

尽管存在来自nr设计原理的这些挑战,处于连接模式的nrue仍然需要执行rlm,以验证其小区质量是否仍然足够好,从而可以网络到达ue。否则,应通知高层,并应触发ue自主动作。

nr中的移动性参考信号:3gpp协议

在3gpp讨论中,已经就移动性参考信号(mrs)的某些方面达成一致,mrs被nr的ue用于与移动性(例如,切换或ho)相关的测量。对于涉及无线电资源控制(rrc)和波束的rrc_connected模式中的基于下行链路的移动性,ue测量至少一个或多个单独波束,并且gnb(针对nr基站的3gpp术语)应当具有考虑哪些波束来执行ho的机制。这至少需要触发gnb间切换并避免ho乒乓效应/ho失败。应确定ue是否将报告多个波束的各自的质量和/或组合质量。ue还应能够区分来自其服务小区的波束和来自非服务小区的波束,以进行主动移动性中的无线电资源管理(rrm)测量。ue应能够确定波束是否来自其服务小区。还应确定:服务/非服务小区是否可以被称为“服务/非服务波束集合”;是通过专用信令通知ue的,还是ue基于一些广播信号而隐式地检测到的;连接模式下的小区如何涉及空闲模式下的小区;以及如何基于来自各个波束的测量导出小区质量。

正在考虑用于mrs的特定设计的多个解决方案,但是在这些解决方案中的任何一个中,ue经由一组mrs在其服务小区内执行rrm测量。ue知道属于其服务小区的特定mrs,使得ue可以检测到的所有其他参考信号被假定为邻居。

用于像mrs这样的参考信号的传输策略可以利用时间和/或频率和/或代码/序列维度方面的自由度。通过在正交资源中发送针对不同波束的参考信号,网络可以获得与来自ue的对应于正交参考信号的这些信号相对应的不同测量报告。



技术实现要素:

如上所述,lte中的rlm基于crs,其中在所有子帧中发送宽带信号。关于nr中的rlm设计的精益设计原理的主要结果是:希望避免在所有子帧中发送宽带信号这样的设计。因此,精益设计将在nr中对于rlm禁止使用相同的lte解决方案。

下面详细描述无线设备(例如,ue)可以测量其服务小区质量的技术,其中在精益设计中小区正在以波束成形方式发送信号,即,没有在整个频带中并跨越所有子帧发送的始终开启参考信号。

根据一些实施例,一种用户设备ue中的方法包括:在具有子帧序列的下行链路信号中,在多个子帧中的每个子帧中接收经波束成形的参考信号,其中,接收经波束成形的参考信号的子帧少于下行链路信号的所有子帧。该方法还包括:使用所接收的经波束成形的参考信号的至少第一子集来执行移动性管理测量,第一子集对应于第一频率或第一局部频率范围。该方法还包括:使用所接收的经波束成形的参考信号的第二子集来执行rlm。第二子集至少部分地不同于第一子集,并且包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。下行链路信号的子帧序列可以承载一个或多个控制信道。

根据一些实施例,一种无线通信系统的接入节点中的方法包括:在具有子帧序列的第一下行链路信号中,在多个子帧中的每个子帧中发送经波束成形的参考信号,其中发送经波束成形的参考信号的子帧少于下行链路信号的所有子帧。第一子集包括对应于第一频率或第一局部频率范围的经波束成形的参考信号,并且第二子集包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。该方法还包括:配置ue以使用经波束成形的参考信号的至少第一子集来执行移动性管理测量,并且使用经波束成形的参考信号的至少第二子集来执行rlm。在一些实施例中,该配置在所述发送之前执行。在一些实施例中,所述发送可以包括:使用与用于发送经波束成形的参考信号的波束成形参数相同的波束成形参数来发送第一控制信道。

根据一些实施例,一种被配置为在无线通信网络中操作的ue包括收发机电路和与收发机电路可操作地相关联的处理电路。处理电路被配置为:在具有子帧序列的下行链路信号中,在多个子帧中的每个子帧中接收经波束成形的参考信号,其中,接收经波束成形的参考信号的子帧少于下行链路信号的所有子帧。处理电路还被配置为:使用所接收的经波束成形的参考信号的至少第一子集来执行移动性管理测量,第一子集对应于第一频率或第一局部频率范围。处理电路还被配置为:使用所接收的经波束成形的参考信号的第二子集来执行rlm。第二子集至少部分地不同于第一子集,并且包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。

根据一些实施例,一种无线通信系统的接入节点包括收发机电路和与收发机电路可操作地相关联的处理电路。处理电路被配置为:在具有子帧序列的第一下行链路信号中,在多个子帧中的每个子帧中发送经波束成形的参考信号,其中发送经波束成形的参考信号的子帧少于下行链路信号的所有子帧。经波束成形的参考信号包括第一子集和至少部分不同的第二子集,第一子集包括对应于第一频率或第一局部频率范围的经波束成形的参考信号,并且第二子集包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。处理电路被配置为:配置ue以使用经波束成形的参考信号的至少第一子集来执行移动性管理测量,并且使用经波束成形的参考信号的至少第二子集来执行rlm。在一些实施例中,处理电路还被配置为:使用与用于发送经波束成形的参考信号的波束成形参数相同的波束成形参数来发送第一控制信道。

本发明的其他方面涉及与上面概述的方法和上面概述的装置和ue的功能实现相对应的装置、计算机程序产品或计算机可读存储介质。

本文公开的实施例的优点可以包括:rlm周期性要求可以大于移动性要求,使得mrs的复制版本甚至比mrs更稀疏地传输,进一步减少了开销和/或静态干扰,而不是通过在更多频率资源上发送用于移动性管理的参考信号(即,mrs)而创建大的开销。一旦小区中没有活动的ue,就可以关闭它。网络还可以确保ue能够在大范围的时频资源上进行更准确的rlm测量,而无需在网络中引入专用的静态/始终开启的周期性rs。

另外的优点包括:信令开销可以保持在低水平,而不会损害rlm测量的准确性,尤其是在数据不活动期间。这可能是5gnr的关键要求。网络还可以确保rlm功能能够被可靠地保持用于控制信道设计而不会回退到更宽的波束,因为在窄的ue特定波束上发送控制信道对于提高在高的载波频率下的覆盖范围是必要的。

当然,本发明不限于上述特征和优点。本领域的普通技术人员通过阅读下面的详细描述并查看附图将认识到其他特点和优点。

附图说明

图1示出了如何在整个下行链路传输带宽上的任何地方调度pdcch。

图2示出了lte中的高层rlm过程。

图3示出了波束扫描过程。

图4示出了单个mrs的生成。

图5示出了时域和频域中的mrs设计。

图6示出了根据一些实施例的有助于本文描述的rlm过程的参考信号传输的原理。

图7是根据一些实施例的网络节点的框图。

图8示出了根据一些实施例的网络节点中的方法。

图9是根据一些实施例的ue的框图。

图10示出了根据一些实施例的ue中的方法。

图11是示出了根据一些实施例的可以在每个第五子帧中的六个相邻prb上发送用于移动性的rs的图。

图12是示出了根据一些实施例的可以如何发送mrs以支持移动性测量和rlm两者的另一示例的图。

图13是示出了根据一些实施例的f2和f3处的附加rs彼此偏移的示例的图。

图14是示出了根据一些实施例的用于服务mrs集合的六个不同物理资源块(prb)分配的配置对于不同接入节点可以是不同的并且与不同接入节点id匹配的图。

图15是示出了根据一些实施例的网络节点的功能实现的框图。

图16是示出了根据一些实施例的无线设备的功能实现的框图。

具体实施方式

示例系统可以包括ue和网络无线电接入节点,其中无线设备(即,ue)通过基于被配置为支持连接模式移动性的相同周期性参考信号(mrs)执行rrm测量来在利用波束成形的系统中执行rlm。

在本公开的上下文中,“执行rlm”意味着:在以相同方式(即,具有类似的波束成形特性和/或类似或代表性的频率资源)发送控制信道的假设下,执行rrm测量,并将给定度量(例如,信号与干扰加噪声比(sinr))的值与表示下行链路控制信道质量的阈值进行比较。

对用于rlm的rs的测量应当与网络被假定用于接触ue(例如,通过发送调度信息来接触)的下行链路(dl)控制信道(例如,lte中的pdcch或epdcch)的质量相关联,尽管存在可以使用不同rs来估计下行链路控制信道和解码控制信息这一事实。例如,ue可以使用相同的mrs来执行rlm,而使用ue特定的解调rs(dmrs)来完成pdcch解码。该系统的一个方面是网络保证服务小区mrs的质量与下行链路控制信道的质量的相关性。这可以在网络侧通过下述方式来完成:利用与用于发送为该ue配置的mrs的波束成形配置相同的波束成形配置(例如,方向、波束宽度、功率分布、相同天线面板等)对下行链路控制信道信息进行波束成形。注意,如本文所使用的,术语“mrs”和“移动性参考信号”用于指代被配置为和/或用于支持连接模式移动性的参考信号,即,用于ue为了确定何时切换到其他波束和/或小区而执行的测量的参考信号。将理解,这些参考信号中的一些或全部也可以用于其他目的,并且这些参考信号可以命名为其他名称。

对于在一个或多个波束中发送的mrs,不同的实施例可以以各种方式定义信号承载的信息,例如,在标识符方面的信息。在一些实施例中,例如,在每个波束中发送不同的rs,并且每个波束承载其自己的波束标识符(bid)。在这种情况下,参考信号可以被称为波束特定rs(brs),并且ue可以基于每个波束执行rlm,即,测量质量度量,例如,每个单独波束的rsrp或sinr,其等效于在该特定波束中的下行链路控制信道的传输质量。在其他实施例中,可以在每个波束中发送相同的rs,其中每个波束承载相同的标识符。该标识符可以是bid,可以是小区标识符cellid(cid)的组标识符,或者可以是波束id+小区id。在这些实施例中,ue可以在时域中区分波束,和/或简单地对承载相同标识符的波束执行一些平均。

图6示出了有助于本文描述的rlm过程的参考信号传输的原理。如在图6的左侧所见,每个波束承载rs,所述rs被配置给无线设备(例如,ue)用于移动性目的。这些参考信号在本文中被称为移动性参考信号或mrs,尽管它们可能不一定携带该名称。“配置给ue”的含义是,向处于rrc_connected模式的ue提供与针对服务小区/波束信号和/或非服务小区/波束信号的测量和报告条件有关的信息。在各种实施例中,这些rs可以携带bid、波束id加组id(例如,其可以被理解为小区id),或者仅携带组id。如在图6的右侧所见,使用与用于移动性目的的rs相同的波束成形特性来发送下行链路控制信道,例如pdcch。这可以被理解为,在与发送rs的波束“相同的波束”中发送下行链路控制信道,尽管是在不同时间发送的。注意,下行链路控制信道可以承载不同的rs(或与之相关联),以用于信道估计和信道解码目的。在各种实施例中,这些可以,但不是必须,与用于移动性的那些rs完全分离,并且可以是小区特定的、ue特定的和/或波束特定的。

给定图6中所示的方法,将理解rlm可以基于mrs(即rs-1至rs-n这些rs)来执行,因为下行链路控制信道以与mrs相同的方式进行波束成形,所测量的mrs质量将直接对应于下行链路控制信道的质量。因此,可以以与lte中相同的方式利用用于同步和不同步检测的阈值。

然而,为了满足rrm测量的要求,已经设想这些mrs是窄带信号(例如,6个中央物理资源块(prb))。另一方面,下行链路控制信道可以或者在整个频带中发送(如ltepdcch的情形)或者被局部化/分布(如lteepdcch和nr中的下行链路控制信道设计的情形)。

在局部化下行链路控制信道(即,与可用带宽相比,在相对小的带宽内发送控制信道,使得无线电信道的频率选择性是微不足道的)的情况下,系统可以在一些代表性的物理资源块(prb)中发送mrs,所述代表性的prb的质量与用于为ue发送下行链路控制信道的prb的质量相关。然而,在非局部化/分布式的下行链路控制信道(即,使用在可用带宽上扩展的资源单元来发送控制信道,以便利用频率分集)的情况下,该技术可能在如下意义上提供一些不准确性:当mrs带宽被限制到有限数量的prb时,ue的下行链路控制信道频率可以扩展到宽得多的带宽,使得基于mrs的下行链路控制信道质量估计的准确度可能是有限的。

本发明的实施例提供了一种技术,其中ue通过基于新信号执行rrm测量来在利用波束成形的系统中执行rlm,该新信号是与被配置为支持连接模式移动性的周期性参考信号(mrs)相同的版本,但是在频域中在与将发送给定ue的下行链路控制信道的频率资源相同的频率资源中重复。这些移动性rs的多个版本也可以在不同的子帧中发送,以便提供一些额外的时域分集和/或使波束成形传输能够等效。

例如,一种方法包括基于mrs的多个复制品来执行rlm,但是所述复制品是在与将发送ue的下行链路控制信道的频率资源等同的多个频率资源(而不是单个资源块集合)上重复。在网络侧,无线电接入节点以与它发送要重用于rlm目的的参考信号相同的方式发送下行链路控制信道信息。

以下,将参考附图更详细地说明根据本发明的示例性实施例的构思。所示实施例涉及这种无线通信网络中的无线电链路监测,如由无线设备(在下文中也称为ue)和接入节点执行的无线电链路监测。无线通信网络例如可以基于5g无线电接入技术(rat),诸如lterat的演进或3gpp新无线电(nr)。然而,应当理解的是,所示出的构思还可以应用于其他rat。

图7示出了网络节点30的图,该网络节点30可以被配置为执行所公开的技术中的一种或多种。网络节点30可以是任何类型的网络节点,其可以包括网络接入节点,例如基站、无线电基站、基站收发信台、演进节点b(enodeb)、节点b、gnodeb或中继节点。在下面描述的非限制性实施例中,将把网络节点30描述为被配置成操作为在nr网络中的蜂窝网络接入节点。

本领域技术人员将容易理解每种类型的节点可以如何适配修改以执行本文所描述的方法和信令过程中的一种或多种,例如,可以通过修改和/或添加适当的供处理电路32执行的程序指令来实现。

网络节点30促进在无线终端、其他网络接入节点和/或核心网络之间的通信。网络节点30可以包括通信接口电路38,其包括用于出于提供数据和/或蜂窝通信服务的目的与核心网络中的其他节点、无线电节点和/或网络中的其他类型的节点进行通信的电路。网络节点30使用天线34和收发机电路36与ue通信。收发机电路36可以包括发射机电路、接收机电路和相关联的控制电路,其被集体配置为根据无线电接入技术发送和接收信号,以提供蜂窝通信服务。

网络节点30还包括一个或多个处理电路32,所述一个或多个处理电路32与收发机电路36可操作地相关联,以及在一些情况下,并且与通信接口电路38可操作地相关联。为了便于讨论,以下将该一个或多个处理电路32称为“处理电路32”或“处理电路系统32”。处理电路32包括一个或多个数字处理器42,例如一个或多个微处理器、微控制器、数字信号处理器(dsp)、现场可编程门阵列(fpga)、复合可编程逻辑器件(cpld)、专用集成电路(asic)或其任何混合。更一般地,处理电路32可以包括固定电路或经由执行实现本文教导的功能的程序指令而被特别配置的可编程电路,或者可以包括固定和编程电路的某种混合。处理器42可以是多核的,即,具有被用于增强性能、降低功率消耗和更高效地同时处理多个任务的两个或更多个处理器核。

处理电路32还包括存储器44。在一些实施例中,存储器44存储一个或多个计算机程序46,并且可选地存储配置数据48。存储器44为计算机程序46提供非暂时性存储,并且它可以包括一种或多种类型的计算机可读介质,诸如磁盘存储器、固态存储器储存设备(solid-statememorystorage)或其任何混合。这里,“非暂时性”是指永久的、半永久的或至少临时的持久存储,并且包含在非易失性存储器中的长期存储和在工作存储器中的(例如,用于程序执行的)存储。作为非限制性示例,存储器44包括sram、dram、eeprom和flash存储器中的任何一种或多种,其可位于处理电路32中和/或与处理电路32分离。通常,存储器44包括一种或多种类型的计算机可读存储介质,其提供对供网络接入节点30使用的计算机程序46和任何配置数据48的非暂时性存储。处理电路32可以例如通过使用存储在存储器44中的适当程序代码来配置,以执行下文详述的一种或多种方法和/或信令过程。

根据一些实施例,网络节点30被配置成操作为无线通信系统的接入节点,其规定ue测量其服务小区质量,其中该小区正在以波束成形方式发送信号。处理电路32被配置为:在具有子帧序列的第一下行链路信号中,在多个子帧中的每个子帧中发送经波束成形的参考信号,其中发送经波束成形的参考信号的子帧少于下行链路信号的所有子帧。经波束成形的参考信号包括第一子集和至少部分不同的第二子集,其中第一子集包括对应于第一频率或第一局部频率范围的经波束成形的参考信号,并且第二子集包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。“局部频率范围”是指该频率范围仅是可用带宽的相对小部分,使得在该频率范围内的无线电信道中的频率选择性不显著。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。处理电路32被配置为:将ue配置为使用经波束成形的参考信号的至少第一子集来执行移动性管理测量,并且使用经波束成形的参考信号的至少第二子集来执行rlm。在一些实施例中,处理电路32被配置为使用与用于发送经波束成形的参考信号的波束成形参数相同的波束成形参数来发送第一控制信道。

无论物理实现如何,根据一些实施例,处理电路32被配置为执行无线通信系统的接入节点中的方法800,该方法如图8所示。方法800包括:在具有子帧序列的第一下行链路信号中在多个子帧中的每个子帧中发送经波束成形的参考信号,其中发送经波束成形的参考信号的子帧少于下行链路信号的所有子帧(框804)。经波束成形的参考信号包括第一子集和至少部分不同的第二子集,第一子集包括对应于第一频率或第一局部频率范围的经波束成形的参考信号,并且第二子集包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。该方法还包括:将ue配置为使用经波束成形的参考信号的至少第一子集来执行移动性管理测量,并且使用经波束成形的参考信号的至少第二子集来执行rlm(框802)。该配置可以在该发送之前执行,并且该发送可以包括使用与用于发送经波束成形的参考信号的波束成形参数相同的波束成形参数来发送第一控制信道。

对应于第二频率或第二局部频率范围的经波束成形的参考信号可以具有与对应于第一频率或第一局部频率范围的经波束成形的参考信号的时间周期不同的时间周期。第二子集还可以包括对应于第三频率或第三局部频率范围的经波束成形的参考信号,第三频率或第三局部频率范围与第一和第二频率或第一和第二局部频率范围间隔开并且不同。

在一些情况下,对应于第一频率或第一局部频率范围的经波束成形的参考信号可以在时间上均与对应于第二频率或第二局部频率范围的经波束成形的参考信号一致。

方法800可以包括:发送一个或多个附加参考信号,以供ue用于估计用于第一控制信道的信道和/或在与承载经波束成形的参考信号的频率资源至少部分重叠的频率资源中发送第一控制信道。经波束成形的参考信号可以包括用于第一波束的波束特定参考信号。该波束特定参考信号可以携带波束标识符,并且方法800可以包括:从该波束特定参考信号中解码波束标识符。

一些实施例的另一方面是在时间上周期性地且稀疏地(即,并非在所有子帧中)发送经波束成形的参考信号。然而,rlm所需的周期性可能与用以触发测量报告的rrm测量所需的周期性不同。因此,在一些实施例中,ue可以仅从发送的rs中选出一些特定样本用于rlm,其中这些样本/子帧可能由网络配置。

在一些情况下,例如,ue配置有经波束成形的参考信号的周期,并且它基于标准中的预定义的rlm周期来执行用于rlm的rrm测量。在其他情况下,向ue通知两个周期,即,发送信号的一个周期和匹配其不连续接收(drx)周期的用于rlm的周期。

方法800可以包括:向ue发送定义经波束成形的参考信号的第一子集的周期和/或频率位置的一个或多个第一配置参数。方法800还可以包括:向ue发送定义经波束成形的参考信号的第二子集的周期和/或频率位置的一个或多个第二配置参数。

图9示出了被示为无线设备50的对应ue的图。无线设备50可以被认为表示可以在网络中操作的任何无线终端,例如蜂窝网络中的ue。其他示例可以包括通信设备、目标设备、设备到设备(d2d)ue、机器型ue或具有机器到机器通信(m2m)能力的ue、配备有ue的传感器、pda(个人数字助理)、平板电脑、移动终端、智能电话、膝上型嵌入式设备(lee)、膝上型安装式设备(lme)、usb适配器、客户前端设备(cpe)等。

无线设备50被配置为经由天线54和收发机电路56与蜂窝网络中的无线电节点或基站进行通信。收发机电路56可以包括发射机电路、接收机电路和相关联的控制电路,其被集体配置为根据无线电接入技术发送和接收信号,以使用蜂窝通信服务。出于本讨论的目的,该无线电接入技术是nr。

无线设备50还包括与无线电收发机电路56可操作地相关联的一个或多个处理电路52。处理电路52包括一个或多个数字处理电路,例如一个或多个微处理器、微控制器、dsp、fpga、cpld、asic或其任何混合。更一般地,处理电路52可以包括固定电路,或通过执行实现本文教导的功能的程序指令而被特别适配的可编程电路,或者可以包括固定和编程电路的某种混合。处理电路52可以是多核的。

处理电路52还包括存储器64。在一些实施例中,存储器64存储一个或多个计算机程序66,并且可选地存储配置数据68。存储器64为计算机程序66提供非暂时性存储,并且它可以包括一种或多种类型的计算机可读介质,诸如磁盘存储器、固态存储器储存设备(solid-statememorystorage)或其任何混合。作为非限制性示例,存储器64包括sram、dram、eeprom和flash存储器中的任何一种或多种,其可位于处理电路52中和/或与处理电路52分离。通常,存储器64包括一种或多种类型的计算机可读存储介质,提供对供用户设备50使用的计算机程序66和任何配置数据68的非暂时性存储。处理电路52可以例如通过使用存储在存储器64中的适当程序代码来配置,以执行下文详述的一种或多种方法和/或信令过程。

根据一些实施例,无线设备50被配置为测量服务小区质量,其中该小区正在以波束成形方式发送信号。因此,处理电路52被配置为:在具有子帧序列的下行链路信号中在多个子帧中的每个子帧中接收经波束成形的参考信号,其中接收经波束成形的参考信号的子帧少于下行链路信号的所有子帧。处理电路52还被配置为:使用所接收的经波束成形的参考信号的至少第一子集来执行移动性管理测量,第一子集对应于第一频率或第一局部频率范围。处理电路52还被配置为:使用所接收的经波束成形的参考信号的第二子集来执行rlm,第二子集至少部分地不同于第一子集,并且包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。

根据一些实施例,处理电路52被配置为执行图10中所示的对应方法1000,方法1000包括:在具有子帧序列的下行链路信号中在多个子帧中的每个子帧中接收经波束成形的参考信号,其中接收经波束成形的参考信号的子帧少于下行链路信号的所有子帧(框1002)。方法1000还包括:使用所接收的经波束成形的参考信号的至少第一子集来执行移动性管理测量,第一子集对应于第一频率或第一局部频率范围(框1004)。方法1000还包括:使用所接收的经波束成形的参考信号的第二子集来执行rlm,第二子集至少部分地不同于第一子集并且包括对应于第二频率或第二局部频率范围的经波束成形的参考信号(框1006)。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。

在一些情况下,对应于第二频率或第二局部频率范围的经波束成形的参考信号具有与对应于第一频率或第一局部频率范围的经波束成形的参考信号的时间周期不同的时间周期。第二子集可以包括对应于第三频率或第三局部频率范围的经波束成形的参考信号,第三频率或第三局部频率范围与第一和第二频率或第一和第二局部频率范围间隔开并且不同。所述经波束成形的参考信号可以对应于第一频率或第一局部频率范围,在时间上均与对应于第二频率或第二局部频率范围的经波束成形的参考信号一致。

执行rlm可以包括:在使用与应用于经波束成形的参考信号的波束成形特性相同的波束成形特性来发送与控制信道质量相对应的假设控制信道的假设下,使用相同的经波束成形的参考信号中的至少一些来执行一个或多个测量以获得度量,并且将该度量与表示预定下行链路控制信道质量的阈值进行比较。方法1000可以包括:使用一个或多个附加参考信号来解调第一控制信道以估计用于第一控制信道的信道。可以在与承载用于执行rlm的经波束成形的参考信号的频率资源至少部分重叠的频率资源中接收第一控制信道。

执行rlm还可以包括:基于对相同的经波束成形的参考信号中的至少一些的测量来确定ue是处于同步还是不同步。

在一些情况下,所述相同的经波束成形的参考信号中的所述至少一些包括用于第一波束的波束特定参考信号,并且执行rlm可以包括使用该波束特定参考信号执行针对第一波束的rlm。该波束特定参考信号可以携带波束标识符,并且方法1000可以包括:从该波束特定参考信号中解码波束标识符。

方法1000还可以包括:在执行所述移动性管理测量之前,接收定义经波束成形的参考信号的第一子集的周期和/或频率位置的一个或多个第一配置参数。方法1000还可以包括:在执行所述rlm之前,接收定义经波束成形的参考信号的第二子集的周期和/或频率位置的一个或多个第二配置参数。

将进一步解释问题和描述解决方案的技术。如图11中所示的示例配置中所见,用于移动性的rs的传输可以在时域和频域中稀疏地配置,用于rrm和同步功能。例如,用于移动性的rs可以在每个第五子帧中的六个相邻的prb上发送,如图11所示。

然而,服务mrs集合中的这种mrs的时频资源粒度不如资源网格上的pdcch时机那么丰富。rlm过程期间的测量样本的数量应该大得足以捕获发送下行链路控制信道的时间/频率资源的质量。因此,应当在整个下行链路传输带宽中的许多子载波上进行采样。用于rlm的服务mrs的频率分配可以基于用于下行链路控制信道的局部化或分布式方案。局部化方案可以要求较少的ue计算,而分布式方案可以在频率选择性信道中提供更好的准确性。

如图11中所示的示例所示,为了满足rrm测量的要求,已经设想移动性rs是窄带信号,例如,仅占用六个中央prb。另一方面,下行链路控制信道可以或者在整个频带中发送(如在ltepdcch的情况下)或者被局部化/分布化(如在lteepdcch的情况下)。

在局部化下行链路控制信道的情况下,可以在其质量与将发送对ue的下行链路控制的prb的质量相关的一些代表性prb中发送mrs。然而,在非局部化/分布式下行链路控制信道的情况下,该技术可能在下述意义上提供一些不准确性:当mrs带宽被限制到有限数量的prb时,下行链路控制信道的频率分配可以扩展到宽得多的带宽,使得基于相对窄带的移动性rs的下行链路控制信道质量估计的准确度可能是有限的。

本文公开的技术和装置的实施例解决了该问题,并且包括在ue处和在网络无线电接入节点处进行的方法,其中ue通过基于新信号执行rrm测量来在利用波束成形的系统中执行rlm,其中所述新信号是与被配置为支持连接模式移动性的周期性参考信号(mrs)相同的版本,但是其在频率域中在将发送给定ue的下行链路控制信道的频率资源中进行重复。mrs的这多个版本也可以在不同的子帧中发送,以提供某种额外的时域分集,和/或使波束成形传输能够等效。

该方法的一个优点是,不是通过在更多的频率资源上发送mrs而创建大的开销,相反该方法利用下述事实:rlm周期性要求大于移动性要求,从而允许将更稀疏的参考信号用于rlm。因此,mrs的复制版本在时域和频域中比mrs更稀疏地传输,从而减少由rs引起的开销和/或静态干扰。另一个优点是:一旦在小区中没有活动的ue,就可以关闭仅用于rlm目的的复制rs。总的来说,这种方法确保ue可以在大范围的时频资源上进行更准确的rlm测量,而不会在网络中引入静态/始终开启的周期性rs。

其他优点包括信令开销保持在低水平,而不损害rlm测量的准确性,尤其是在数据不活动期间。预计这将是5gnr的重要要求。此外,当下行链路控制信道频率分配在比为mrs定义的带宽更大的带宽上扩展时,这些技术也提供准确的rlm。

于是,根据当公开的技术,无线设备(例如,ue)使用分布在多个间隔开的频率资源上的rs来执行针对rlm的rrm测量,而不是仅使用单个局部化的资源块集合。为了支持这一点,在一些实施例中,ue设置有用于相同类型的rs的两种类配置。这可以例如使用无线电资源配置(rrc)协议来完成,例如,经由rrc连接重新配置消息来完成。首先,向ue提供移动性配置,该移动性配置指定以周期t_mobility发送mrs的频率资源(例如,prb)以及发送这些mrs的时域资源(例如,子帧)。然后,ue可以根据移动性目的的需要来测量这些资源中的mrs。其次,向ue提供rlm配置,该rlm配置指定以周期t_rlm发送mrs的附加频率资源(例如,prb)以及发送这些附加mrs的时域资源(例如,子帧)。然后,ue可以将这些附加时频资源(以及在移动性配置中指定的那些时频资源)中的任何或所有mrs用于rlm目的。

注意,在一些实施例中,可以存在如下子配置,其中在与用于移动性的子帧相同的子帧(或指示的任何其他时间资源)中发送这些附加mrs,但可能具有不同的周期。

图12示出了可以如何发送mrs以支持移动性测量和rlm两者的示例。在所示的示例中,为了移动性测量目的,以相对频繁的周期(例如,5毫秒)在位于f1的频率资源中发送mrs。ue可以配置有指定这些时频资源的配置信息,例如,配置有指定f1的参数、指示5毫秒周期的参数等,然后使用在这些时频资源中发送的rs进行移动性测量。注意,在一些实施例中,f1、f2、f3等可以指示一组子载波或子载波范围。例如,mrs可以占据图中f1、f2和f3所指示的频带中的每个位置处的六个相邻prb。例如通过rrc信令提供给ue的配置参数可以指示中心频率、较低频率或指向频率位置或范围的一些其他指针,并且在一些实施例中,甚至可以指示发送局部化的rs组所跨的带宽。

在图12中,f1处的rs被提供用于移动性测量目的,并且具有足以用于这些目的的周期性。图12中所示的示例配置还包括相同类型的但是在不同的频率f2和f3处的并且具有不同周期性的附加rs。扩展周期(此处被示为用于移动性目的的rs周期性的周期的四倍)反映了rlm需要不那么频繁的测量的事实。然而,将这些rs放置在不同的频率处允许rlm更准确地与下行链路控制信道传输相关,例如,在下行链路控制信道或控制信道搜索空间分布在频带上的情况下即是如此。

注意,虽然在一些实施例中附加rs的周期性是用于移动性目的的rs的整数倍可能是便利的,但这不是必须的。而且,虽然图12中的f2和f3处的附加rs被示出为与f1处的一些rs在时间上重合,但是在一些实施例中,同样这不是必须的,这些rs可以在时间上存在偏移。这是图13中所示的示例配置的情况。此外,这些附加rs甚至不需要在时间上彼此重合,这也在图13中示出,其中f2和f3处的附加rs彼此偏移两个子帧。此外,在不同频率下的这些附加rs甚至不需要具有相同的周期性。因此,例如,f2处的rs可以具有与f3处的rs不同的周期性。

上面描述的技术的一个方面是网络在与发送下行链路控制信道的频率资源相关(即,频率重叠或紧密对应)的频率资源中发送要用于rlm的rs。因此,如果使用与应用于下行链路控制信道的波束成形特性相同的波束成形特性来发送rs,则结果是rs质量在定向域(可能被称为“波束域”)和在频域中都相关,而不管可能发生的任何进一步的时间平均。

针对rrm和同步功能,可以在时域和频域中稀疏地配置用于移动性的rs的传输。例如,用于移动性的rs可以在每个第五子帧中的六个相邻prb上发送,如图14所示。

对于在一个或多个波束中发送的移动性rs,不同的实施例可以定义信号载波的信息,例如,标识符方面的信息。

在一种情况下,在波束中发送不同的rs,并且每个rs承载其自己的波束标识符(id)。然后,它们可以被称为波束特定rs(brs),并且ue可以针对每个波束执行rlm。也就是说,ue可以测量度量,例如,与在该特定波束中的下行链路控制信道的传输质量等效的每个单独波束的参考信号接收功率(rsrp)或信号与干扰加噪声比(sinr)。

在第二种情况下,在波束中发送相同的rs,并且每个rs承载相同的标识符,该标识符可以是波束标识符(bid),可以是组标识符(该组标识符可以是小区标识符cellid(cid)),或者可以是波束id+小区id。在这种情况下,ue在时域中区分波束和/或简单地对承载相同标识符的波束执行某种平均。

在一个方面,网络在正在发送下行链路控制信道的相关频率资源中发送要用于rlm的这些rs,使得rs质量在频域中相关,而不管可能发生的进一步的时间平均。如果下行链路控制信道在与发送用于rlm的rs相同的波束中发送,则rs质量也在定向域(波束域)中相关。

在另一方面,因为用于移动性的rs具有其传输周期性和时间稀疏性(即,并非在所有子帧中发送),所以rlm所需的周期可以不同于用以触发测量报告的rrm测量所需的周期性。因此,ue可以仅从发送的rs中选择一些特定样本,其中这些样本/子帧可能由网络配置。备选地,用于rlm的rs的周期性可以短于用于移动性的rs的周期性。

本文描述的技术提供了可配置和动态的用于在ue处执行针对rlm功能的参考信号测量的方法,而不违反3gpp5gnr的精益信令原理。这些技术实现的一个重要优点是提高了效率,在该效率下,网络能够针对不同的部署(例如,波束数量)和流量(例如,用户数量、数据活动/不活动)场景灵活地配置有限数量的稀疏参考信号。

如上面详细讨论的,本文描述的技术,例如,如图8和图10的过程流程图所示,可以使用由一个或多个处理器执行的计算机程序指令被全部或部分地实现。将理解,这些技术的功能实现可以用功能模块表示,其中每个功能模块对应于在适当处理器中执行的软件的功能单元或对应于功能数字硬件电路,或对应于两者的某种组合。

图15示出了可以在无线通信网络的接入节点(诸如网络节点30)中实现的示例功能模块或电路架构。该功能实现包括:发送模块1504,用于在具有子帧序列的下行链路信号中在多个子帧中的每个子帧中发送经波束成形的参考信号,其中发送经波束成形的参考信号的子帧少于下行链路信号的所有子帧,并且经波束成形的参考信号包括第一子集和至少部分不同的第二子集。第一子集包括对应于第一频率或第一局部频率范围的经波束成形的参考信号,并且第二子集包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。该实现还包括:配置模块1502,用于配置ue以使用经波束成形的参考信号的至少第一子集来执行移动性管理测量,并且使用经波束成形的参考信号的至少第二子集来执行rlm。发送模块1504还用于使用用于发送经波束成形的参考信号的波束成形参数相同的波束成形参数来发送第一控制信道。

图16示出了可以在适于在无线通信网络中操作的无线设备50中实现的示例功能模块或电路架构。该实现包括:接收模块1602,用于在具有子帧序列的下行链路信号中在多个子帧中的每个子帧中接收经波束成形的参考信号,其中接收经波束成形的参考信号的子帧少于下行链路信号的所有子帧。该实现还包括:移动性管理模块1604,用于使用所接收的经波束成形的参考信号的至少第一子集来执行移动性管理测量,第一子集对应于第一频率或第一局部频率范围:以及无线电链路监测模块1606,用于使用所接收的经波束成形的参考信号的第二子集来执行rlm。第二子集至少部分地不同于第一子集,并且包括对应于第二频率或第二局部频率范围的经波束成形的参考信号。第二频率或第二局部频率范围与第一频率或第一局部频率范围间隔开并且不同。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1