一种测向天线仿真模拟方法及系统与流程

文档序号:17000683发布日期:2019-03-02 01:46阅读:449来源:国知局
一种测向天线仿真模拟方法及系统与流程

本发明涉及无线电测向领域,尤其涉及一种测向天线仿真模拟方法及系统。



背景技术:

目前市场上的天线仿真器,在进行仿真实验时,需要在外部架设发射天线来发射信号,同时还需要用接受天线来接受信号,系统的搭建结构比较复杂,所占用的空间大,在进行测试时需要花费大量的时间。



技术实现要素:

为了解决上述问题,一种测向天线仿真模拟方法及系统。

一种测向天线仿真模拟方法,采用延迟线缆对不同的接收信道进行模拟,先设定基准延迟线缆长度l1,通过正弦函数根据不同的来波角度α、天线口径d、阵元数n、当前阵元i四个参数来计算出当前阵元i相对于1号阵元的路程差d1-i,根据d1-i确定延迟线缆长度;所述延迟线缆的长度为基准延迟线缆长度l1加上路程差d1-i。

一种测向天线仿真模拟系统,包括信号输入端口、功分器、若干信号输出端口和若干延迟线缆;所述信号输入端口的信号经功分器后,分出的每路信号经对应的延迟线缆连接至对应的信号输出端口。

根据上面所述功分器为两个0度无源九功分器,为高端功分器和低端功分器;延迟电缆分为高端延迟电缆和低端延迟电缆。其中高端功分器输出端口分别使用5根、7根、9根高端延迟电缆相连接组成五元阵、七元阵、九元阵三种类型高端元阵天线,其工作频率为800mhz~3000mhz;低端功分器输出端口分别使用5根、7根、9根低端延迟电缆相连接组成五元阵、七元阵、九元阵三种类型低端元阵天线,其工作频率为30mhz~1000mhz;功分器的输出端口未接延迟电缆的接匹配负载。

所述的五元阵的低端延迟电缆的阵元1-5号路程差分别为0mm、102mm、472mm、599mm、307mm,高端延迟电缆的阵元1-5号路程差分别为0mm、28mm、131mm、166mm、85mm;所述的七元阵的低端延迟电缆的阵元1-7号路程差分别为0mm、30mm、285mm、573mm、677mm、518mm、217mm,高端延迟电缆的阵元1-7号路程差分别为0mm、9mm、85mm、171mm、203mm、155mm、65mm;所述的九元阵的低端延迟电缆的阵元1-9号路程差分别为0mm、0mm、139mm、351mm、537mm、611mm、537mm、351mm、139mm,高端延迟电缆的阵元1-9号路程差分别为0mm、0mm、54mm、136mm、209mm、238mm、209mm、136mm、54mm。

所述输出端口连接有500mm等长电缆。

本发明的有益效果在于:不需要架设发射天线,也不需要接收天线,在室内环境下,就可进行系统联调和软件测试。系统搭建简单,模拟来波方位固定,为系统联试和软件测试节约大量的时间。

附图说明

图1是天线仿真器装配图;

图2是天线仿真器原理图;

图3是来波与天线阵几何图;

图4是天线延迟线与天线阵对应图;

图5是5元阵天线仿真器前面板;

图6是7元阵天线仿真器前面板;

图7是9元阵天线仿真器前面板;

图8是仿真器后面板。

具体实施方式

如图1所示,本次机箱选用长河机箱的01c,深度为280mm,宽度为240mm,面板高度2u。每一种仿真器装配有高低端两个口径的两套器件,每套器件独立工作,射频输入输出为sma-k。

高端功分器输出端口分别使用5根、7根、9根高端延迟电缆相连接组成五元阵、七元阵、九元阵三种类型高端元阵天线,其工作频率为800mhz~3000mhz;低端功分器输出端口分别使用5根、7根、9根低端延迟电缆相连接组成五元阵、七元阵、九元阵三种类型低端元阵天线,其工作频率为30mhz~1000mhz。

五元阵的低端延迟电缆的阵元1-5号路程差分别为0mm、102mm、472mm、599mm、307mm,高端延迟电缆的阵元1-5号路程差分别为0mm、28mm、131mm、166mm、85mm;七元阵的低端延迟电缆的阵元1-7号路程差分别为0mm、30mm、285mm、573mm、677mm、518mm、217mm,高端延迟电缆的阵元1-7号路程差分别为0mm、9mm、85mm、171mm、203mm、155mm、65mm;九元阵的低端延迟电缆的阵元1-9号路程差分别为0mm、0mm、139mm、351mm、537mm、611mm、537mm、351mm、139mm,高端延迟电缆的阵元1-9号路程差分别为0mm、0mm、54mm、136mm、209mm、238mm、209mm、136mm、54mm。

如图2所示,将信号源连接到天线仿真的in端,模拟测向中的发射信号源,信号经过一分九功分器分为九个等相位的信号,再经过不同的延迟线进行延迟,模拟来波到达各个阵元的路程差,最后通过等长电缆送入测向开关的对应编号的输入端。

模拟来波方向主要是靠射频电缆延迟来实现。如图3所示,先设定基准延迟线缆长度l1,通过正弦函数根据不同的来波角度α、天线口径d、阵元数n、当前阵元i四个参数来计算出当前阵元i相对于1号阵元的路程差d1-i,根据d1-i确定延迟线缆长度;所述延迟线缆的长度为基准延迟线缆长度l1加上路程差d1-i。路程差d1-i如图4所示。

如图5、图6、图7、图8所示,在机箱内安装一分九0度功分器,和对应天线元口径的延迟线电缆,天线延迟线在l1的长度基础上加上如图4所示对应的长度,对于5元阵天线仿真器和7元阵天线仿真器,未用的功分器端口接匹配负载。机箱外配一组电缆长度为500mm的等长电缆,电缆类型有sma-j/sma-j,sma-j/bma-k,每组10根。

需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本技术并不受所描述的动作顺序的限制,因为依据本技术,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本技术所必须的。

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、rom、ram等。

以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。



技术特征:

技术总结
本发明公开了一种测向天线仿真模拟方法及系统,本发明采用延迟线缆对不同的接收信道进行模拟,先设定基准延迟线缆长度L1,通过正弦函数根据不同的来波角度α、天线口径D、阵元数n、当前阵元i四个参数来计算出当前阵元i相对于1号阵元的路程差D1‑i,延迟线缆的长度为基准延迟线缆长度L1加上路程差D1‑i。同时该系统由一分九0度功分器与电缆构成,根据天线阵可分为五元阵、七元阵、九元阵仿真器,功分器分为低端、高端两种类型,电缆又分为等长电缆与低端、高端延迟电缆。该设备的优点是,不需要架设发射天线,也不需要接收天线,在室内环境下,就可进行系统联调和软件测试。系统搭建简单,模拟来波方位固定,为系统联试和软件测试节约大量的时间。

技术研发人员:宁涛
受保护的技术使用者:成都九华圆通科技发展有限公司
技术研发日:2018.11.09
技术公布日:2019.03.01
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1