用于通信链路质量的预测的系统与方法与流程

文档序号:21486899发布日期:2020-07-14 17:12阅读:245来源:国知局
用于通信链路质量的预测的系统与方法与流程

(优先权文件)

本申请要求于2018年8月28日提交的发明名称为“systemandmethodforpredictionofcommunicationslinkquality”的澳大利亚临时专利申请no.2017903470作为优先权,在此加入其全部内容作为参考。

本公开涉及无线通信系统。在特定的形式中,本公开涉及无线通信系统中的链路质量的预测。

(作为参考加入)

在本申请中提到以下共同未决的专利申请和pct申请,并且,在这里加入它们的全部内容作为参考:

于2016年12月22日提交的发明名称为“systemandmethodforgeneratingextendedsatelliteephemerisdata”的澳大利亚临时专利申请no.2016905314;

以myriotaptyltd的名义于2017年2月24日提交的发明名称为“terminalschedulingmethodinsatellitecommunicationsystem”的国际专利申请no.pct/au2017/000058;和

以myriotaptyltd的名义于2017年5月16日提交的发明名称为“positionestimationinalowearthorbitsatellitecommunicationssystem”的国际专利申请no.pct/au2017/000108。



背景技术:

对于位于偏远地区的小型、低成本传感器和设备,对机器到机器连接的需求越来越大。在许多情况下,终端设备(或终端装置)被安装在固定位置,或被部署在不经常重新定位的应用中。示例性应用包括用于诸如泵的设备的遥测、水箱液位计、公用事业计量以及诸如土壤湿度探针的传感器。

这些应用中的许多位于没有诸如蜂窝的地面通信网络的区域中,并且部署专用局部无线方案的成本高昂。对于这些应用,基于卫星的解决方案很有吸引力。

传输器和接收器之间的无线通信信道的以下特性影响链路的质量:

链路距离:由于自由空间路径损耗引起的衰减将随着传输器和接收器之间距离的增加而增加。

遮蔽:由于设备之间的障碍物(例如,建筑物)导致的增加的衰减。

极化:由于天线极化不匹配而引起的接收信号强度的变化。

干扰:当接收器移动时,会变得在接收的信号中存在导致干扰的附加的信号源。这些信号源可以是与接收器相同的系统的传输器,或者可以来自外部系统。

多路径:来自环境中的物体的信号反射可以导致传输信号的多个实例(时间、相位和信号强度的偏移)经由不同的路径到达接收器,并影响接收器性能。

此外,由于信道条件的变化,传输器和接收器之间的相对运动也可以导致链路质量的变化。

终端设备可以被安装在终端传输器(或接收器)和移动接收器(或传输器)之间的路径部分被阻塞的位置。例如,部署在不能在所有方向上提供清晰的天空视图的低地球轨道(leo)卫星系统中。在这种情况下,在卫星接收器被障碍物遮蔽的期间尝试传输会降低成功接收的概率。相反,在卫星清楚地看到终端的情况下进行传输会提高成功接收的机会。

终端设备可以被安装在重复现场接入的成本高得无法承受的远程位置上。在固定安装场景中,希望向安装者提供反馈,以确定安装位置是否可能支持成功的服务。在非实时卫星服务(例如,每天有少量短持续时间的卫星通行机会)的情况下,计划安装与卫星通行一致是可行的。此外,这些安装通常位于没有蜂窝或其它通信装置的区域中,以向安装者提供即时的后向信道。

因此,需要一种用于终端设备预测链路质量的方法,或者至少提供一种对现有方法的有用替代方案。



技术实现要素:

根据第一方面,提供一种用于在通信系统中估计链路质量的方法,该方法包括:

监视来自一个或更多个传输器的一个或更多个传输链路;

确定链路质量估计;

使用链路质量估计,确定用于从传输器到接收器的传输的一个或更多个传输参数,或者确定用于到接收器的传输或从传输器的接收的终端的安装位置和取向中的一个或两个。

在一种形式中,确定链路质量估计的步骤包括:

由终端基于用于从终端到接收器的传输的预期接收信号强度确定链路质量估计,其中,通过使用终端传输器功率的估计、接收器增益以及基于终端和接收器之间的链路距离的估计的路径损耗,估计预期接收信号强度。

在一种形式中,确定链路质量估计的步骤包括:

确定用于从传输器到接收器的传输的预期接收信号强度,其中,通过使用传输器功率的估计、接收器增益和基于链路距离的估计的路径损耗,估计预期接收信号强度;

获得接收器处的所观察接收信号强度的估计;

基于预期接收信号强度和所观察接收信号强度之间的差异,估计链路质量估计。

在一种形式中,通过使用当接收器在预定义的空间区域内时对于从传输器到接收器的多个传输来自接收器的多个反馈消息,估计确定链路质量估计的步骤。

在一种形式中,确定链路质量估计的步骤是通过对接收器的多个位置将终端和接收器之间的参考链路的一个或更多个参数进行比较获得的空间相对链路质量估计。

在一种形式中,确定链路质量估计的步骤包括计算链路质量估计空间摘要。

在一种形式中,确定链路质量估计的步骤包括组合多个链路质量估计。

在另一种形式中,其中,多个链路质量估计分别是终端和多个卫星中的一个之间的链路质量估计,并且,组合多个链路质量估计包括当各卫星在预定义的空间区域内时获得聚合的链路质量估计。

在另一种形式中,组合多个链路质量估计包括在历史时间段中组合多个链路质量估计。

在另一种形式中,组合多个链路质量估计由接收器执行并且包括组合接收器和多个终端中的每一个之间的多个链路质量估计,并且,向多个终端提供反馈信息。

在一种形式中,确定链路质量估计的步骤分布在终端和终端外部的组件之间,该组件向终端提供反馈信息。

在一种形式中,确定链路质量估计的步骤包括:

在终端位置处执行来自一个或更多个传输器的接收信号强度的多个测量;以及

将多个测量作为输入提供给模型,该模型返回链路质量估计。

在另一种形式中,终端位置是安装位置。

在另一种形式中,通过终端外部的装置进行测量,并且,向终端提供链路质量估计。

在一种形式中,通信系统是卫星通信系统,并且包括至少一颗卫星和多个终端。在一种形式中,监视来自一个或更多个传输器的一个或更多个传输链路包括监视来自全球导航卫星系统(gnss)中的一个或更多个卫星的一个或更多个传输。

在一种形式中,一个或更多个传输参数包括以下中的一个或更多个:传输时间、持续时间、数据速率、功率、频率,或者在多个传输天线的情况下,使用哪个天线或哪个天线组合进行传输。在一种形式中,使用链路质量估计来确定用于从传输器到接收器的传输的一个或更多个传输参数包括通过使用由使用链路质量估计确定的成功概率,对跨一个或更多个卫星通行的一个或更多个消息中的每一个调度多个冗余传输。在另一种形式中,调度多个冗余传输还包括将用于传输的一个或更多个消息包排队,使得队列优先级基于通过使用链路质量估计确定的成功概率。在另一种形式中,消息包被排队,使得成功可能性最低的那些包被给予在队列和传输中进行冗余复制的最佳机会。在另一种形式中,其中,调度包括通过使用优化方法执行多个冗余传输,其中,传输时间限制于在时间间隔t上具有间距w的离散网格。在另一种形式中,时间间隔为t=[now-l,now+l]。在一种形式中,该方法还包括基于通过使用链路质量估计确定的调度,传输一个或更多个消息。

根据另一方面,提供一种包括天线、通信硬件、处理器和存储器的终端装置,该存储器包括配置处理器以实现第一方面的方法的指令。在另一方面中,提供一种通信系统,该通信系统包括:多个这些终端;和包括多个接入节点和调度器装置的核心网络,该调度器装置被配置为根据由终端提供的一个或更多个传输链路的信息确定终端的链路质量估计并且向终端发送一个或更多个传输参数或者确定终端的安装位置和取向中的一个或两个。在一种形式中,多个接入节点包括多个卫星接入节点。在另一方面中,提供一种包括用于使处理器执行第一方面的方法的指令的计算机可读介质。

附图说明

将参考附图讨论本公开的实施例,其中:

图1是终端被安装在建筑物的南侧并且建筑物遮挡终端的天空的北面视图的示例性安装的示意性框图。

图2是根据实施例的监视两个参考链路36和38的终端10的示意图;

图3是通过利用cnr值和由终端在8天试验期间记录的相应相对gps卫星位置构建的天空视图地图;

图4是表示图3的天空视图地图中的cnr大于或等于33db的阈值的区域的阈值天空视图地图;以及

图5是根据实施例的图1所示的安装的天空视图地图;

图6是根据实施例的终端装置的示意图;

图7是根据实施例的卫星通信系统的示意图;并且

图8是根据实施例的用于估计通信系统中的链路质量的方法的流程图。

在下面的描述中,类似的附图标记在所有的图中表示类似或相应的部分。

具体实施方式

现在描述使得终端装置和/或其它系统实体能够预测链路质量的方法以及被配置为实现这些方法的终端。在一些实施例中,这些方法可以被用于选择安装位置和/或取向,以诸如优化在现场的特定位置的选择。在其它实施例中,这些方法被终端使用以协助调度何时传输和/或选择传输参数,并且可以被用于减少电池消耗和延长电池寿命。这些方法也可以被传输器使用以选择用于传输到终端的传输参数。

现在参考图1,表示安装在建筑物40的南侧的终端10的示意图,并且,该建筑物遮挡终端的天空的北面视图。在终端10和向北的极低地球轨道(leo)21中的卫星20之间存在通信链路30。通信链路30具有两个组分。上行链路32承载从终端10到卫星20的传输,并且下行链路34承载从卫星20到终端10的传输。在本示例中,卫星20处于通信链路20的一端,然而,在本说明书中描述的方法也可以被应用于地面或机载系统。终端10预测到卫星20的上行链路32的质量,并且可以使用该预测以调度传输、选择传输参数或协助选择安装位置。在本说明书中描述的技术也可以在反向上被应用,例如,卫星20(或其它设备)可以预测到终端10的下行链路34的质量。链路质量估计的进一步确定可以由终端单独执行、由终端与卫星或其它系统实体(包括分布式和基于云的组件)一起执行、或者完全由例如作为安装过程的一部分向终端提供估计的其它系统实体执行。

在一些实施例中,链路质量估计是长期估计,该长期估计是影响来自终端的传输链路的永久/半永久特征的测量。在一些实施例中,估计可以基于测量的小的集合,或者基于长期历史数据、或二者的组合、或诸如半永久性或永久性干扰源、建筑物或地形的随时间缓慢变化或根本不变化的效应的测量。在一些实施例中,链路质量估计被确定并且被长期使用(按月、按年或按终端的寿命)。即,虽然链路质量估计可以被经常使用,例如在调度各传输时,但是,链路质量估计的生成和更新可以不经常地或一次性地进行。例如,链路质量估计的生成只能在安装时执行,并且从未被更新。在其它实施例中,例如每3个月、6个月或12个月,或在检测到位置变化或成功率降低(例如增加的包丢失)时,生成或不频繁地更新链路质量估计。然而,在其它实施例中,链路质量估计可以被更频繁地执行,包括在每次传输之前或按需执行。

为了帮助理解,我们首先考虑终端估计链路质量估计以帮助调度何时传输和/或选择传输参数(即独立或单独操作)的一些实施例。例如,终端可以在最有利的信道条件期间调度传输,从而通过减少诸如遮挡、偏振失配和干扰的效果的影响增加接收的概率。终端还可以使用链路质量估计权衡传输参数与链路质量,以例如在有利信道条件下增加数据速率或降低传输输出功率。

重新参考图1,终端10考虑卫星接收器20可用性的时间和空间(以及潜在的频率)窗口。例如,参照图1,在卫星通过期间,leo卫星接收器20可以仅在几分钟持续期的窗口内(随着leo卫星向北移动,由于建筑物40变得越来越模糊)在南侧观看到终端。在本实施例中,终端在调度传输时对接收器的预期位置或路径有一定的了解-有效地在传输窗口中的每个时间点上,至少接收器相对于传输器的近似位置可以被估计。例如,在基于卫星的接收器的情况下,终端可以使用卫星的星历数据。这些星历数据(或轨道元素)可以作为双线元素(tle)被提供,该双线元素将卫星的轨道模型花,并且可以由卫星或另一个传输器传输并由终端存储。在一些实施例中,终端可以通过使用在发明名称为“systemandmethodforgeneratingextendedsatelliteephemerisdata”并且于2016年12月22日提交的澳大利亚临时专利申请no.2016905314中描述的方法计算或存储卫星的扩展星历数据。这些扩展星历数据可能对于一年或更长的时间段有效。在卫星正在预测下行链路质量的情况下,它可以基于固定位置或从先前从终端接收的位置信息知道终端接收器的预期位置。

在传输之前,并且如下面更详细地讨论的,终端10获得或确定链路质量估计,以预测或估计成功传输到卫星(即,通过卫星接收器的包接收)的可能性。然后,使用该估计或预测以确定一个或更多个传输参数,诸如传输时间、持续时间、数据速率、功率和频率。如果终端具有多个传输天线,则它也可以选择或组合使用这些天线,以最小化由于极化失配而造成的损耗。

可以在传输窗口中或者在传输窗口期间对沿卫星路径的一个或更多个位置执行估计一次或更多次(例如使用星历数据)。在一个实施例中,估计处理将一个或更多个传输窗口和该窗口的卫星星历(或轨道路径数据)视为输入,并且分别针对卫星的不同时间和位置确定链路质量的多个估计,并且返回具有最佳链路质量的时间(从而返回位置)。链路质量估计(即,值)可以被用于确定传输参数。可以通过使用传输窗口上的相等空间或时间样本获得多个估计,或者,使用优化或搜索技术以搜索最佳链路质量估计。

现在描述用于估计链路质量的方法。在一个实施例中,终端10在传输之前使用接收信号以估计通信上行链路32的质量,并且我们将用于该质量预测的链路标记为参考链路。可以使用多个参考链路,每个参考链路来自不同的传输源。这些传输源可以是一个或更多个卫星传输器,也可以是机载或地面传输器(可以快速移动、慢速移动或固定)。注意,这些传输源也可以是用于从终端传输的接收器,并且当在接收语境中动作时可以被称为接收器。在一个实施例中,参考链路是与通信链路相同的通信系统的一部分。在另一实施例中,参考链路来自作为诸如另一通信系统或全球导航卫星系统(gnss)的另一系统(或子系统)的一部分的传输源。在一个实施例中,终端可以接入多个传输源,并因此可以接入多个参考链路。此外,参考链路可以是单向链路,而不必是双向链路。即,传输器可能不知道终端正在接收或监视其传输。

图2是根据实施例的监视两个参考链路36和38的终端10的示意图。第一参考链路34是来自包括终端10的卫星通信系统中的卫星20的下行链路,第二参考链路38是来自gnss卫星24(例如gps卫星)的下行链路(或传输)。在本实施例中,示出单个接收天线,但是应当理解,可以使用多个接收天线。

在一个实施例中,终端使用与参考链路相关的信息以确定预期的接收信号强度。该信息可以包括参考链路传输功率和传输天线增益的估计。在这些已知或者可以被估计的情况下,也可考虑由电缆和其它组件引起的附加损耗。我们分别使用以表示传输器和接收器上的集总损耗的估计。还可以使用接收天线增益的估计。在分贝(db)标度上,预期接收功率可以估计如下:

这里,传输和接收功率估计值以dbm表示,并且,其它参数以db表示;是基于传输器和接收器的分离的预期自由空间路径损耗的估计值,其计算方法如下:

这里,λ是参考链路工作频率处的波长(单位是m),是传输时的链路距离的估计(单位是m)。

通常由终端在接收到传输时通过使用传输器(例如卫星20)和接收器(终端10)的位置的估计执行链路距离的估计,但是,如果双向链路可用并且终端可以向卫星提供其位置,则可以在传输器上执行该估计。卫星可以例如通过使用gnss接收器确定其位置,并且将该信息包括在所传输的数据中。另选地,如在发明名称为“systemandmethodforgeneratingextendedsatelliteephemerisdata”并于2016年12月22日提交的澳大利亚临时专利申请no.2016905314中描述的那样,可以通过使用卫星的星历数据或扩展星历数据估计卫星的位置。例如,如果终端是在安装过程中使用其位置预先编程的固定终端,或者如果终端没有移动或者自上次获得位置估计以来没有移动超过阈值量,则终端可以使用存储的位置。另选地,终端可以包括gnss接收器以允许其估计其位置,或者包括一些位置确定模块。另选地,可以如以myriotaptyltd的名义于2017年5月16日提交并且发明名称为“positionestimationinalowearthorbitsatellitecommunicationssystem”的国际专利申请no.pct/au2017/000108描述的那样估计终端或卫星的位置。

在另一实施例中,通过比较传输和接收时间,使用传输数据的飞行时间估计链路距离。例如,当传输器20和接收器10与公共时钟同步(例如经由gnss)时,基于包的传输可以在传输的数据中包括传输时间。在另一示例中,在传输与时隙对准的时隙系统中,接收器可以基于相对于时隙边界的到达延迟确定飞行时间。可以通过使用估计链路距离,这里,tf是飞行时间的估计,c是光速。

在另一实施例中,传输器和接收器的相对取向以及天线极化和增益模式是已知的或者可以被估计。这些被用于在给定传输期间的系统组件的物理取向的情况下估计链路的特定实例的

在一个实施例中,参考链路接收器报告观测到的接收功率的估计或可以从中确定的诸如载波噪声比(cnr)或信噪比(snr)的一些其它度量。然后,根据预期和观测到的接收信号功率之间的差值即确定引入到信道中的附加损耗的估计。然后,附加损耗可以被用作链路质量度量,这里,增加的附加损耗表示降低的链路质量,反之亦然,并且可以将其与预期的可用链路裕度进行比较,以预测接收是否可能成功。附加损耗估计可以是平均估计,例如通过组合多个单独估计,或者通过使用观测接收功率的聚合或平均值,或者,期望接收功率可以基于聚合或平均估计的分量。附加损耗估计也可以基于将统计模型与观测数据拟合,或者使用机器学习、数据挖掘或人工智能技术生成。附加损耗估计可以是单个值,或者包括时间依赖性效果,诸如例如由于大气影响导致的天中时间(例如白天/晚上)或年中时间(夏天/冬天)效果。在一些实施例中,终端可以包括诸如湿度和温度传感器的环境传感器和/或终端硬件传感器(例如接收器温度),并且,链路质量估计可以基于感测值。

在另一实施例中,终端通信链路是双向的,并且通信接收器向终端提供反馈消息(或信息),诸如承认消息、或诸如包成功率的性能统计或cnr/snr估计。例如,在基带接收器信号处理的执行没有与无线电接收器物理地并置的分布式系统的情况下,承认(ack)或一组承认可以被实时地提供,或者可以在一定的延迟之后被传输。在这种情况下,可以通过使用承认或诸如到给定接收器位置的成功接收所需的重试次数的计数的其它性能度量或者传输到位于空间中的某个区域内的接收器时的平均包成功率,导出链路质量度量。例如,天空可以划分为预定义的区域(例如基于方位角和高度/仰角),并为各预定义的空间区域保持计数。

在另一实施例中,终端使用来自参考链路的信息以预测和比较跨着接收器的候选位置(例如在天空的不同区域)的通信链路的相对质量。相对比较不需要附加损耗的绝对计算,因此可以在不知道传输功率或天线特性的情况下被执行。例如,终端可以记录一个或更多个gnss参考链路的观测cnr值、snr值和相应的相对gnss卫星位置,并将其用作用于预测通信链路质量的度量。在参考链路是通信链路的情况下,还可以使用观察到的cnr或snr,以及诸如承认率的其它度量。终端可以存储度量的记录,并对这些历史(时间)记录进行分析,以建立可用于链路质量估计的模型。

信道效应,例如诸如法拉第旋转的降雨衰减和电离层效应,可能与频率有关。当通信链路和参考链路在不同频率下工作时,可以调整链路质量度量以考虑频率相关效应的相对差异。在一些实施例中,链路质量估计或链路质量度量可以考虑年份中的时间。例如,大气效应可能随季节(例如,冬季与夏季)而变化,因此,链路质量估计可能包括包含平均月份效应或季节效应的时变分量。

在操作期间,终端可以继续计算链路质量度量,诸如附加损耗或cnr,并且构建链路质量估计空间摘要,诸如天空视图地图。天空视图地图可以被用于通知来自终端的数据传输的调度,以限制在估计卫星接收器处于视图中时出现的传输。

图3是通过利用cnr值和通过终端在8天试验期间记录的多颗gps卫星的相应相对卫星位置构建的天空视图地图300。在这种情况下,终端被安装在建筑物的南侧,使得建筑物挡住了北面的天空。天空视图地图是极坐标图,旋转表示方位角(北零度),径向测量表示海拔(或高度角)。在图中提供的示例表明,障碍物导致墙北侧的cnr降低。在图中还显示了墙310的坡度。也存在gps卫星没有接入的区域,例如320。利用卫星的轨道参数,可以将这些区域标记为具有未知的链路质量。在本示例中,当在同一方位角/仰角位置进行多个cnr观测时,计算该位置的平均cnr。作为平均的替代,可以应用其它函数,例如,中值、最大值、最小值。

在一个实施例中,阈值被应用于天空视图地图,从而去除具有低于阈值的cnr的样本,使得剩余样本指示天空视图不太可能被阻挡因此到卫星的通信链路质量可能更高的区域。图4是阈值天空视图地图400,该阈值天空视图地图400表示图3的天空视图地图中的cnr大于或等于33db阈值的区域。基于此,终端可以选择以将其传输限制为处于在该区域内的方位角和仰角内,从而避免北侧的阻挡。

图5是根据实施例的图1所示安装的天空视图地图500。在本实施例中,天空视图地图周围的数字表示北方为0°的方位角,并且,天空视图地图内的虚线圆和数字表示天顶为90°的高度角。在该地图中,阴影表示较差的链路质量,并且,可以看出,朝向北方的第一区域510(覆盖方位角从315°到45°)代表由于在终端以北的建筑物40的阻挡导致的最差的链路质量。从300°~60°的方位角延伸的第二区域520代表中间链路质量。另一个区域530,由于相对于终端位于120°~180°的方位角和0°~30°的高度角(即相对于终端的东南向水平)的地面干扰源,具有中等(优于中间)链路质量。

在另一实施例中,终端可以接入多个参考链路接收器源(例如,从通信系统和从gnss)。终端基于各接收器估计链路质量,并然后组合估计以聚合链路质量估计。这些聚合可以被组合(即空间聚合)以创建平均天空地图。类似地,链路质量估计可以基于特定接收器的聚合值或平均值(即基于同一接收器的重复测量),或者基于相同类型接收器(例如不同的gnss系统(即gps卫星、glonass卫星,北斗卫星)或具有相同硬件(如相同gps块)的卫星)的平均值。即,可以基于一类接收器或参考链路执行聚合。例如,聚合可以基于到接收器的距离(与轨道位置相关)。可以预先定义距离范围/箱,并对给定距离范围内的所有接收器执行平均。例如在确定要使用什么传输参数时,估计可以包括误差估计的生成,以例如允许使用概率阈值。例如,如果在良好的传输条件下存在很高的置信度,那么与置信度较低的情况相比,在假设稳定条件的情况下,传输功率可能会降低,这意味着良好的条件可能更加多变,因此需要更加谨慎。

在另一个实施例中,终端存储并且使用将通信链路质量与gnss卫星信号强度度量(诸如cnr)的短时测量以及天空中的这些gnss卫星相对于终端的位置相关联的模型和/或数据库。可以通过使用离线实验(在受控环境中进行)或通过仿真或通过这些方法的一些组合,构建模型或数据库。各种统计建模、机器学习和数据挖掘方法可以被用于建立模型和/或数据库。在一些实施例中,数据库可以被用作查找表,并且可以从基于实验和模拟的模型导出。测量可选择性地被标准化,以考虑到到到卫星的已知路径长度(例如,相对于已知距离处的特定卫星的名义预期信号强度的db)。试验还可以被用于确定提供足够数据样本所需的gnss卫星测量的最短预期持续时间测试时间段,使得数据库查询可以对通信链路的预期质量给予高度的置信度。类似地,数据库可以被用于随时间改进或更新估计。例如,每个月,终端可以取得一组测试测量,并将其提供给模型,或者使用查找表(或将其与数据库进行比较)以生成用于下个月的一组新的链接质量估计。在一些实施例中,可以由卫星周期性向终端提供对模型的更新。

上行链路接收器可以基于诸如包成功率、cnr和snr的性能度量评估通信链路质量。在优选实施例中,终端具有反馈信道,通过该反馈信道,上行链路接收器可以提供链路质量信息。终端可以向接收器提供链路质量估计空间摘要,和/或从接收器接收链路质量估计空间摘要。摘要可以是(可选地量化)天空视图地图,或者可以是通过使用诸如vonmises–fisher分布的球体上的分布(或分布的叠加)构造的参数表示。终端可以向接收器提供其初始链路质量估计空间摘要,并且可以以增量改变的形式与接收器交换对此的更新。这样做的好处是减少发送到终端所需的数据量。终端可以完全或部分地用其接收到的更新的摘要数据替换其现有的链路质量估计空间摘要数据,或者它可以通过自动回归或类似的方式组合两个数据集。如果接收器检测到由终端提供的链路质量估计空间摘要与观察到的性能有很大不同,则它可以向终端发出命令,指示其放弃其当前的链路质量估计集合。

在一个实施例中,接收器保持来自一个或多个终端的终端链路质量估计空间摘要随时间变化的记录,并将这些与在接收器处观察到的相应链路质量估计空间摘要进行比较。然后,该信息被用于自适应地细化应用于终端的链路质量估计技术,例如,设定用于指示晴空视图的新的参考链路cnr阈值。

在另一实施例中,链路质量预测也可以使用关于干扰的统计。例如,可以向终端指示在一个方向上向卫星的传输更容易受到严重干扰。这可能是由于在终端在该方向上传输时在卫星视场中存在更多的其它信号源。例如,图5中的区域530示出了干扰高于周围区域的区域的示例。该预测还可以使用来自诸如地形图和建筑物信息的其它来源的信息以估计由周围环境引起的信道效果。由于这些效果是永久性或半永久性的,因此在安装过程中可以考虑这些效果。然而,由于建筑物和干扰源可能随着时间而变化,因此链路质量估计值可能会随着时间而更新,以考虑到这种变化(例如,每隔几个月或一年)。

在一个实施例中,链路质量预测处理被分发。预测过程可以具有:

例如通过使用如上所述的一个或更多个参考链路在终端处执行的组件;以及

在卫星上或通过使用基于地面(例如云)的处理执行使得结果反馈给终端的其它组件。例如,可以在远离终端的地方执行基于接收器性能度量的通信接收器处理和链路质量评估或者基于地形知识的链路质量估计。

可以通过在通信下行链路上提供的信息或者通过另一方法(例如地面链路或安装期间的有线通信链路)指示指示终端。

在另一实施例中,终端检测到其已被移动或重新定向,并且如果移动或重新定向的水平是显著的(例如,与一些阈值相比),则它可以调整其当前的链路质量估计集合(以针对移动进行调整)或重置估计。终端可以使用诸如gnss和/或惯性测量单元或振动传感器的系统以检测移动或重新定向。

在优选实施例中,传输器使用以上方法中的一种或更多种以预测链路质量、通知传输调度和在最有利信道条件下的目标传输。这具有几个优点:

通过减少诸如遮挡、偏振失配和干扰的有害影响的影响,提高性能;

降低电池供电设备的能耗;以及

减少作为大量信号的聚合的由卫星上的多用户接收器看到的干扰,这些信号分别衰减使得它们不能解码而是作为干扰一起出现。

传输器可以用其它参数交换链路质量,例如在有利的信道条件下提高数据速率或降低传输输出功率。在一个实施例中,传输器优化一个或更多个目标函数,例如瞄准最小功耗、最大数据速率或最大接收概率。要优化的变量可以代表单次传输或多次传输的调度(传输时间和/或频率)、传输功率和空间参数(接收器相对于传输器的方向)。

在另一实施例中,当卫星正在向特定终端(例如单播)传输时,卫星下行链路传输器使用与该终端相关联的链路质量估计空间摘要(例如天空视图地图)以估计链路质量和调度传输。下行链路传输器还可以通过使用各终端的链路质量估计空间摘要调度到多个终端的传输(例如多播或顺序单播)。传输器可以优化一个或更多个目标函数,例如,单个终端基础上或者在多个终端上聚合的瞄准最小功耗、最大数据速率或最大接收概率。

传输可以被调度以实现跨频率和跨时间的分集,包括跨不同的卫星通过的分布。在一个实施例中,包传输被重复多次以实现冗余,并且,冗余传输可以分布在一个或更多个卫星通过上。用于传输的消息包(或简单的包)可以排队,使得队列优先级基于成功的概率。在另一实施例中,消息包排队,使得成功可能性最低的那些包在队列和传输中被给予最佳的冗余复制机会。

如上所述,链路质量估计可以被用于估计使得能够实现传输的概率调度的成功(或失败)的概率。在一个实施例中,链路质量估计被用于估计作为时间和空间的函数的传输失败的概率。例如,在t时刻传输失败的概率可以由下式表示:

p(t)=pf(θ(t),φ(t))

这里,θ(t)是作为时间的函数的卫星相对于终端的方位角,而φ(t)是高度角。天空地图或其它链路质量估计函数可以被用于估计这些概率随时间的变化。假设需要传输n条消息m1,m2,…,mn。

各消息可以被多次传输,以增加其被正确接收至少一次的概率。设tn,1,tn,2,…为传输消息mn的时间序列。第k次传输后未接收到mn的概率为

各消息被重复,直到它达到足够小的失败概率ρ。设k(n)为最小整数,使得qn,k(n)≤p。我们希望选择传输时间tn,1,…tn,k(n)的序列,以最小化传输的总数:

我们可以应用两个约束一延迟t、吞吐量w。延迟约束是所有消息必须在一些时间间隔t(即,tn,k∈t)内传输,吞吐量是连续传输之间的最小时间w(|tn,k-tn,l|≥w)。然后可以通过优化(或近似优化)延迟和吞吐量中的一个或两个执行调度。在一个实施例中,通过假定传输时间被限制为具有间隔w的离散网格(即,对整数l,t=lw)并且优化在延迟间隔t内的分配,降低优化的计算复杂度。然后,可以使用各种优化方法以基于延迟间隔t内的网格点上的各时间上的概率分配传输时间。在一个实施例中,可以对间隔上的概率进行排序并且使用贪婪分配方法。例如,我们使让i为间隔t中的网格点集,使得我们可以进一步定义将概率p(i)∈i按升序排列的i的置换σ,并然后使用表1中的贪婪算法以获得传输时间:

表1

用于选择传输时间的贪婪算法

在过程结束时,传输时间被存储在列表t1,t2,…tn中。如果算法在第6行退出,则对各消息满足目标失败概率ρ。如果算法在第9行退出,然后至少一条消息达不到目标概率。如果不希望这样做,则可以放大间隔t并重复算法。在一些情况下,一些消息比其它消息更重要,并且可以例如通过基于概率比pn/qn替换第5行和第6行中的最大化和退出条件,修改上述算法以基于重要性(例如,较重要的消息具有较低的错误概率)加权某些消息。也可以使用其它置换方法、数学优化或者甚至基于机器学习的分配方法。

时间间隔t的选择可以基于延迟l时间段,诸如t=[now,now+l]。在一个实施例中,间隔t被选择为t=[now-l,now+l]。即,在该实施例中,允许调度器从过去和将来的时间选择传输时间。这可能意味着调度器在即将到来的通过中选择跳过传输。如果在即将到来的卫星通过(即(now+l))中传输的概率较低并且在最近的卫星通过(即(now-l))中传输的概率较高,则可能发生这种情况。表2示出调度传输时间的另一算法,该算法允许间隔t包括过去的时间。如果算法在第5行或第9行退出,则不应传输消息,并且,如果算法在第6行退出,则应立即传输消息。在过程退出后,值t指示应尝试调度算法的下一时间。

表2

用于选择传输时间的贪婪算法

在一个实施例中,使用上述方法中的一种或更多种以预测安装时的链路质量,并向安装员提供反馈以确定安装位置是否可能支持成功的服务。在一个实施例中,终端接通电源并记录gnss卫星信号强度的测量以及在测试期间天空中的这些gnss卫星相对于终端的位置。这些测量被用于询问存储的数据库(如上所述)并向安装员显示反馈。使用标准化版本的测量可以估计视野。例如,来自地平线以上的卫星的信号缺失或显著衰减表明该方向的视线受阻。这些方法可以在终端上或在连接的主机上运行。另选地,安装时应用可以在具有gnss接收器和gnss接收器测量能力的独立主机(例如位于安装的终端附近的智能手机)上运行。

在一个特定实施例中,例如在低成本部署中,待安装的终端只能配备通信链路传输器。由于这种终端缺少通信链路接收器和诸如gnss接收器的二次接收器,因此它们无法直接获得链路质量测量。在这种情况下,使用专用终端(独立或主机连接)以获取链路质量度量,并构造链路质量估计空间摘要。然后,在部署之前,用该链路质量信息对要安装的终端进行编程。

图6是根据实施例的终端装置10的示意图。终端装置包括具有包括一个或更多个天线112的rf前端的通信模块110以及用于准备用于传输的数据(包括编码和调制)以及在射频上行链路32上向卫星20传输数据以及用于在下行链路34上从卫星20(或其它源)接收和解码数据的相关硬件。卫星包括:具有rf前端的通信模块,该rf前端具有用于与终端和地球站通信的一个或更多个天线;传输器模块和接收器模块,每个模块可以包括编码/解码和调制/解调组件;处理器和相关存储器,用于存储数据(例如星历、配置和性能数据)以及控制卫星的动作和信号的传输/接收,包括解码信号、生成承认、执行系统优化和任何其它支持动作。在一些实施例中,卫星以弯管模式或具有存储和转发模式的数字采样动作,并且对接收到的传输执行最小或无信号处理,并且将接收到的传输或包重定向到地面站以供进行进一步处理(包括通过基于云的处理器)。

终端装置还包括处理器模块120和存储器130。存储器包括软件指令或软件模块,以使处理器实现这里描述的方法,包括链路质量估计的估计、链路质量空间摘要的估计、估计的更新、以及终端可以如何使用这些估计以调度传输或选择传输参数。存储器还可以被用于存储历史链路质量估计和链路质量空间摘要以及用于生成或更新这种估计的任何数据、参数或度量。存储器可以包括一个或更多个数据库,包括用于根据短持续时间测量估计链路质量估计的数据库。存储器还可以被用于存储用于其它功能的模块,例如调度器和在期望的时间(例如,在预测的卫星通过时间期间)唤醒终端的报警模块。在终端装置中还可以包括其它组件,诸如电源、时钟、传感器平台等。

在安装和配置期间,数据可以例如通过使用基于蓝牙或wifi的协议在短程无线连接上通过通信模块110与其它本地设备交换。在一些实施例中,终端装置包括物理接口150,诸如usb接口,从而允许在服役或维护期间将数据物理地传输(或上载)到设备。终端装置可包括可以被用于提供位置和时间估计的gps接收器140。此外,终端装置可以经由通信模块110接收定时信息,或者终端装置可以包括例如在服役或维护期间与utc周期性地同步的稳定的车载时钟。

图7是根据实施例的卫星通信系统1的示意图。图7所示的通信系统1可以等效地称为通信网络,并且包括多个终端10和多个卫星接入节点20。核心网络200包括接入节点(卫星和地面)、接入网关230、认证代理240和应用网关250。代理240可以经由应用网关250与应用260交换数据262,并且直接用应用260控制信息264。核心网络200的组件可以被分布并且通过通信链路进行通信。一些组件可能基于云。终端或卫星可以向核心网络中的调度器装置提供信息,用于执行用于估计链路质量估计的计算并为终端提供反馈信息。此外,终端可以用不属于通信系统1的附加传输器监视参考链路36,并且可以包括卫星传输器22,诸如gnss卫星和地面传输器24。

在一个实施例中,系统1使用发布者订户模型,并且包括以下系统实体:

终端10:终端内的通信模块向接入节点提供核心网络连接。终端10可以附接设备102和传感器104。它们可以物理地附接或集成,或者通过本地有线或本地无线链路操作地连接到终端。

设备102:这些实体接收通过认证代理订阅的数据。

传感器104:这些实体发布数据时不知道其它网络节点。传感器还可以接收短暂的控制数据、发布ack消息等。

接入节点20:多个接入节点提供与多个终端的无线通信。大多数接入节点是卫星接入节点,但系统可能包括地面基站。卫星接入节点提供对核心网络200的接入。

接入网关230:它们充当接入节点和认证代理之间的网关。网关可以与接入节点20(例如在卫星上)组合。

认证代理240:发布者和订户之间的代理。代理认证接收到的消息来自已注册的终端。

应用网关250:应用260和代理240之间的数据网关,实现多个接口。这可能是一个基于云的接口。接口包括:消息队列遥测传输(mqtt)接口,转发到客户控制的端点或客户可接入的端点。

应用260:客户应用。这些应用通过有线和无线链接与应用网关进行通信,例如与基于云的应用网关进行通信。

描述了使得终端设备能够预测链路质量的方法以及被配置为实现这些方法的终端。图8表示用于在通信系统中估计链路质量的方法的流程图800。该方法大体上包括监视来自一个或更多个传输器的一个或更多个传输链路810和确定链路质量估计820。在步骤830中,链路质量估计被用于确定用于从传输器到接收器的传输的一个或更多个传输参数或者用于确定用于到接收器的传输或从传输器的接收的终端的安装位置和/或取向。可以通过使用在诸如以myriotaptyltd的名义在2017年2月24日提交并且发明名称为“terminalschedulingmethodinsatellitecommunicationsystem”的国际专利申请no.pct/au2017/000058中描述的方法,或者通过使用这里描述的概率调度方法,执行传输的调度。在一个实施例中,终端包括被配置为实现这里描述的调度方法的调度器。在一个实施例中,调度器是位于核心网络200中的计算机系统的一部分,并且接收来自一个或更多个终端的传输链路测量并估计终端的链路质量估计。调度器使用这些链路质量估计以确定一个或更多个终端的传输调度,并将调度信息传输到一个或更多个终端中的每一个。

本方法的实施例以及被配置为实现这些方法的终端为终端提供了许多好处,特别是对于安装在(或位于)对终端的重复现场接入的成本昂贵得无法承受的远程位置的终端设备。首先,该方法向安装员提供反馈,使得他们可以确定安装位置是否可能支持成功的通信服务。一旦安装,所述方法使得终端能够在最有利的信道条件下调度传输,由此通过减少遮挡、偏振失配和干扰的影响增加接收概率。终端还可以使用链路质量估计以权衡传输参数与链路质量,以例如在有利信道条件下增加数据速率或降低传输输出功率。这些由此减少能源消耗,并延长电池寿命。这里描述的方法特别适用于低成本和低功率终端被安装或部署在重复现场接入的成本昂贵得无法承受的远程位置的卫星通信系统。这些方法可以被用于接入点为卫星、空中接入点(伪卫星)(诸如高空无人飞行器(uav),诸如太阳能和/或电池供电的无人机或能够在空中长时间停留(例如多日)的飞艇)或者固定或移动的地面接入点的通信系统中。系统还可以与位于陆地或海上的完全陆地通信系统(即纯陆地接入点和/或终端)或具有陆地接入点和/或终端和空中接入点和/或终端的通信系统一起使用。

链路质量估计可针对特定链路和时间、针对特定参考链路或接收器、或针对与终端相关的任何位置中的任何接收器的任何假设链路生成。在一些实施例中,链路质量估计是长期估计,该长期估计是影响来自终端的传输链路的永久/半永久特征的测量。在一些实施例中,估计可以基于测量的小的集合,或者基于长期历史数据、或二者的组合、或诸如半永久性或永久性干扰源、建筑物或地形的随时间缓慢变化或根本不变化的效应的测量。在一些实施例中,链路质量估计被确定并且被长期使用(按月、按年或按终端的寿命)。即,虽然链路质量估计可以被经常使用,例如在调度各传输时,但是,链路质量估计的生成和更新可以不经常地或一次性地进行。例如,链路质量估计的生成只能在安装时执行,并且从未被更新。在其它实施例中,例如每3个月、6个月或12个月,或在检测到位置变化或成功率降低(例如增加的包丢失)时,生成或不频繁地更新链路质量估计。然而,在其它实施例中,链路质量估计可以被更频繁地执行,包括在每次传输之前或按需执行。

这些方法可以仅由终端通过使用测量或历史数据或模型或者通过使用来自传输源或预期接收器的反馈信息被执行,并且可以通过使用分布式计算被执行。在一些实施例中,诸如安装,估计可以独立于终端被执行并且被提供给终端。链路质量估计的更新或者用于估计链路质量估计的参数或者用于确定传输参数的阈值可以被传输或上传到终端。

各种实施例被配置为减少电池消耗和延长电池寿命。在一些实施例中,例如,为了帮助节省电池寿命,不频繁地执行估计。在一些实施例中,可以使用诸如历史数据库和/或模型的存储的信息,这些信息可以与少量的测量组合以获得准确的估计(或更新)。在一些实施例中,方法被分布或使用来自多个系统实体的信息,并且这些方法例如在表示空间摘要时最小化所需的数据量,使得当在分布式系统中传输信息时不浪费功率。此外,估计可以被用于选择最大化接收概率的传输参数,减少重传的需要。如果对高质量上行链路有高的置信度,则其它的终端可能会降低传输功率。

本领域技术人员应当理解,可以通过使用各种技术和技能中的任何一种表示信息和信号。例如,数据、指令、命令、信息、信号、位、符号和芯片可在整个上述描述中被引用,可由电压、电流、电磁波、磁场或粒子、光场或粒子或其任何组合表示。

本领域技术人员将进一步理解,结合这里公开的实施例描述的各种说明性逻辑块、模块、电路和算法步骤可以被实现为电子硬件、计算机软件或指令或两者的组合。为了清楚地说明硬件和软件的这种可互换性,以上一般地关于其功能性描述了各种说明性组件、块、模块、电路和步骤。这种功能是作为硬件还是软件实现,取决于对整个系统施加的特定应用程序和设计约束。熟练的技术人员可以针对各特定应用以不同的方式实现所描述的功能,但是这种实现决策不应被解释为导致偏离本发明的范围。

结合这里公开的实施例描述的方法或算法的步骤可以直接体现在硬件、由处理器执行的软件模块或两者的组合中。对于硬件实现,可以在一个或更多个应用特定集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑设备(pld)、现场可编程门阵列(fpgas)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的其它电子单元或其组合内实现处理。

在一些实施例中,处理器模块120包括被配置为执行方法的步骤中的一些的一个或更多个中央处理单元(cpu)。类似地,可以使用计算装置以生成要供给到终端装置的轨道模型,并且计算装置可以包括一个或更多个cpu。cpu可以包括输入/输出接口、算术和逻辑单元(alu)以及通过输入/输出接口与输入和输出设备通信的控制单元和程序计数器元件。输入/输出接口可以包括用于通过使用预定义的通信协议(例如蓝牙、zigbee、ieee802.15、ieee802.11、tcp/ip、udp等)与另一设备中的等效通信模块通信的网络接口和/或通信模块。计算或终端装置可以包括单个cpu(核心)或多个cpu(多核心)或多个处理器。计算或终端装置可以使用并行处理器、向量处理器,或者是分布式计算设备,包括基于云的计算设备和资源。存储器操作性地耦合到处理器,并且可以包括ram和rom组件,并且可以被设置在设备或处理器模块的内部或外部。存储器可以被用于存储操作系统和附加软件模块或指令。处理器可以被配置为加载和执行存储在存储器中的软件模块或指令。

也称为计算机程序、计算机代码或指令的软件模块可以包含若干源代码或目标代码段或指令,并且可驻留在诸如ram存储器、闪存、rom存储器、eprom存储器、寄存器、硬盘、可移动磁盘、cd-rom、dvd-rom、蓝光光盘或任何其它形式的计算机可读介质的任何计算机可读介质中。在一些方面,计算机可读介质可以包括非暂时性计算机可读介质(例如,有形介质)。此外,对于其它方面,计算机可读介质可以包括暂时性计算机可读介质(例如,信号)。以上的组合也应包括在计算机可读介质的范围内。在另一方面,计算机可读介质可以与处理器一体化。处理器和计算机可读介质可以驻留在asic或相关设备中。软件代码可以存储在存储器单元中,并且处理器可以被配置为执行它们。存储器单元可以在处理器内实现,也可以在处理器外部实现,在这种情况下,它可以通过本领域已知的各种方式通信地耦合到处理器。

此外,应当理解,用于执行这里描述的方法和技术的模块和/或其它适当手段可以被下载和/或通过计算设备以其它方式获得。例如,这种设备可以耦合到服务器以有利于用于执行这里描述的方法的手段的传输。另选地,可以经由存储手段(例如ram、rom、诸如光盘(cd)或软盘等的物理存储介质)提供这里描述的各种方法,使得计算设备可以在耦合到设备或者向其提供存储手段时获得各种方法。此外,可以利用用于向设备提供这里描述的方法和技术的任何其它合适技术。

这里公开的方法包括用于实现所述方法的一个或更多个步骤或行动。方法步骤和/或行动可以彼此交换,而不脱离权利要求的范围。换言之,除非步骤或行动的特定顺序被指定,否则可以在不脱离权利要求的范围的情况下修改特定步骤和/或行动的顺序和/或使用。

如这里所使用的,术语“估计”或“确定”包括各种各样的行动。例如,“估计”或“确定”可以包括算出、计算、处理、推导、调查、查找(例如,在表、数据库或另一数据结构中查找)和确定等。此外,“估计”或“确定”可以包括接收(例如,接收信息)和接入(例如,接入存储器中的数据)等。此外,“确定”可以包括解决、选择、选定和建立等。

本领域技术人员将理解,本公开的用途不限于所描述的特定的一个或更多个应用。本公开也不关于这里描述或描绘的特定要素和/或特征限制其优选实施例。应当理解,本公开不限于公开的一个或多个实施例,而是能够在不脱离由以下权利要求阐述和定义的范围的情况下进行各种重排、修改和替换。如这里所使用的,提及项目列表中的“至少一个”的短语是指这些项目的任何组合,包括单个成员。例如,“a、b或c”中的至少一个旨在涵盖:a、b、c、a-b、a-c、b-c和a-b-c。

除非上下文另有要求,否则在整个说明书和随后的权利要求中,词语“包含”和“包括”以及诸如“含有”和“具有”的变体将被理解为意味着包含陈述的特征或特征组,但不排除任何其它特征或特征组。

本说明书中对任何现有技术的引用不是、并且也不应被视为对任何形式的此类现有技术构成常识的一部分的建议的承认。

本领域技术人员将理解,本公开的用途不限于所描述的特定的一个或更多个应用。本公开也不关于这里描述或描绘的特定要素和/或特征限制其优选实施例。应当理解,本公开不限于公开的一个或更多个实施例,而是能够在不脱离由以下权利要求阐述和定义的范围的情况下进行各种重排、修改和替换。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1