不连续传送指示的准共址关联指示的方法和设备与流程

文档序号:18251723发布日期:2019-07-24 09:48阅读:198来源:国知局
不连续传送指示的准共址关联指示的方法和设备与流程

本公开大体上涉及无线通信网络,且更具体地说,涉及无线通信系统中不连续传送指示的QCL关联指示的方法和设备。



背景技术:

随着对将大量数据传送到移动通信装置以及从移动通信装置传送大量数据的需求快速增长,传统的移动语音通信网络演变成与互联网协议(Internet Protocol,IP)数据包通信的网络。此类IP数据包通信可以为移动通信装置的用户提供IP承载语音、多媒体、多播和点播通信服务。

示例性网络结构是演进型通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)。E-UTRAN系统可提供高数据吞吐量以便实现上述IP承载语音和多媒体服务。目前,3GPP标准组织正在讨论新下一代(例如,5G)无线电技术。因此,目前正在提交和考虑对3GPP标准的当前主体的改变以使3GPP标准演进和完成。



技术实现要素:

本文公开无线通信系统中用于不连续传送指示的QCL关联指示的方法和设备。在一个方法中,UE接收小区中的多个参考信号或多个参考信号集合的第一配置,其中参考信号作为准共址参考。UE接收抢占指示(PI)与多个参考信号之一或多个参考信号集合之一之间的关联的第二配置。UE基于来自第一参考信号集合的参考信号接收数据。UE根据用于第一参考信号集合的PI处理数据且不根据用于第二参考信号集合的PI处理数据。

附图说明

图1示出根据一个示例性实施例的无线通信系统的图。

图2是根据一个示例性实施例的传送器系统(也被称作接入网络)和接收器系统(也被称作用户设备或UE)的框图。

图3是根据一个示例性实施例的通信系统的功能框图。

图4是根据一个示例性实施例的图3的程序代码的功能框图。

图5图示了其中抢占指示(PI)可能造成不必要的数据丢弃的情形。

图6图示了其中UE通过2个PI来配置的示例性实施例。

图7图示了其中UE监视和处理数据的示例性实施例。

图8图示了其中UE监视和处理数据的示例性实施例。

图9图示了其中UE监视和处理数据的示例性实施例。

图10是从用户设备(UE)的角度的一个示例性实施例的流程图。

具体实施方式

下文描述的示例性无线通信系统和装置采用支持广播服务的无线通信系统。无线通信系统经广泛部署以提供各种类型的通信,例如话音、数据等。这些系统可以基于码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、正交频分多址(orthogonal frequency division multiple access,OFDMA)、3GPP长期演进(Long Term Evolution,LTE)无线接入、3GPP长期演进高级(Long Term Evolution Advanced,LTE-A或LTE-高级)、3GPP2超移动宽带(Ultra Mobile Broadband,UMB)、WiMax或一些其它调制技术。

确切地说,下文描述的示例性无线通信系统装置可以被设计成支持一个或多个标准,例如由被命名为“第三代合作伙伴计划”的在本文中被称作3GPP的联合体提供的标准,包含:3GPP TSG RAN WG1#AH_NR2v1.0.0的最终报告(中国青岛,2017年6月27-30日);3GPP TSG RAN WG1会议#90的最终主席笔记(捷克布拉格,2017年8月21-25日);3GPP TSG RAN WG1会议#AH_NR3的最终主席笔记(日本名古屋,2017年9月18-21日);3GPP TSG RAN WG1会议#90bis的最终主席笔记(捷克布拉格,2017年10月9-13日);3GPP TSG RAN WG1会议#91的最终主席笔记(美国里诺,2017年11月27日-12月1日);R1-1721342,“NR;多路复用和信道编码(版本15)”;R1-1721343,“NR;用于控制的物理层程序(版本15)”;以及R1-1721344,“NR;用于数据的物理层程序(版本15)”。上文所列的标准和文档特此明确地以全文引用的方式并入。

图1示出了根据本发明的一个实施例的多址无线通信系统。接入网络100(access network,AN)包含多个天线群组,一个包含104和106,另一个包含108和110,并且还有一个包含112和114。在图1中,每一天线群组仅示出两个天线,然而,每一天线群组可利用更多或更少的天线。接入终端116(AT)与天线112和114通信,其中天线112和114经由前向链路120向接入终端116传送信息,并经由反向链路118从接入终端116接收信息。接入终端(AT)122与天线106和108通信,其中天线106和108经由前向链路126向接入终端(AT)122传送信息,并经由反向链路124从接入终端(AT)122接收信息。在FDD系统中,通信链路118、120、124和126可使用不同频率以供通信。例如,前向链路120可使用与反向链路118所使用频率不同的频率。

每一天线群组和/或它们被设计成在其中通信的区域常常被称作接入网络的扇区。在实施例中,天线群组各自被设计成与接入网络100所覆盖的区域的扇区中的接入终端通信。

在通过前向链路120和126的通信中,接入网络100的传送天线可以利用波束成形以便改进不同接入终端116和122的前向链路的信噪比。并且,相比于通过单个天线传送到其所有接入终端的接入网络,使用波束成形以传送到在接入网络的整个覆盖范围中随机分散的接入终端的所述接入网络对相邻小区中的接入终端产生更少的干扰。

接入网络(access network,AN)可以是用于与终端通信的固定台或基站,并且也可以被称作接入点、Node B、基站、增强型基站、演进型基站(evolved Node B,eNB),或某一其它术语。接入终端(access terminal,AT)还可以被称作用户设备(user equipment,UE)、无线通信装置、终端、接入终端或某一其它术语。

图2是MIMO系统200中的传送器系统210(也被称作接入网络)和接收器系统250(也被称作接入终端(AT)或用户设备(UE)的实施例的简化框图。在传送器系统210处,从数据源212将用于数个数据流的业务数据提供到传送(TX)数据处理器214。

在一个实施例中,通过相应的传送天线传送每个数据流。TX数据处理器214基于针对每一数据流而选择的特定译码方案来格式化、译码及交错所述数据流的业务数据以提供经译码数据。

可使用OFDM技术将每一数据流的经译码数据与导频数据多路复用。导频数据通常为以已知方式进行处理的已知数据样式,且可在接收器系统处使用以估计信道响应。随后基于针对每个数据流选择的特定调制方案(例如,BPSK、QPSK、M-PSK或M-QAM)来调制(即,符号映射)用于所述数据流的经复用导频和经译码数据以提供调制符号。可以通过由处理器230执行的指令来确定用于每个数据流的数据速率、译码和调制。

接着将所有数据流的调制符号提供给TX MIMO处理器220,所述处理器可进一步处理所述调制符号(例如,用于OFDM)。TX MIMO处理器220接着将NT个调制符号流提供给NT个传送器(TMTR)222a至222t。在某些实施例中,TX MIMO处理器220将波束成形权重应用于数据流的符号及从其传送所述符号的天线。

每个传送器222接收并处理相应符号流以提供一个或多个模拟信号,并且进一步调节(例如,放大、滤波和上变频转换)所述模拟信号以提供适合于经由MIMO信道传送的经调制信号。接着分别从NT个天线224a到224t传送来自传送器222a到222t的NT个经调制信号。

在接收器系统250处,由NR个天线252a至252r接收所传送的经调制信号,并且将从每个天线252接收到的信号提供到相应的接收器(RCVR)254a至254r。每一接收器254调节(例如,滤波、放大和下转换)相应的接收到的信号、将经调节信号数字化以提供样本,并且进一步处理所述样本以提供对应的“接收到的”符号流。

RX数据处理器260接着基于特定接收器处理技术从NR个接收器254接收并处理NR个接收到的符号流以提供NT个“检测到的”符号流。RX数据处理器260接着对每一检测到的符号流进行解调、解交错和解码以恢复数据流的业务数据。由RX数据处理器260进行的处理与传送器系统210处的TX MIMO处理器220和TX数据处理器214所执行的处理互补。

处理器270周期性地确定要使用哪个预译码矩阵(下文论述)。处理器270制定包括矩阵索引部分和秩值部分的反向链路消息。

反向链路消息可包括与通信链路和/或接收数据流有关的各种类型的信息。反向链路消息接着由TX数据处理器238(其还接收来自数据源236的数个数据流的业务数据)处理,由调制器280调制,由传送器254a至254r调节,及被传送回到传送器系统210。

在传送器系统210处,来自接收器系统250的经调制信号通过天线224接收、通过接收器222调节、通过解调器240解调,并通过RX数据处理器242处理,以提取通过接收器系统250传送的反向链路消息。接着,处理器230确定使用哪一预译码矩阵以确定波束成形权重,然后处理所提取的消息。

转而参看图3,此图示出了根据本发明的一个实施例的通信装置的替代简化功能框图。如图3中所示出,可以利用无线通信系统中的通信装置300以用于实现图1中的UE(或AT)116和122或图1中的基站(或AN)100,并且无线通信系统优选地是LTE系统。通信装置300可以包含输入装置302、输出装置304、控制电路306、中央处理单元(central processing unit,CPU)308、存储器310、程序代码312以及收发器314。控制电路306通过CPU 308执行存储器310中的程序代码312,由此控制通信装置300的操作。通信装置300可以接收由用户通过输入装置302(例如键盘或小键盘)输入的信号,且可以通过输出装置304(例如监视器或扬声器)输出图像和声音。收发器314用于接收和传送无线信号、将接收到的信号传递到控制电路306、且无线地输出由控制电路306产生的信号。也可以利用无线通信系统中的通信装置300来实现图1中的AN 100。

图4是根据本发明的一个实施例在图3中所示的程序代码312的简化的框图。在此实施例中,程序代码312包含应用层400、层3部分402以及层2部分404,且耦合到层1部分406。层3部分402一般执行无线电资源控制。层2部分404一般执行链路控制。层1部分406一般执行物理连接。

在3GPP TSG RAN WG1#AH_NR2v1.0.0的最终报告中,下文引述协议,其中群组共同下行链路控制信息(DCI)用于运载抢占指示(PI)。

协议:

●对于下行链路抢占指示

●其使用群组共同DCI在PDCCH中传送

●UE是否需要监视抢占指示是通过RRC信令配置

●可配置时域中抢占指示的粒度

在3GPP TSG RAN WG1会议#90的最终主席笔记中,商定用于被抢先资源的参考下行链路资源的概念。

协议:

●用以监视群组共同DCI以获得抢占指示的周期性内的特定时间/频率区内的被抢占资源(即,参考下行链路资源)由承载抢占指示的群组共同DCI指示

●参考下行链路资源的频率区半静态地配置

●参考下行链路资源的时间区半静态地配置

●抢占指示的频率粒度被配置成给定参数集的参考下行链路资源内的y个RB

●注意:y个RB可对应于下行链路参考资源的整个频率区。

●抢占指示的时间粒度被配置成给定参数集的参考下行链路资源内的x个符号

●注意:抢占指示的时间/频率粒度应考虑承载抢占指示的群组共同DCI的有效负载大小

在3GPP TSG RAN WG1会议#AH_NR3的最终主席笔记中,下文引述与承载PI的群组共同DCI有关的一些协议。一个协议介绍了用于数据传送的准共址(Quasi-Co-Location,QCL)指示的DCI中的传送配置指示(Transmission Configuration Indication,TCI)。

协议:

UE至少出于QCL指示的目的用达M个候选传送配置指示(TCI)状态的列表进行RRC配置

●M等于还是大于2N有待进一步研究,其中N是PDSCH的DCI字段的大小

●有待进一步研究:候选状态到PDSCH的N位DCI字段所描述的状态之间的映射

●每一TCI状态可被配置成具有一个RS集合

●至少出于RS集合中的空间QCL的目的的DL RS的每一ID(有待进一步研究:ID的细节)可参考以下DL RS类型中的一个:

●SSB

●周期性CSI-RS

●非周期性CSI-RS

●半持久的CSI-RS

协议:

针对PDCCH的QCL配置含有提供对TCI状态的参考的信息

●替代方案1:QCL配置/指示以每CORESET为基础

●UE在相关联CORESET监视时机应用QCL假设。CORESET内的所有搜索空间利用相同QCL。

●替代方案2:QCL配置/指示以每搜索空间为基础

●UE应用关于相关联搜索空间的QCL假设。这可意味着在CORESET内存在多个搜索空间的情况下,UE可被配置成具有针对不同搜索空间的不同QCL假设。

●注意:QCL配置的指示是通过RRC或RRC+MAC CE完成

协议:

●对于用于PDSCH的QCL指示:

○当TCI状态用于QCL指示时,UE接收DCI中的N位TCI字段

■UE假设PDSCH DMRS是具有RS集中的对应于所传信TCI状态的DL RS的QCL

●有待进一步研究:不论是否配置QCL类型,配置细节有待进一步研究

○TCI字段是否始终存在于给定DL-相关DCI中有待进一步研究

协议:

UE可被配置成在相同或不同CORESET内监视群组共同PDCCH以获得SFI以及群组共同DCI以获得DL抢占指示

协议:

●作为工作假设

●用于抢占指示的参考下行链路资源的持续时间等于承载抢占指示的群组共同DCI的监视周期性

●为了确定用于抢占指示的参考下行链路资源的频率区,在RAN1#90bis中在以下选项之间进行向下选择

●选项1:参考下行链路资源的频率区通过RRC显式地配置

●选项2:参考下行链路资源的频率区通过现用DL BWP隐式地导出

协议:

●UE监视群组共同DCI以获得DL抢占指示的最小周期性在以下各者之间进行向下选择

●选项1:一个时隙

●选项2:小于一时隙

在3GPP TSG RAN WG1会议#90bis的最终主席笔记中,下文引述一些协议。一个协议描述用于抢占指示的参考下行链路资源等于承载PI的群组共同DCI的监视周期性。此外,支持PI的时隙层级监视周期性。

协议:

●用于抢占指示的参考下行链路资源的持续时间等于承载抢占指示的群组共同DCI的监视周期性

●在TDD中,至少半静态配置的UL符号从参考下行链路资源排除

●注意:这意味着参考下行链路资源仅包含由半静态配置在参考下行链路资源的半静态配置的持续时间内给定的DL或未知符号。

协议:

●为实现抢占指示的最小监视周期性:

●支持抢占指示的至少时隙层级监视周期性

协议:

●对于时隙层级监视周期性,不要求UE监视其中未调度PDSCH的时隙的抢占指示

●不要求UE监视DRX时隙中的抢占指示

●不要求UE监视针对撤销激活的DL BWP的抢占指示

协议:

●用于PDSCH传送的HARQ时间线不受抢占指示影响。

协议:

●版本-15中关于针对用于抢占指示的参考下行链路资源的频率区引入显式RRC配置并无共识

●(工作假设)用于抢占指示的参考下行链路资源的频率区为作用中DL BWP

协议:

●呈位图格式的承载下行链路抢占指示(PI)的群组共同DCI的固定有效负载大小(排除CRC和可能的预留位)用于指示半静态配置的DL参考资源内的被抢占资源

-位图针对一个或多个频域部分(N>=1)和/或一个或多个时域部分(M>=1)指示

●不存在确定频域或时域部分时涉及的RRC配置

-支持和预定义以下组合{M,N}={14,1}、{7,2}

来自此可能{M,N}集合的{M,N}的组合由UE的RRC配置指示为1位

在3GPP TSG RAN WG1会议#91的最终主席笔记中,基于下文引述的工作假设,UE可接收承载对应于每一PI与服务小区之间的经配置映射的多个PI的DCI。

工作假设:

●用于抢占指示的DCI有效负载大小可由RRC配置

协议:

●在PUCCH群组内,UE可被配置成针对不同服务小区上的Scell监视群组共同PDCCH以获得抢占指示

●一个DCI可含有对应于一个或多个服务小区的一个或多个抢占指示字段

●一个服务小区的每一字段(14位位图)

●RRC以应用于所述小区的DCI格式配置PI字段位置

协议:

●时隙层级抢占监视的所支持周期性为

-1、2、TBD1、TBD2时隙

协议:

●在RAN1#91中关于支持抢占指示的微时隙层级监视周期性并无共识

协议:

●在RAN1#90bis中确认以下工作假设

-用于抢占指示的参考下行链路资源的频率区为作用中DL BWP

协议:

●UE对抢占指示的监视的配置为每DL BWP

协议:

●对于位图指示,由{M,N}({M,N}={14,1}、{7,2})确定的参考DL资源的时频区块以频率优先方式编索引

○注意:参考DL资源以M个时域部分和N个频域部分分割。

○注意:当前TS38.213需要根据以上协议更新。

协议:

●当检测到PI时,通过以下操作确定对应参考DL资源(RDR)的时间位置:

○RDR在用于PI监视的先前CORESET的第1符号处开始,且刚好在检测到PI的当前CORESET之前结束。

协议:

并不预期UE考虑相同服务小区的不同BWP中调度的PDSCH的BWP中检测到的PI。

在3GPP R1-1721342中,用于物理下行链路共享信道(PDSCH)的调度的DCI格式可以包括表示为传送配置指示(TCI)的字段。所述字段指示接收PDSCH的解调参考信号(DMRS)天线端口与一个或多于一个参考信号之间的关联,所述参考信号是UE特定无线电资源控制(RRC)配置的M个TCI中的一个。表示为DCI format2_1的一个DCI格式用于指示抢占指示。

7.3.1.2用于PDSCH的调度的DCI格式

7.3.1.3.2格式2_1

DCI格式2_1用于通知PRB和OFDM符号,其中UE可假设无传送既定用于所述UE。

以下信息借助于DCI格式2_1进行传送:

-DCI格式的识别符-[1]位

-抢占指示1、抢占指示2、……、抢占指示N。

DCI格式2_1的大小可由较高层根据[5,TS38.213]的章节11.2配置。每一抢占指示为14位。

在3GPP R1-1721343中,第一引述段落指定用于接收控制信息的UE程序。控制资源集(CORESET)可以通过接收CORESET的DMRS天线端口与一个或多于一个参考信号之间的关联来配置。第二引述段落指定关于当前不连续传送指示的UE的行为。网络(NW)可以用一个或多个CORESET配置UE以用于监视和接收抢占指示。

10.1用于确定物理下行链路控制信道指派的UE程序

在PDCCH搜索空间方面来限定UE将监测的一组PDCCH候选者。搜索空间可以是共同搜索空间或UE特定搜索空间。UE将在非DRX时隙中在以下搜索空间中的一个或多个中监测PDCCH候选者

-针对具有由主小区上的SI-RNTI加扰的CRC的DCI格式的Type0-PDCCH共同搜索空间;

-针对具有由主小区上的SI-RNTI加扰的CRC的DCI格式的Type0A-PDCCH公共搜索空间;

-针对具有由主小区上的RA-RNTI或TC-RNTI或C-RNTI加扰的CRC的DCI格式的Type1-PDCCH公共搜索空间;

-针对具有由主小区上的P-RNTI加扰的CRC的DCI格式的Type2-PDCCH公共搜索空间;

-针对具有由INT-RNTI或SFI-RNTI或TPC-PUSCH-RNTI或TPC-PUCCH-RNTI或TPC-SRS-RNTI或C-RNTI或CS-RNTI加扰的CRC的DCI格式的Type3-PDCCH共同搜索空间;以及

-针对具有由C-RNTI或CS-RNTI加扰的CRC的DCI格式的UE特定搜索空间。

对于服务小区,较高层信令为UE提供P个控制资源集。对于控制资源集p,0≤p<P,其中映射UE特定搜索空间、Type2-PDCCH公共搜索空间或Type3-PDCCH公共搜索空间,较高层信令提供:

-由较高层参数CORESET-ID提供的控制资源集索引;

-由较高层参数PDCCH-DMRS-Scrambling-ID提供的DM-RS加扰序列初始化值;

-由较高层参数CORESET-time-duration提供的数个相连符号;

-由较高层参数CORESET-freq-dom提供的资源块的集合;

-由较高层参数CORESET-CCE-to-REG-mapping-type提供的CCE到REG映射;

-在交错的CCE到REG映射的情况下由较高层参数CORESET-REG-bundle-size提供的REG集束大小;

-由较高层参数CORESET-shift-index提供的REG集束交织器[4,38.211]的循环移位;

-由较高层参数TCI-StatesPDCCH提供的来自一组天线端口准共址的天线端口准共址,指示用于PDCCH接收的DM-RS天线端口的准共址信息;

-由较高层参数TCI-PresentInDCI提供的是否存在由控制资源集p中的PDCCH传送的DCI格式1_0或DCI格式1_1的传送配置指示(TCI)字段的指示。

如果UE尚未收到来自TCI-StatesPDCCH提供的一组天线端口准共址的天线端口准共址指示,则UE假设与UE特定搜索空间中的PDCCH接收相关联的DM-RS天线端口同与PBCH接收相关联的DM-RS天线端口在延迟扩展、多普勒扩展、多普勒频移、平均延迟和空间Rx参数方面准共址。

11.2不连续传送指示

如果向UE提供较高层参数Preemp-DL和Preemp-DL=ON,则UE配置有由较高层参数INT-RNTI提供的INT-RNTI用于监视输送DCI格式2_1PDCCH[5、TS 38.212]的PDCCH。另外配置UE:

-控制资源集和相应搜索空间集,用于监视具有DCI格式2_1的PDCCH,如子条款10.1中所描述;

-由较高层参数INT-cell-to-INT提供的服务小区的集合;

-由较高层参数cell-to-INT提供的服务小区的集合中的每一服务小区到DCI格式2_1中的字段的映射;

-由较高层参数INT-DCI-payload-length提供的DCI格式2_1的信息有效负载大小;

-由较高层参数INT-monitoring-periodicity提供的具有DCI格式2_1的PDCCH的监视周期性;

-由较高层参数INT-TF-unit提供的时频资源的指示粒度。

如果UE检测到来自所配置服务小区集合的服务小区的DCI格式2_1,则UE可认为,来自上一监测周期的PRB的集合和符号的集合的由DCI格式指示的PRB和符号中不存在到UE的传送。

PRB的集合等于如子条款12中定义的作用中DL BWP,且包含BINT个PRB。

如果UE检测到在时隙m·TINT中在控制资源集中传送的PDCCH中的DCI格式2_1,那么由DCI格式2_1中的字段指示的符号的集合包含在时隙m·TINT中的控制资源集的第一符号之前的最后14·TINT个符号,其中TINT是参数INT-monitoring-periodicity的值且是m自然数。

如果UE经配置有较高层参数UL-DL-configuration-common,那么从时隙m·TINT中的符号之前的最后14·TINT个符号排除由UL-DL-configuration-common指示为上行链路的符号。所得符号的集合包含表示为NINT的若干符号。

UE被较高层参数INT-TF-unit配置PRB集合和符号集合的指示粒度。

如果INT-TF-unit的值是0,那么DCI格式2_1中的字段的14位具有与来自符号集合的连续符号的14个群组的一对一映射,其中前个符号群组中的每一个包含个符号,最后个符号群组中的每一个包含个符号,位值0指示对应符号群组中到UE的传送,且位值1指示对应符号群组中无到UE的传送。

如果INT-TF-granularity的值是1,那么DCI格式2_1中的字段的7对位具有与连续符号的7个群组的一对一映射,其中前个符号群组中的每一个包含个符号,最后个符号群组中的每一个包含个符号,用于一符号群组的一对位中的第一位适用于来自BINT个PRB的集合的前个PRB的子集,用于所述符号群组的所述对位中的第二位适用于来自BINT个PRB的集合的最后个PRB的子集,位值0指示对应符号群组和PRB的子集中到UE的传送,且位值1指示对应符号群组和PRB的子集中无到UE的传送。

在3GPP R1-1721344中,下文引述PDSCH接收的空间关联。

5.1.5天线端口准共址

UE可由较高层信令配置高达M个TCI状态以根据具有既定用于所述UE和给定服务小区的DCI的检测到的PDCCH解码PDSCH,其中M取决于UE能力。每一经配置TCI状态包含一个RS集合TCI-RS-SetConfig。每一TCI-RS-SetConfig含有用于配置RS集合中的参考信号和PDSCH的DM-RS端口群组之间的准共址关系的参数。RS集合含有到一个或两个DLRS的参考,以及由较高层参数QCL-Type配置的每一个的相关联准共址类型(QCL-类型)。在两个DLRS的情况下,QCL类型将不同,与参考是针对相同DLRS还是不同DLRS无关。向UE指示的准共址类型基于较高层参数QCL-Type且可采取以下类型中的一个或组合:

-QCL-TypeA:{多普勒频移,多普勒扩展,平均延迟,延迟扩展}

-QCL-TypeB:{多普勒频移,多普勒扩展}

-QCL-TypeC:{平均延迟,多普勒频移}

-QCL-TypeD:{空间Rx参数}

UE接收用于将多达8个TCI状态映射到DCI字段TCI-状态的代码点的选择命令[10,TS 38.321]。直至UE接收到TCI状态的较高层配置且在接收激活命令之前,UE可假设服务小区的PDSCH的一个DM-RS端口群组的天线端口与初始接入程序中确定的SSB空间上准共址。当TCI-状态中的TCI状态的数目小于或等于8时,DCI字段TCI-状态直接指示TCI状态。

如果UE经配置有针对CORESET调度PDSCH设定为“启用”的较高层参数TCI-PresentInDCI,则UE认为TCI字段存在于CORESET上传送的PDCCH的DLDCI中。如果TCI-PresentInDCI针对CORESET调度PDSCH设定为“停用”来确定PDSCH天线端口准共址,则UE认为PDSCH的TCI状态与针对用于PDCCH传送的CORESET应用的TCI状态相同。

如果TCI-PresentinDCI设定为“启用”,则UE将根据具有用于确定PDSCH天线端口准共址的DCI的检测到的PDCCH中的‘传送配置指示’字段的值使用TCI-状态。如果DLDCI的接收与对应PDSCH之间的偏移等于或大于阈值Threshold-Sched-Offset,则UE可以相对于由指示TCI状态给定的QCL类型参数假定服务小区的PDSCH的一个DM-RS端口群组的天线端口与RS集合中的RS准共址,其中所述阈值有待进一步研究。对于TCI-PresentInDCI=‘启用’和TCI-PresentInDCI=‘停用’两种情况,如果偏移小于阈值,则UE可基于用于其中针对UE配置一个或多个CORESET的最新时隙中的最低CORESET-ID的PDCCH准共址指示的TCI状态认为服务小区的PDSCH的一个DM-RS端口群组的天线端口准共址。

下文可使用以下术语和假设中的一些或全部。

●BS:用于控制一个或多个与一个或多个小区相关联的TRP的NR中的网络中央单元或网络节点。BS与TRP之间的通信是经由去程。BS可被称作中央单元(central unit,CU)、eNB、gNB或NodeB。

●TRP:传送和接收点提供网络覆盖且与UE直接通信。TRP可被称作分布式单元(distributed unit,DU)或网络节点。

●小区:小区由一个或多个相关联TRP构成,即,小区的覆盖范围由所有相关联TRP的覆盖范围构成。一个小区受一个BS控制。小区可被称为TRP群组(TRPG)。

●NR-PDCCH:信道承载用于控制UE与网络侧之间的通信的下行链路控制信号。网络在配置的控制资源集(control resource set,CORESET)上向UE传送NR-PDCCH。

●UL控制信号:UL控制信号可以是调度请求(SR)、信道状态信息(CSI)、用于下行链路传送的HARQ-ACK/NACK

●时隙:NR中的调度单元。时隙持续时间是14个OFDM符号。

●微时隙:具有小于14个OFDM符号的持续时间的调度单元。

●时隙格式信息(SFI):时隙中符号的时隙格式的信息。时隙中的符号可属于以下类型:下行链路、上行链路、未知的或其它。时隙的时隙格式可至少在时隙中输送符号的传送方向。

●DL共同信号:承载以小区中的多个UE或小区中的所有UE为目标的共同信息的数据信道。DL共同信号的实例可以是系统信息、寻呼、RAR。

●DLURLLC:需要极高可靠性和极低时延的一类DL传送。为满足时延要求,一实例是在微时隙中传送DL URLLC,例如数据持续时间可小于1个时隙(例如1~4个OFDM符号),且可存在用于时隙中的DL URLLC控制的一个或多个监视时机。在此实例中,UE经配置有CORESET以监视指示DLURLLC传送的DL URLLC控制。CORESET可配置于时隙的中间符号上。DL URLLC传送可在CORESET的随后少数几个符号上传送。

在无线通信系统中,无线电资源利用效率对于NW以多个和/或不同服务调度UE很重要。

在5G NR中,预期支持具有不同要求的多个服务。广泛地,服务可以被如下分类:要求极低时延和高可靠性的服务,即,超可靠低时延通信(UltraReliable Low Latency Communication,URLLC);要求极高数据速率的服务,即,增强型移动宽带(Enhanced Mobile Broadband,eMBB);或具有增强型覆盖范围的服务,即,大规模机器类型通信(Massive Machine TypeCommunication,mMTC)。然而,上文所提及的不同服务可能需要不同持续时间和/或不同副载波间距(subcarrier spacings,SCS)。举例来说,在较少数目的正交频分多路复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上传送和/或经由较高SCS值传送以满足URLLC要求是有益的。然而,对于其它服务,时延不是最高优先级。

从NW的视角来看,需要考虑如何以有效方式多路复用具有不同要求的不同服务。一种方法是通过频分多路复用(FDM)方式。NW可以用对不同频率资源的不同服务质量(QoS)要求来调度服务。然而,可能遇到对于一些服务不存在可用频率资源和/或没有足够频率资源的问题。举例来说,延迟敏感服务(即URLLC)可在具有较高SCS的资源上传送,其可占用多得多的频率资源来满足时延要求。在一些情形中(即,窄系统带宽、相对于延迟敏感服务多得多的延迟可容许服务),以FDM方式具有不同QoS要求的多路复用服务不合适。一种方法是通过时分多路复用(TDM)方式。NW可以在不同时间调度不同服务。然而,考虑延迟敏感服务,以TDM方式等待下一传送时机可能不满足延迟敏感服务的要求。因此,考虑允许延迟敏感服务相对于延迟可容许服务区分优先级。举例来说,当延迟敏感服务的数据到达时,NW可在已经针对延迟可容许服务调度的资源上优先调度延迟敏感服务。当然,NW可以穿刺已经针对延迟可容许服务调度的资源上的数据或信息。

因此,引入抢占指示(PI)的概念。NW可以通过延迟可容许服务向UE指示PI以便补偿重新传送的接收性能。相对于PI的一些详细程序在3GPPR1-1721344中提及。在UE被配置成监视用于接收PI的群组共同PDCCH的情况下,接收PI可以辅助UE丢弃和/或忽略受可针对其它UE调度的延迟敏感服务影响的传送的部分。考虑具有追逐组合的重新传送,丢弃和/或忽略先前/第一传送的受影响部分可改进解码性能。

基于3GPP TSG RAN WG1#AH_NR2v1.0.0的最终报告,PI由群组共同PDCCH承载。不同的群组共同PDCCH可以指示不同PI。群组可以基于相同特性来构造,例如相同控制资源集(CORESET)、相同带宽部分、相同基础参数、相同副载波间距、相同NW波束、相同TRP、相同无线电网络临时识别符(Radio Network Temporary Identifier,RNTI),或由一组NW波束服务的相同区域。然而,一些分组规则可能造成不必要的丢弃和/或忽略。举例来说,NW波束1和NW波束2中的任一个可以到达的UE被构成为群组。在此情形下,如果经由NW波束1传送延迟敏感服务的数据(即URLLC),那么指示群组的PI可能造成经由波束2与NW通信的UE的不必要的丢弃。即,经由NW波束2在资源上调度的那些UE将基于群组的PI而丢弃受影响的资源。举例来说,在图5中,如果UE在第一时隙期间基于波束2接收数据(例如,eMBB数据)且在第二时隙中接收指示抢占指示(PI)的DCI格式2_1,那么即使经由波束1传送了干扰(例如,URLLC),UE也可以基于DCI格式2_1中的PI而处理/冲刷数据。需要考虑如何增强群组的PI的资源利用效率。下文描述潜在的解决方案。

根据一个实施例,针对每一波束(波束群组)/参考信号(参考信号集合)提供抢占指示(PI)。当UE基于第一波束(群组)/第一参考信号(集合)接收数据时,UE根据用于所述第一波束(群组)/第一参考信号(集合)的对应PI处理数据。UE不会根据未针对数据接收而调度的波束(群组)的PI来处理数据,例如,第二波束(群组)。UE不会根据用于第二波束(群组)/第二参考信号集合的PI来处理数据。在一个方法中,在波束上的群组共同PDCCH(例如,DCI格式2_1)可以提供用于其自身波束(群组)的PI。替代地,在波束上的群组共同PDCCH可以提供用于所有波束(群组)的PI。在另一个替代方案中,在波束上的群组共同PDCCH可以提供用于多个波束(群组)的PI。UE可以监视或接收用于经配置波束(群组)的PI。UE可以监视或接收用于具有经调度数据的波束(群组)的PI。在一个实施例中,波束由作为准共址参考的参考信号表示。在另一实施例中,波束由TCI状态表示。

在一个方法中,UE是以多个参考信号(集合)来配置。每一参考信号(集合)可以提供用于指示准共址关系的参考。在一个方法中,多个参考信号集合至少包括第一参考信号组。在一个方法中,多个参考信号集合至少包括第二参考信号组。替代地,在小区中配置每一参考信号(集合)。UE由小区中的网络服务。参考信号集合可以基于相同特性构造,例如相同CORESET控制资源集、相同带宽部分、相同基础参数、相同副载波间距、相同NW波束、相同TRP、相同RNTI或由一组NW波束服务的相同区域。举例来说,信道可以被指示为与所述多个参考信号(集合)中的一个或多个准共址。每一参考信号(集合)可用以指示用于信道或信号的接收波束或传送波束。参考信号(集合)是TCI-RS-SetConfig。UE可以通过抢占指示(PI)的接收来配置。UE可以使一个PI与一个或多个参考信号(集合)关联。一个PI与一个或多个参考信号(集合)之间的关联可以向UE配置或指示。在一个实例中,所述关联指示用于每一参考信号(集合)的PI位置。在另一实例中,所述关联指示用于每一参考信号(集合)的PI的控制信息的RNTI。UE可以通过用于每一参考信号(集合)的PI的位置来配置。所述多个参考信号(集合)和PI的相关联位置可以在同一消息中配置。替代地,存在与PI相关联的指示,其指示与PI相关联的参考信号(集合)。举例来说,如果UE通过PI的接收来配置,且UE通过用于准共址的12个参考信号来配置,那么UE可以使PI与所述12个参考信号中的一个或多个关联。UE可以通过12个位置来配置以接收PI,其中每一位置与一个参考信号相关联。应注意,如果多个参考信号(集合)与PI位置相关联,那么UE可以通过较少位置来配置。由于PI具有14个位,因此可以基于14的整数倍数(例如,0、14、28、……)指示PI位置。替代地,PI位置是基于下行链路控制信息(DCI)中的PI的编号,例如DCI中的第一PI或DCI中的第三PI。PI位置是下行链路控制信息(DCI)中的PI的开始位置。举例来说,在图6中,UE可以通过DCI格式2_1中的两个PI来配置,其中第一PI用于波束1/RS 1且第二PI用于波束2/RS 2。在此实例中,如果UE基于波束2/RS 2在第一时隙中具有数据传送,那么UE可以不处理/冲刷/丢弃,因为第二PI指示在第一时隙中无基于波束2/RS 2的(其它)传送。

在另一方法中,UE可以通过控制信息集合来配置。UE可以使用于承载PI的控制信息与每一参考信号(集合)关联。所述控制信息包含至少一个PI。UE可以通过每一控制信息的大小来配置。替代地,UE可以通过由每一控制信息承载的PI的数目来配置。所述控制信息可以是下行链路控制信息(DCI)。举例来说,UE可以通过用于接收多个PI的DCI格式大小来配置。基于所述关联的指示,UE可以知道DCI中的每一参考信号(集合)的PI。

根据另一方法,UE可以通过用于监视承载PI的控制信息的集合的CORESET来配置。UE可以使CORESET与每一TCI状态关联。UE可以根据所述关联监视用于每一TCI状态的PI。

在另一方法中,UE可以通过用于监视控制信息的集合的RNTI来配置。替代地,UE可以通过用于监视控制信息的集合的RNTI值的集合来配置。UE可以使在RNTI的集合内的一个RNTI与参考信号(集合)关联。此关联可以通过配置完成。UE根据参考信号(集合)的相关联RNTI监视参考信号(集合)的控制信息。

基于所述关联,UE可以知道每一参考信号(集合)的PI。更具体地,基于RNTI值的集合和/或CORESET的集合,UE可以通过在(相关联)CORESET上的(相关联)RNTI值监视参考信号(集合)的承载PI的控制信息。

在另一方法中,UE可以通过用于监视承载PI的控制信息的监视周期性来配置。如果UE在经配置监视时机之前接收信号,那么UE在所述经配置监视时机上监视承载PI的控制信息。所述信号可以是数据相关信号或控制相关信号。在一个实施例中,所述信号可以是承载至少一个传输块的数据信道。

如果UE接收到与参考信号(集合)准共址的信号,那么UE在下一监视时机上监视所述参考信号(集合)的承载PI的控制信息。如果UE接收到与参考信号(集合)准共址的信号,那么UE不会在下一监视时机上监视所述参考信号(集合)的不承载PI的控制信息。如果UE未接收到与参考信号(集合)准共址的信号,那么UE可以跳过在下一监视时机上监视承载PI的控制信息。

如果UE接收到参考信号(集合)的承载PI的控制信息且UE接收到与所述参考信号(集合)准共址的信号,那么UE可以基于参考信号(集合)的PI而丢弃所述信号的部分。

在另一方法中,UE可以用表来配置。所述表的每一条目指示参考信号(集合)的组合。在一个方法中,表的大小可以是固定的。替代地,表的大小可以取决于参考信号(集合)的大小。在此方法中,UE接收控制信息。控制信息运载至少一个PI以及指示表的条目的若干位。UE可以通过由条目指示的组合来使PI与参考信号(集合)关联。UE可以通过控制信息的大小来配置。

如果UE在经配置监视时机之前接收信号,那么UE在所述经配置监视时机上监视控制信息。如果UE未接收到信号,那么UE可以跳过在经配置监视时机上监视控制信息。

如果UE接收到与参考信号(集合)准共址的信号且接收到指示包括所述参考信号(集合)的表的条目的控制信息,那么UE可以基于由控制信息承载的PI而丢弃所述信号的部分。如果UE接收到与参考信号(集合)准共址的信号且接收到指示不包含所述参考信号(集合)的表的条目的控制信息,那么UE可以忽略由控制信息承载的PI。

如果UE在监视时机之前接收信号,那么UE监视控制资源集(CORESET)中的承载抢占指示(PI)的控制信息。监视时机是基于承载PI的控制信息的监视周期性而确定。

如果UE未接收到信号,那么UE可以跳过在所述监视时机上监视承载PI的控制信息。如果UE接收到由调度控制信号调度的数据信号且在监视时机之前所述数据信号与参考信号(集合)准共址,那么所述UE可以监视所述参考信号(集合)的承载PI的控制信息。UE在用以运载调度控制信号的CORESET上监视参考信号(集合)的承载PI的控制信息。UE在与参考信号(集合)准共址的CORESET上监视所述参考信号(集合)的承载PI的控制信息。UE在与数据信号准共址的CORESET上监视参考信号(集合)的承载PI的控制信息。

在另一方法中,UE通过多个TCI状态来配置。UE可以通过PI的接收来配置。UE可以使一个PI与一个或多个TCI状态关联。一个PI与一个或多个TCI状态之间的关联可以向UE配置或指示。在一个实例中,所述关联用以指示用于每一TCI状态的PI位置。在另一实例中,所述关联用以指示用于每一TCI状态的PI的控制信息的RNTI。UE可以通过用于每一TCI状态的PI的位置来配置。所述多个TCI状态和PI的相关联位置可以在同一消息中配置。替代地,存在与PI相关联的指示,其指示PI所关联的TCI状态。举例来说,如果UE通过PI的接收来配置且UE通过8个TCI状态来配置,那么UE可以使PI与所述8个TCI状态中的一个或多个关联。UE可以通过8个位置来配置以接收PI,其中每一位置与一个TCI状态相关联。应注意,如果多个TCI状态与一PI位置相关联,那么UE可以通过较少位置来配置。由于PI包括14个位,因此可以基于14的倍数(例如,0、14、28等)指示PI位置。替代地,PI位置是基于DCI中的PI的编号,例如DCI中的第一PI或DCI中的第三PI。替代地,PI位置是下行链路控制信息(DCI)中的PI的开始位置。

在一个方法中,UE可以通过控制信息集合来配置。UE可以使用于承载PI的控制信息与每一TCI状态关联。所述控制信息包含至少一个PI。UE可以通过每一控制信息的大小来配置。UE可以通过由每一控制信息承载的若干PI来配置。控制信息可以是DCI。举例来说,UE可以通过用于接收多个PI的DCI格式大小来配置。基于所述关联的指示,UE可以从DCI中的每一TCI状态知道所述PI。

在另一方法中,UE可以通过用于监视承载PI的控制信息的集合的CORESET集合来配置。UE可以使CORESET与每一TCI状态关联。UE可以根据所述关联监视用于每一TCI状态的PI。

在一个方法中,UE可以通过用于监视控制信息的集合的RNTI来配置。替代地,UE可以通过用于监视控制信息的集合的RNTI值的集合来配置。UE可以使RNTI的集合内的一个RNTI与TCI状态关联。所述关联可以通过配置做出。UE根据TCI状态的相关联RNTI监视参考信号(集合)的控制信息。

基于所述关联,UE可以知道用于每一TCI状态的PI。更具体地,基于RNTI值的集合和/或CORESET的集合,UE可以在CORESET或相关联CORESET上通过RNTI值或相关联RNTI值监视TCI状态的承载PI的控制信息。

如果UE接收到具有TCI状态的信号,那么UE在下一监视时机上监视所述TCI状态的承载PI的控制信息。如果UE接收到具有TCI状态的信号,那么UE在下一监视时机上不监视所述TCI状态的不承载PI的控制信息。如果UE未接收到具有TCI状态的信号,那么UE可以跳过在下一监视时机上监视承载PI的控制信息。

如果UE接收到TCI状态的承载PI的控制信息且UE接收到具有所述TCI状态的信号,那么UE可以基于所述TCI状态的PI丢弃所述信号的部分。

在一个方法中,UE可以通过表来配置。所述表的每一条目指示TCI状态的组合。在一个实施例中,所述表的大小可以是固定的。替代地,所述表的大小可以取决于TCI状态的大小。UE接收运载至少一个PI的控制信息和指示表的条目的若干位。UE可以在由条目指示的组合内使PI与TCI状态关联。UE可以通过控制信息的大小来配置。

如果UE接收到具有TCI状态的信号且接收到指示包含所述TCI状态的表的条目的控制信息,那么UE可以基于由控制信息承载的PI而丢弃所述信号的部分。替代地,如果UE接收到具有TCI状态的信号且接收到指示不包含所述TCI状态的表的条目的控制信息,那么UE可以忽略由控制信息承载的PI。

如果UE接收到具有由调度控制信号调度的TCI状态的数据信号,那么UE可以监视所述TCI状态的承载PI的控制信息。UE在用以运载调度控制信号的CORESET上监视TCI状态的承载PI的控制信息。UE在与参考信号(集合)准共址的CORESET上监视TCI状态的承载PI的控制信息。UE在与数据信号准共址的CORESET上监视TCI状态的承载PI的控制信息。

可以基于PI/DCI格式2_1向UE隐式地指示UE是否处理/冲刷/丢弃数据的部分。

如果UE基于第一参考信号/波束接收第一数据,那么UE可以基于第二参考信号/波束监视PI/DCI格式2_1。如果UE基于第三参考信号/波束接收第二数据,那么UE可以基于第四参考信号/波束监视PI/DCI格式2_1。在一个方法中,参考信号可以是信道/CSI-RS/SS-PBCH块的解调参考信号(Demodulation Reference Signal,DMRS)。

更具体地,第一参考信号/波束可以相同于第二参考信号/波束。在一个实施例中,第一参考信号作为准共址参考。在一个实施例中,第二参考信号作为准共址参考。在一个实施例中,第一参考信号/波束和第二参考信号/波束属于第一(同一)群组。第二参考信号/波束被配置于UE以用于监视PI/DCI格式2_1。第二参考信号/波束服务于监视用于第一群组的PI/DCI格式2_1。举例来说,如果群组示例性作为{RS1,RS2}且RS2服务于监视用于所述群组的PI/DCI格式2_1,那么UE可以基于“RS2”监视PI/DCI格式2_1。

更具体地,第三参考信号/波束可以相同于第四参考信号/波束。在一个实施例中,第三参考信号作为准共址参考。在一个实施例中,第四参考信号作为准共址参考。第三参考信号/波束和第四参考信号/波束属于不同于第一群组的第二(同一)群组。第四参考信号/波束被配置于UE以用于监视PI/DCI格式2_1。第四参考信号/波束服务于监视用于第二群组的PI/DCI格式2_1。

在一个方法中,第一群组和第二群组联合地分离。换句话说,第一群组中的参考信号/波束不在第二群组中。举例来说,第一群组可以示例性作为{RS1,RS2}且第二群组可以示例性作为{RS3,RS4}。替代地,第一群组和第二群组可以部分地包含同一参考信号/波束。举例来说,第一群组可以示例性作为{RS1,RS2}且第二群组可以示例性作为{RS2,RS3,RS4}。

如果UE成功地基于第二参考信号检测/解码PI/DCI格式2_1,那么UE可以基于PI/DCI格式2_1处理第一数据。换句话说,UE可以基于PI/DCI格式2_1丢弃/冲刷第一数据的部分。如果UE未基于第四参考信号检测/解码PI/DCI格式2_1,那么UE不会基于根据第二参考信号检测/解码的PI/DCI格式2_1来处理第二数据。UE不会基于PI/DCI格式2_1(基于第二参考信号检测/解码)丢弃/冲刷第二数据的部分。

在一个实施例中,UE基于参考信号接收数据,其可以等效于基于所述参考信号执行信道估计。

在一个实施例中,UE可以通过CORESET和/或用于监视PI/DCI格式2_1的搜索空间来配置。替代地,UE可以基于周期性在CORESET上监视PI/DCI格式2_1。替代地,所述周期性是监视PI/DCI格式2_1的周期性。

在一个实施例中,如果UE被配置成在CORESET上监视PI/DCI格式2_1,那么UE可以基于参考信号检测/解码CORESET。替代地,所述参考信号可以是用于CORESET的非激活TCI状态。替代地,所述参考信号可以是用于接收数据的参考信号。举例来说,在图7中,假定第一群组可以示例性作为{RS1,RS2}且UE可以基于用于第一群组的“RS2”监视PI/DCI格式2_1。假定第二群组可以示例性作为{RS3,RS4}且UE可以基于用于第二群组的“RS4”监视PI/DCI格式2_1。UE被配置成在“CORESET 1”上每2个时隙接收PI/DCI格式2_1,这是通过以“RS5”指示QCL类型D假设的被激活TCI状态来配置。UE可以基于“RS2”或“RS1”在第三时隙中在“CORESET 1”上接收/解码/检测/监视PI/DCI格式2_1。UE不基于“RS5”在第三时隙上接收/解码/检测/监视PI/DCI格式2_1。在另一实例中,如果所述监视时机中的“CORESET 1”不用于监视PI/DCI格式2_1,那么UE可以在第四时隙中基于“RS5”接收/解码/检测/监视“CORESET 1”。

在此实例中,如果UE成功地基于“RS2”检测PI/DCI格式2_1,那么UE可以基于根据“RS2”检测到的PI/DCI格式2_1处理数据。在相似实例中,如果UE接收另一数据(例如,数据2),那么UE不会预期基于不在群组中的RS(例如,RS1,RS2)接收数据2。替代地,UE可以基于“RS2”且基于“RS4”在第三时隙中在“CORESET 1”上监视PI/DCI格式2_1。如图8中所示出,UE可以基于根据“RS2”接收的PI/DCI格式2_1处理数据1,且不基于根据“RS2”接收的PI/DCI格式2_1处理数据2。

在一个替代方案中,用于PI/DCI格式2_1的搜索空间可以是在时隙内的多个监视时机和/或可能不对准时隙边界。举例来说,在图9中,“CORESET 1”可以是1符号CORESET且用于PI/DCI格式2_1的搜索空间配置(例如,monitoringSymbolsWithinSlot)可以指示“11000000000000”。在此实例中,在第三时隙中,UE可以基于“RS2”监视/检测/解码/接收用于PI/DCI格式2_1的第一监视时机。UE可以基于“RS4”监视/检测/解码/接收用于PI/DCI格式2_1的第三时隙中的第一监视时机。

根据一个示例性方法,UE经由第一波束接收数据,其中UE根据用于第一波束的对应抢占指示(PI)处理数据。根据另一示例性方法,UE通过表来配置,其中所述表的每一条目指示波束集合的组合。

在另一方法中,UE不根据未针对数据调度的其它波束的PI处理数据。

在上文公开的方法中的一个或多个中,PI是由关联到第一波束的群组共同PDCCH递送。

在上文公开的方法中的一个或多个中,群组共同PDCCH提供用于至少一个波束的至少一个PI。替代地,群组共同PDCCH提供用于所有经配置波束的PI。在另一个替代方案中,群组共同PDCCH提供用于若干波束的PI。在又一替代方案中,群组共同PDCCH提供用于至少一个波束的PI。

在上文公开的方法中的一个或多个中,UE监视或接收用于经配置波束的PI。

在上文公开的方法中的一个或多个中,UE监视或接收用于第一波束的PI。

在上文公开的方法中的一个或多个中,波束是由作为准共址参考的参考信号表示。

在上文公开的方法中的一个或多个中,波束是由TCI状态表示。

在上文公开的方法中的一个或多个中,UE通过多个参考信号来配置。在替代方法中,每一参考信号提供用于指示准共址关系的参考。在另一方法中,每一参考信号用以指示用于信道或信号的接收波束或传送波束。

在上文公开的方法中的一个或多个中,UE通过PI的接收来配置。

在上文公开的方法中的一个或多个中,UE使一个PI与一个或多个参考信号关联。

在上文公开的方法中的一个或多个中,一个PI与一个或多个参考信号之间的关联向UE配置或指示。

在上文公开的方法中的一个或多个中,UE通过用于每一参考信号的PI的位置来配置。

在上文公开的方法中的一个或多个中,所述多个参考信号和PI的相关联位置在同一消息中配置。

在上文公开的方法中的一个或多个中,存在与PI相关联的指示,其指示PI所关联的参考信号。

在上文公开的方法中的一个或多个中,如果多个参考信号与一PI位置相关联,那么UE可以通过较少位置来配置。在一个方法中,PI位置是基于DCI中的PI的编号。替代地,PI位置是DCI中的PI的开始位置。

在上文公开的方法中的一个或多个中,UE通过用于监视承载PI的控制信息的集合的CORESET集合来配置。

在上文公开的方法中的一个或多个中,UE使CORESET与每一参考信号关联。

在上文公开的方法中的一个或多个中,UE根据所述关联监视用于每一参考信号的PI。

在上文公开的方法中的一个或多个中,UE通过控制信息的集合来配置。

在上文公开的方法中的一个或多个中,UE使用于承载PI的控制信息与每一参考信号关联。在一个方法中,控制信息包括至少一个PI。

在上文公开的方法中的一个或多个中,UE通过每一控制信息的大小来配置。

在上文公开的方法中的一个或多个中,UE通过由每一控制信息承载的若干PI来配置。在一个方法中,控制信息是DCI。

在上文公开的方法中的一个或多个中,基于所述关联的指示,UE知道DCI中的每一参考信号的PI。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息集合的RNTI来配置。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息集合的RNTI值的集合来配置。

在上文公开的方法中的一个或多个中,UE使RNTI的集合内的一个RNTI与参考信号关联。在上文公开的方法中的一个或多个中,所述关联是通过配置完成。

在上文公开的方法中的一个或多个中,UE根据参考信号的相关联RNTI监视参考信号的控制信息。

在上文公开的方法中的一个或多个中,基于所述关联,UE知道每一参考信号的PI。

在上文公开的方法中的一个或多个中,基于RNTI值的集合和/或CORESET的集合,UE在CORESET或相关联CORESET上通过RNTI值或相关联RNTI值监视参考信号的承载PI的控制信息。

在上文公开的方法中的一个或多个中,UE可以通过用于监视承载PI的控制信息的监视周期性来配置。

在上文公开的方法中的一个或多个中,如果UE接收到与参考信号准共址的信号,那么UE在下一监视时机上监视参考信号的承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE接收到与参考信号准共址的信号,那么UE不会在下一监视时机上监视参考信号的不承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE未接收到与参考信号准共址的信号,那么UE可以跳过在下一监视时机上监视承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE接收到参考信号的承载PI的控制信息且UE接收到与参考信号准共址的信号,那么UE可以基于参考信号的PI丢弃所述信号的部分。

在上文公开的方法中的一个或多个中,UE通过表来配置。

在上文公开的方法中的一个或多个中,所述表的每一条目指示参考信号的组合。

在上文公开的方法中的一个或多个中,所述表的大小是固定的。替代地,所述表的大小取决于参考信号的大小。

在上文公开的方法中的一个或多个中,UE接收控制信息。在一个方法中,控制信息运载至少一个PI且若干位指示所述表的条目。

在上文公开的方法中的一个或多个中,UE使PI与由条目指示的组合内的参考信号(集合)关联。

在上文公开的方法中的一个或多个中,UE通过控制信息的大小来配置。

在上文公开的方法中的一个或多个中,如果UE在经配置监视时机之前接收到信号,那么UE在所述经配置监视时机上监视控制信息。

在上文公开的方法中的一个或多个中,如果UE未接收到信号,那么UE可以跳过在经配置监视时机上监视控制信息。

在上文公开的方法中的一个或多个中,如果UE未接收到信号,那么UE可以跳过在经配置监视时机上监视控制信息。

在上文公开的方法中的一个或多个中,如果UE接收到与参考信号准共址的信号且接收到指示包括所述参考信号的表的条目的控制信息,那么UE基于由控制信息承载的PI而丢弃所述信号的部分。

在上文公开的方法中的一个或多个中,如果UE接收到与参考信号准共址的信号且接收到指示不包括所述参考信号的表的条目的控制信息,那么UE可以忽略由控制信息承载的PI。

根据一个示例性方法,UE通过空间关联集合和用于所述集合中的每一空间关联的映射来配置,其中所述映射指示用于所述空间关联集合中的每一空间关联的PI的位置。

在上文公开的方法中的一个或多个中,UE通过控制信息的集合来配置。

在上文公开的方法中的一个或多个中,所述映射指示用于承载所述空间关联集合中的每一空间关联的PI的控制信息集合中的控制信息。

在上文公开的方法中的一个或多个中,控制信息集合中的控制信息包括至少一个PI。

在上文公开的方法中的一个或多个中,一个PI包括14个位。

在上文公开的方法中的一个或多个中,UE通过每一控制信息的大小来配置。

在上文公开的方法中的一个或多个中,UE通过由每一控制信息承载的若干PI来配置。

在上文公开的方法中的一个或多个中,用于表示所述集合中的空间关联的位置的位的数目取决于控制信息中的PI的数目。

在上文公开的方法中的一个或多个中,UE通过PI的接收来配置。

在上文公开的方法中的一个或多个中,UE通过用于监视承载PI的控制信息的集合的CORESET集合来配置。

在上文公开的方法中的一个或多个中,所述映射指示用于监视所述空间关联集合中的每一空间关联的承载PI的控制信息的CORESET集合中的CORESET。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息集合的RNTI值来配置。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息集合的RNTI值的集合来配置。

在上文公开的方法中的一个或多个中,所述映射指示RNTI值集合中的RNTI值用于监视所述空间关联集合中的至少一个空间关联的承载PI的控制信息。

在上文公开的方法中的一个或多个中,UE通过RNTI值集合中的RNTI值监视控制信息集合中的控制信息。

在上文公开的方法中的一个或多个中,所述映射指示用于监视所述集合中的空间关联的承载PI的控制信息的RNTI值。在一个方法中,所述映射包括指示用于空间关联集合中的至少一个空间关联的群组索引的位字段。

在上文公开的方法中的一个或多个中,所述位字段的大小是基于UE的能力而确定。

在上文公开的方法中的一个或多个中,UE通过至少用于控制信息的监视周期性来配置。

在上文公开的方法中的一个或多个中,如果UE在经配置监视时机之前接收到信号,那么UE在所述经配置监视时机上监视承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE经由空间关联集合中的空间关联接收信号,那么UE在下一监视时机上监视所述空间关联的承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE经由空间关联集合中的空间关联接收信号,那么UE不在下一监视时机上监视空间关联集合中排除所述空间关联的空间关联的承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE不经由空间关联集合中的空间关联接收信号,那么UE跳过在下一监视时机上监视控制信息集合中的控制信息。

在上文公开的方法中的一个或多个中,UE接收空间关联的承载PI的控制信息,其中所述空间关联的PI向UE指示丢弃信号的部分。在一个方法中,所述信号运载至少一传输块。

在上文公开的方法中的一个或多个中,空间关联集合中的空间关联与参考信号相关联。

在上文公开的方法中的一个或多个中,UE使用相同空间参数/空间滤波器/QCL关联来接收用以接收参考信号的信号。

在上文公开的方法中的一个或多个中,所述空间关联是TCI状态。

根据一个示例性方法,UE通过表来配置,其中所述表的每一条目指示空间关联集合的组合。

在一个方法中,UE通过空间关联集合来配置。

在一个方法中,所述表的大小是固定的。替代地,所述表的大小取决于空间关联集合的大小。

在上文公开的方法中的一个或多个中,UE接收控制信息,其中所述控制信息运载至少一个PI和指示所述表的条目的若干位。

在上文公开的方法中的一个或多个中,PI包括14个位。

在上文公开的方法中的一个或多个中,UE通过控制信息的大小来配置。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息的RNTI值来配置。

在上文公开的方法中的一个或多个中,UE通过至少用于控制信息的监视周期性来配置。

在上文公开的方法中的一个或多个中,如果UE在经配置监视时机之前接收到信号,那么UE在所述经配置监视时机上监视控制信息。

在上文公开的方法中的一个或多个中,如果UE经由空间关联接收信号且接收指示包括所述空间关联的表的条目的控制信息,那么UE基于控制信息承载的PI而丢弃所述信号的部分。

在上文公开的方法中的一个或多个中,如果UE经由空间关联接收信号且接收指示不包括所述空间关联的表的条目的控制信息,那么UE忽略由控制信息承载的PI。

在上文公开的方法中的一个或多个中,如果UE未接收信号,那么UE跳过在经配置监视时机上监视控制信息。

在上文公开的方法中的一个或多个中,所述信号运载至少一传输块。

在上文公开的方法中的一个或多个中,空间关联集合中的空间关联与参考信号相关联。

在上文公开的方法中的一个或多个中,UE使用相同空间参数/空间滤波器/QCL关联来接收信号作为用以接收参考信号的信号。

在上文公开的方法中的一个或多个中,所述空间关联是TCI状态。

根据一个示例性方法,如果UE在监视时机之前接收到信号,那么UE监视在CORESET中的承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果UE未接收信号,那么UE跳过在监视时机上监视承载PI的控制信息。

在上文公开的方法中的一个或多个中,CORESET的空间关联与信号相同。

在上文公开的方法中的一个或多个中,CORESET的空间关联与其中传送调度信号的控制信号的第一CORESET相同。

在上文公开的方法中的一个或多个中,如果信号与空间关联相关联,那么UE不监视具有其它空间关联的CORESET中的承载PI的控制信息。

在上文公开的方法中的一个或多个中,如果信号是通过在第一CORESET中传送的控制信号来调度,那么UE不监视除第一CORESET外的承载PI的控制信息。

在上文公开的方法中的一个或多个中,UE通过映射来配置。

在上文公开的方法中的一个或多个中,所述映射指示用于空间关联的PI的位置。

在上文公开的方法中的一个或多个中,所述映射指示用于接收空间关联的承载PI的控制信息的CORESET,其中所述空间关联与CORESET不相同。

在上文公开的方法中的一个或多个中,所述控制信息包括至少一个PI。

在上文公开的方法中的一个或多个中,UE基于所述映射和信号的空间关联而在CORESET上监视承载PI的控制信息。

在上文公开的方法中的一个或多个中,PI包括14个位。

在上文公开的方法中的一个或多个中,UE通过用于监视控制信息的RNTI值来配置。

在上文公开的方法中的一个或多个中,UE通过至少用于控制信息的监视周期性来配置。

在上文公开的方法中的一个或多个中,所述信号运载至少一传输块。

在上文公开的方法中的一个或多个中,空间关联集合中的空间关联与参考信号相关联。在上文公开的方法中的一个或多个中,所述空间关联是TCI状态。

图10是从UE的角度看的根据一个示例性实施例的流程图1000。在步骤1005中,UE接收小区中的多个参考信号或多个参考信号集合的第一配置,其中参考信号作为准共址参考。在步骤1010中,UE接收抢占指示(PI)与多个参考信号之一或多个参考信号集合之一之间的关联的第二配置。在步骤1015中,UE基于来自第一参考信号集合的参考信号接收数据。在步骤1020中,UE根据用于第一参考信号集合的PI处理数据且不根据用于第二参考信号集合的PI处理数据。

在另一方法中,多个参考信号集合至少包括第一参考信号集合和第二参考信号集合。

在另一方法中,参考信号集合可以基于相同特性来构造,其中所述特性是控制资源集、带宽部分、基础参数、副载波间距、网络(NW)波束、传送/接收点、无线电网络临时识别符,或由NW波束集合服务的同一区域。

在另一方法中,参考信号集合包括一个或多个参考信号。

在另一方法中,参考信号用以指示用于信道或信号的接收波束或传送波束。

在另一方法中,UE接收提供用于参考信号或参考信号集合的PI的群组共同物理下行链路控制信道(PDCCH)。

在另一方法中,群组共同PDCCH提供用于其自身参考信号或其自身参考信号集合的PI,其中其自身参考信号或其自身参考信号集合由UE使用以接收群组共同PDCCH。

在另一方法中,群组共同PDCCH提供用于所有参考信号集合的PI。

在另一方法中,PI与参考信号之间或PI与参考信号集合之间的关联是群组共同PDCCH中的PI位置与参考信号或参考信号集合之间的关联。

在另一方法中,PI位置是14的整数倍数。

在另一方法中,PI位置是下行链路控制信息中的PI的开始位置。

在另一方法中,UE通过表来配置,其中所述表的每一条目指示参考信号或参考信号集合。

在另一方法中,群组共同PDCCH指示用于指示PI与参考信号或参考信号集合之间的关联的所述表的条目。

如所属领域的技术人员应了解,各种公开的实施例可组合以形成新的实施例和/或方法。

返回参考图3和4,在一个实施例中,装置300包含存储在存储器310中的程序代码312。CPU 308可以执行程序代码312以(i)接收小区中的多个参考信号或多个参考信号集合的第一配置,其中参考信号作为准共址参考,(ii)接收抢占指示(PI)与多个参考信号之一或多个参考信号集合之一之间的关联的第二配置,(iii)基于来自第一参考信号集合的参考信号接收数据;以及(iv)根据用于第一参考信号集合的PI处理数据且不根据用于第二参考信号集合的PI处理数据。

此外,CPU 308可以执行程序代码312以执行所有上述动作和步骤或本文中描述的其它方法。

上文公开的方法提供了通过同一群组中的不同波束的下行链路传送接收可以保留而不丢弃,这可以改善资源效率。

上文已经描述了本发明的各种方面。应明白,本文中的教示可以通过广泛多种形式实施,且本文中所公开的任何具体结构、功能或这两者仅是代表性的。基于本文中的教示,所属领域的技术人员应了解,本文中公开的方面可以独立于任何其它方面而实施,且可以各种方式组合这些方面中的两个或多于两个方面。举例来说,可以使用本文中所阐述的任何数目个方面来实施设备或实践方法。另外,通过使用除了本文所阐述的方面中的一个或多个之外或不同于本文所阐述的实施例中的一个或多个的其它结构、功能性或结构与功能性,可实施此设备或可实践此方法。作为上述概念中的一些的实例,在一些方面中,可以基于脉冲重复频率建立并行信道。在一些方面中,可以基于脉冲位置或偏移建立并行信道。在一些方面中,可以基于时间跳频序列建立并行信道。

本领域技术人员将理解,可使用多种不同技术及技艺中的任一个来表示信息及信号。举例来说,可通过电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其任何组合来表示在整个上文描述中可能参考的数据、指令、命令、信息、信号、位、符号和码片。

所属领域的技术人员将进一步了解,结合本文公开的方面描述的各种说明性逻辑块、模块、处理器、构件、电路和算法步骤可以被实施为电子硬件(例如,数字实施方案、模拟实施方案或两者的组合,其可以使用信源编码或某种其它技术来设计)、并入有指令的各种形式的程序或设计代码(其在本文为方便起见可以称为“软件”或“软件模块”),或两者的组合。为清晰地说明硬件与软件的此可互换性,上文已大体就各种说明性组件、块、模块、电路和步骤的功能性加以描述。此类功能性是实施为硬件还是软件取决于特定应用及强加于整个系统的设计约束。本领域的技术人员可针对每一具体应用以不同方式来实施所描述的功能性,但这样的实施决策不应被解释为会引起脱离本发明的范围。

另外,结合本文公开的方面描述的各种说明性逻辑块、模块和电路可以实施于集成电路(“IC”)、接入终端或接入点内或者由集成电路、接入终端或接入点执行。IC可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件、电气组件、光学组件、机械组件,或其经设计以执行本文中所描述的功能的任何组合,且可以执行驻留在IC内、在IC外或这两种情况下的代码或指令。通用处理器可以是微处理器,但在替代方案中,处理器可以是任何的常规处理器、控制器、微控制器或状态机。处理器也可实施为计算装置的组合,例如DSP和微处理器的组合、多个微处理器、与DSP内核结合的一或多个微处理器,或任何其它此类配置。

应理解,在任何所公开过程中的步骤的任何特定次序或层级都是示例方法的实例。应理解,基于设计偏好,过程中的步骤的特定次序或层级可以重新布置,同时保持在本公开的范围内。随附的方法权利要求以样本次序呈现各种步骤的元素,且并不有意限于所呈现的特定次序或阶层。

结合本文中所公开的方面描述的方法或算法的步骤可以直接用硬件、用由处理器执行的软件模块、或用这两者的组合实施。软件模块(例如,包含可执行指令和相关数据)和其它数据可以驻留在数据存储器中,例如RAM存储器、快闪存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移除式磁盘、CD-ROM或本领域中已知的任何其它形式的计算机可读存储介质。样本存储介质可以耦合到例如计算机/处理器等机器(为方便起见,所述机器在本文中可以称为“处理器”),使得所述处理器可以从存储介质读取信息(例如,代码)且将信息写入到存储介质。或者,示例性存储介质可以与处理器形成一体。处理器及存储介质可驻留在ASIC中。ASIC可驻留在用户设备中。在替代方案中,处理器和存储介质可作为离散组件驻留在用户设备中。此外,在一些方面中,任何合适的计算机程序产品可包括计算机可读介质,所述计算机可读介质包括与本发明的各方面中的一个或多个方面相关的代码。在一些方面中,计算机程序产品可以包括封装材料。

虽然已结合各种方面描述本发明,但应理解本发明能够进行进一步修改。本申请意图涵盖对本发明的任何改变、使用或调适,这通常遵循本发明的原理且包含对本公开的此类偏离,所述偏离处于在本发明所属的技术领域内的已知及惯常实践的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1