图像编码方法、解码方法、装置和存储介质与流程

文档序号:23665017发布日期:2021-01-15 14:03阅读:72来源:国知局
本申请涉及图像编解码
技术领域
:,并且更具体地,涉及一种图像编码方法、解码方法、装置和存储介质。
背景技术
::激光探测及测距系统(lightlaserdetectionandranging,lidar)是采用激光器作为辐射源的雷达系统,可以简称为激光雷达。激光雷达是激光技术与雷达技术相结合的产物,激光雷达具有检测精度高、测量范围大,非接触,3d和360度测量等特点。激光雷达常用于高精地图构建,高精度定位,目标检测,3d场景渲染等。激光雷达测量产生的3d点云数据量巨大,这给点云数据存贮和传输带来巨大的挑战。为了降低点云数据的存储量,一般会将3d点云数据转化为2d点云数据作为定位图层。但是,位图层仍然覆盖了很大的地理区域,数据量仍然很大,点云数据中的图像编码得到的码流仍然会占用很大的存储开销。技术实现要素:本申请提供一种图像编码方法、解码方法、装置和存储介质,以减少码流的存储开销。第一方面,提供了一种图像解码方法,该方法包括:获取码流;根据码流,获取图像块的残差块和图像块的预测块;根据图像块的残差块和图像块的预测块,得到图像块;对图像块进行处理,得到处理后的图像块。其中,图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数。图像块的像素值的n个比特中第i个比特的取值,与处理后的图像块的像素值的n个比特中的第i个比特的取值相反,图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同。图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。本申请实施例中,编码端通过对图像块的像素值进行取反处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的图像块进行(取反)处理,从而能够将编码端处理(取反处理)过的图像块进行还原,进而获得最终的图像块。结合第一方面,在第一方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行反变换、反量化和熵解码处理,得到残差块。上述解码处理对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。结合第一方面,在第一方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行熵解码处理,得到残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够尽可能的避免图像失真,保证图像最终的显示效果。结合第一方面,在第一方面的某些实现方式中,码流是对定位图层进行编码得到的。结合第一方面,在第一方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第一方面,在第一方面的某些实现方式中,m的取值为8、10和12中的任意一个。第二方面,提供了一种图像解码方法,该方法包括:获取码流;根据码流,获取图像块的残差块和图像块的预测块,残差块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对残差块进行处理,得到处理后的残差块;其中,残差块的像素值的n个比特中的第i个比特的取值,与处理后的残差块的像素值的n个比特中的第i个比特的取值相反,残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同,残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m;根据处理后的残差块和图像块的预测块,得到图像块。本申请实施例中,编码端通过对残差块的像素值进行取反处理,能够在残差块的像素值包含连续的占位符的情况下,降低残差块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的残差块进行(取反)处理,从而能够将编码端处理(取反处理)过的残差块进行还原,进而根据该处理后的残差块得到最终的图像块。结合第二方面,在第二方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行反变换、反量化和熵解码处理,得到残差块。上述解码处理对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。结合第二方面,在第二方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行熵解码处理,得到残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够尽可能的避免图像失真,保证图像最终的显示效果。结合第二方面,在第二方面的某些实现方式中,码流是对定位图层进行编码得到的。结合第二方面,在第二方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第二方面,在第二方面的某些实现方式中,m的取值为8、10和12中的任意一个。第三方面,提供了一种图像解码方法,该方法包括:获取码流;根据码流,获取图像块的残差块和图像块的预测块;根据图像块的残差块和图像块的预测块,得到图像块;对图像块进行处理,得到处理后的图像块。其中,图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数。处理后的图像块的n个比特中的第1个比特的取值与图像块的n个比特中的第1个比特的取值相反,处理后的图像块的n个比特中的第i+1个比特的取值是图像块的n个比特中的第i+1个比特的取值与处理后的图像块的n个比特中的第i个比特进行异或处理的结果。图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,或者,图像块的像素值的n个比特位于图像块的像素值的最高比特位之后并且与图像块的像素值的最高比特位相邻。图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。本申请实施例中,编码端通过对图像块的像素值进行异或处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的图像块进行(异或)处理,从而能够将编码端处理(异或处理)过的图像块进行还原,进而获得最终的图像块。结合第三方面,在第三方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行反变换、反量化和熵解码处理,得到残差块。上述解码处理对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。结合第三方面,在第三方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行熵解码处理,得到残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够尽可能的避免图像失真,保证图像最终的显示效果。结合第三方面,在第三方面的某些实现方式中,码流是对定位图层进行编码得到的。结合第三方面,在第三方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第三方面,在第三方面的某些实现方式中,m的取值为8、10和12中的任意一个。第四方面,提供了一种图像解码方法,该方法包括:获取码流;根据码流,获取图像块的残差块和图像块的预测块,残差块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对残差块进行处理,得到处理后的残差块;根据处理后的残差块和图像块的预测块,得到图像块。其中,处理后的残差块的n个比特中的第1个比特的取值与残差块的n个比特中的第1个比特的取值相反,处理后的残差块的n个比特中的第i+1个比特的取值是残差块的n个比特中的第i+1个比特的取值与处理后的残差块的n个比特中的第i个比特进行异或处理的结果。残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,或者,残差块的像素值的n个比特位于残差块的像素值的最高比特位之后并且与残差块的像素值的最高比特位相邻。残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m;本申请实施例中,编码端通过对残差块的像素值进行异或处理,能够在残差块的像素值包含连续的占位符的情况下,降低残差块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的残差块进行(异或)处理,从而能够将编码端处理(异或处理)过的残差块进行还原,进而根据该处理后的残差块得到最终的图像块。结合第四方面,在第四方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行反变换、反量化和熵解码处理,得到残差块。上述解码处理对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。结合第四方面,在第四方面的某些实现方式中,根据码流,获取图像块的残差块,包括:对码流进行熵解码处理,得到残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够尽可能的避免图像失真,保证图像最终的显示效果。结合第四方面,在第四方面的某些实现方式中,码流是对定位图层进行编码得到的。结合第四方面,在第四方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第四方面,在第四方面的某些实现方式中,m的取值为8、10和12中的任意一个。第五方面,提供了一种图像编码方法,该方法包括:获取图像块,图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对图像块进行处理,得到处理后的图像块;对处理后的图像块进行预测,得到残差块;对残差块进行编码,得到码流。其中,图像块的像素值的n个比特中第i个比特的取值,与处理后的图像块的像素值的n个比特中的第i个比特的取值相反,图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同。图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。本申请实施例中,编码端通过对图像块的像素值进行取反处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间。结合第五方面,在第五方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行变换、量化和熵编码处理,得到编码码流。通过进行有损编码,能够使得编码得到的码流尽可能的占用较小的存储空间。结合第五方面,在第五方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行熵编码处理,得到编码码流。通过无损编码,能够尽可能的避免图像失真,保证图像最终的显示效果。结合第五方面,在第五方面的某些实现方式中,图像块来自于定位图层。结合第五方面,在第五方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第五方面,在第五方面的某些实现方式中,m的取值为8、10和12中的任意一个。第六方面,提供了一种图像编码方法,该方法包括:获取图像块;对图像块进行预测,得到图像块的残差块,残差块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对残差块进行处理,得到处理后的残差块;对处理后的残差块进行编码,得到码流。其中,残差块的像素值的n个比特中的第i个比特的取值,与处理后的残差块的像素值的n个比特中的第i个比特的取值相反,残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同。残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m;本申请实施例中,编码端通过对残差块的像素值进行异或处理,能够在残差块的像素值包含连续的占位符的情况下,降低残差块的数据量,进而使得编码生成的码流占用更少的存储空间。结合第六方面,在第六方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行变换、量化和熵编码处理,得到编码码流。通过进行有损编码,能够使得编码得到的码流尽可能的占用较小的存储空间。结合第六方面,在第六方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行熵编码处理,得到编码码流。通过无损编码,能够尽可能的避免图像失真,保证图像最终的显示效果。结合第六方面,在第六方面的某些实现方式中,图像块来自于定位图层。结合第六方面,在第六方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第六方面,在第六方面的某些实现方式中,m的取值为8、10和12中的任意一个。第七方面,提供了一种图像编码方法,该方法包括:获取图像块,图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对图像块进行处理,得到处理后的图像块;对处理后的图像块进行预测,得到残差块;对残差块进行编码,得到码流。其中,处理后的图像块的n个比特中的第1个比特的取值与图像块的n个比特中的第1个比特的取值相反,处理后的图像块的n个比特中的第i+1个比特的取值是图像块的n个比特中的第i+1个比特的取值与处理后的图像块的n个比特中的第i个比特进行异或处理的结果。图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,或者,图像块的像素值的n个比特位于图像块的像素值的最高比特位之后并且与图像块的像素值的最高比特位相邻。图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。本申请实施例中,编码端通过对图像块的像素值进行异或处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间。结合第七方面,在第七方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行变换、量化和熵编码处理,得到编码码流。通过进行有损编码,能够使得编码得到的码流尽可能的占用较小的存储空间。结合第七方面,在第七方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行熵编码处理,得到编码码流。通过无损编码,能够尽可能的避免图像失真,保证图像最终的显示效果。结合第七方面,在第七方面的某些实现方式中,图像块来自于定位图层。结合第七方面,在第七方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第七方面,在第七方面的某些实现方式中,m的取值为8、10和12中的任意一个。第八方面,提供了一种图像编码方法,该方法包括:获取图像块;对图像块进行预测,得到图像块的残差块,残差块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对残差块进行处理,得到处理后的残差块;对处理后的残差块进行编码,得到码流。其中,残差块的像素值的n个比特中第i个比特的取值,与处理后的残差块的像素值的n个比特中的第i个比特的取值相反,处理后的残差块的n个比特中的第i+1个比特的取值是残差块的n个比特中的第i+1个比特的取值与处理后的残差块的n个比特中的第i个比特进行异或处理的结果。残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,或者,残差块的像素值的n个比特位于残差块的像素值的最高比特位之后并且与残差块的像素值的最高比特位相邻。残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。本申请实施例中,编码端通过对残差块的像素值进行异或处理,能够在残差块的像素值包含连续的占位符的情况下,降低残差块的数据量,进而使得编码生成的码流占用更少的存储空间。结合第八方面,在第八方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行变换、量化和熵编码处理,得到编码码流。通过进行有损编码,能够使得编码得到的码流尽可能的占用较小的存储空间。结合第八方面,在第八方面的某些实现方式中,对残差块进行编码,得到码流,包括:对残差块进行熵编码处理,得到编码码流。通过无损编码,能够尽可能的避免图像失真,保证图像最终的显示效果。结合第八方面,在第八方面的某些实现方式中,图像块来自于定位图层。结合第八方面,在第八方面的某些实现方式中,定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。结合第八方面,在第八方面的某些实现方式中,m的取值为8、10和12中的任意一个。第九方面,提供了一种图像编码方法,该方法包括:获取图像,图像的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对图像进行处理,得到处理后的图像;对处理后的图像进行编码,得到码流。其中,图像的像素值的n个比特中第i个比特的取值,与处理后的图像的像素值的n个比特中的第i个比特的取值相反,图像的像素值的n个比特与处理后的图像的像素值的n个比特所处的位置相同。图像的像素值的n个比特位于图像的像素值的第一比特之后并且与第一比特相邻,第一比特是图像的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。上述获取的图像可以是待编码的图像。本申请实施例中,编码端在对图像进行编码之前,先对图像进行取反处理,能够在图像的像素值包含连续的占位符的情况下,降低图像的数据量,进而使得编码生成的码流占用更少的存储空间。上述对处理后的图像进行编码,得到码流,可以是先将图像划分成图像块,然后再对各个图像块进行编码,以生成码流。在对上述处理后的图像进行编码时既可以采用有损编码也可以采用无损编码。应理解,在获取到第九方面的方法编码得到的码流之后,解码端可以先根据码流进行解码,以获取图像,并在获取图像之后对图像的像素值进行取反处理,以得到最终的图像。第十方面,提供了一种图像编码方法,该方法包括:获取图像,图像的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数;对图像进行处理,得到处理后的图像;对处理后的图像进行编码,得到码流。其中,处理后的图像的n个比特中的第1个比特的取值与图像的n个比特中的第1个比特的取值相反,处理后的图像的n个比特中的第i+1个比特的取值是图像的n个比特中的第i+1个比特的取值与处理后的图像的n个比特中的第i个比特进行异或处理的结果,图像的像素值的n个比特位于图像的像素值的第一比特之后并且与第一比特相邻,第一比特是图像的像素值中取值为1并且位数最高的比特位,或者,图像的像素值的n个比特位于图像的像素值的最高比特位之后并且与图像的像素值的最高比特位相邻,图像的像素值的n个比特与处理后的图像的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m;上述获取的图像可以是待编码的图像。本申请实施例中,编码端在对图像进行编码之前,先对图像进行异或处理,能够在图像的像素值包含连续的占位符的情况下,降低图像的数据量,进而使得编码生成的码流占用更少的存储空间。上述对处理后的图像进行编码,得到码流,可以是先将图像划分成图像块,然后再对各个图像块进行编码,以生成码流。在对上述处理后的图像进行编码时既可以采用有损编码也可以采用无损编码。相应的,在获取到第十方面的方法编码得到的码流之后,解码端可以先根据码流进行解码,以获取图像,并在获取图像之后对图像的像素值进行异或处理的逆处理(具体可以参见第三方面和第四方面中对残差块的像素值的处理),以得到最终的图像。第十一方面,提供了一种图像解码装置,该装置包括与上述第一方面至第四方面中的任意一个方面的方法对应的模块,该对应的模块能够实现上述第一方面至第四方面中的任意一个方面的方法的各个步骤。第十二方面,提供了一种图像编码装置,该装置包括与上述第五方面至第十方面中的任意一个方面的方法对应的模块,该对应的模块能够实现上述第五方面至第十方面中的任意一个方面的方法的各个步骤。上述第十一方面中的图像解码装置或者上述第十二方面中的图像编码装置可以包含一个或者多个模块,该一个或者多个模块中的任意一个模块可以由电路、现场可编程门阵列fpga、特殊应用集成电路asic以及通用处理器中的任意一种构成。第十三方面,提供了一种图像解码装置,包括存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面至第四方面中的任意一个方面的方法。第十四方面,提供了一种图像编码装置,包括存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第五方面至第十方面中的任意一个方面的方法。可选地,上述存储器为非易失性存储器。可选地,上述存储器与处理器互相耦合在一起。上述第十一方面或者第十三方面中的图像解码装置也可以称为图像解码器,上述第十二方面或者第十四方面中的图像编码装置也可以称为图像编码器。第十五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令使得一个或多个处理器执行第一方面至第十方面中的任意一个方面中的方法。上述一个或者多个处理器中的任意一个处理器可以由电路、现场可编程门阵列fpga、特殊应用集成电路asic以及通用处理器中的任意一种构成。第十六方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面至第十方面中的任意一个方面中的方法的部分或全部步骤。附图说明图1是用于实现本申请实施例的视频编码系统实例的示意性框图;图2是用于实现本申请实施例的视频编码器实例的示意性结构框图;图3是用于实现本申请实施例的视频解码器实例的示意性结构框图;图4是用于实现本申请实施例的视频译码系统实例的示意性结构框图;图5是用于实现本申请实施例的视频译码设备实例的示意性结构框图;图6是用于实现本申请实施例的编码装置或者解码装置实例的示意性框图;图7是当前编码单元空域和时域候选运动信息的示意图;图8是3d点云数据转化为2d平面数据的示意图;图9是高程数据中不同字符的占比情况的示意图;图10是本申请实施例的图像解码方法的过程的示意图;图11是本申请实施例的图像解码方法的示意性流程图;图12是本申请实施例的图像解码方法的示意性流程图;图13是本申请实施例的图像解码方法的示意性流程图;图14是本申请实施例的图像编码方法的示意性流程图;图15是本申请实施例的图像编码方法的示意性流程图;图16是本申请实施例的图像编码方法的示意性流程图;图17是采用取反操作对应的编码性能的示意图;图18是采用异或操作对应的编码性能的示意图;图19是本申请实施例的图像编码方法的示意性流程图;图20是本申请实施例的图像编码方法的示意性流程图;图21是本申请实施例的图像编码方法的示意性流程图;图22是处理定位图层的高程数据的示意性流程图;图23是处理定位图层的高程数据的示意性流程图;图24是处理定位图层的高程数据的示意性流程图;图25是本申请实施例的图像编码方法的示意性流程图;图26是本申请实施例的图像编码方法的示意性流程图;图27是本申请实施例的图像解码装置的示意性框图;图28是本申请实施例的图像编码装置的示意性框图;图29是本申请实施例的图像解码装置的示意性框图;图30是本申请实施例的图像编码装置的示意性框图。具体实施方式下面将结合附图,对本申请中的技术方案进行描述。在以下描述中,将会参考形成本申请一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例还可以在在其它方面中使用,并且可以包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,本申请的范围应由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于执行所述方法的对应设备或系统,反之亦然。再如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。此外,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能(例如,一个步骤执行一个或多个单元的功能,或多个步骤,其中每个执行多个单元中一个或多个单元的功能),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。本申请实施例所涉及的技术方案可以应用于h.266标准以及未来的视频编码标准中。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。本申请中的图像编码和解码与视频图像的编码和解码相同,下面对视频图像的编码和解码的一些基本过程和相关内容进行详细的介绍。视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在h.264标准中有宏块(macroblock,mb),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(highefficiencyvideocoding,hevc)标准中,采用编码单元(codingunit,cu),预测单元(predictionunit,pu)和变换单元(transformunit,tu)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如cu可以按照四叉树进行划分为更小的cu,而更小的cu还可以继续划分,从而形成一种四叉树结构,cu是对编码图像进行划分和编码的基本单元。对于pu和tu也有类似的树结构,pu可以对应预测块,是预测编码的基本单元。对cu按照划分模式进一步划分成多个pu。tu可以对应变换块,是对预测残差进行变换的基本单元。然而,无论cu,pu还是tu,本质上都属于块(或称图像块)的概念。例如,在hevc中,通过使用表示为编码树的四叉树结构将ctu拆分为多个cu。在cu层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个cu可以根据pu拆分类型进一步拆分为一个、两个或四个pu。一个pu内应用相同的预测过程,并在pu基础上将相关信息传输到解码器。在通过基于pu拆分类型应用预测过程获取残差块之后,可以根据类似于用于cu的编码树的其它四叉树结构将cu分割成变换单元(transformunit,tu)。在视频压缩技术最新的发展中,使用四叉树和二叉树(quad-treeandbinarytree,qtbt)分割帧来分割编码块。在qtbt块结构中,cu可以为正方形或矩形形状。本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前图像块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前图像块进行预测的已解码的图像块称为参考块,即参考块是为当前图像块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前图像块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前图像块提供预测,此块称为预测块。无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。h.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2d变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前图像块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前图像块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。下面描述本申请实施例所应用的系统架构。参见图1,图1示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一个或多个处理器以及耦合到所述一个或多个处理器的存储器。所述存储器可包含但不限于只读存储器(read-onlymemory,rom)、随机存取存储器(randomaccessmemory,ram)、可擦写可编程只读存储器(erasableprogrammableread-onlymemory,eprom)、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。虽然图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能,即源设备12或对应的功能以及目的地设备14或对应的功能。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一个或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一个或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一个或多个通信媒体可包含无线和/或有线通信媒体,例如射频(rf)频谱或一个或多个物理传输线。所述一个或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一个或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtualreality,vr)图片)的任何类别设备,和/或其任何组合(例如,实景(augmentedreality,ar)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。其中,图片可以视为像素点(pictureelement)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在rbg格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于yuv格式的图片,包括y指示的亮度分量(有时也可以用l指示)以及u和v指示的两个色度分量。亮度(luma)分量y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量u和v表示色度或颜色信息分量。相应地,yuv格式的图片包括亮度采样值(y)的亮度采样阵列,和色度值(u和v)的两个色度采样阵列。rgb格式的图片可以转换或变换为yuv格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从rgb格式转换为yuv格式)、调色或去噪。编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的编码方法在编码侧的应用。通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22例如可用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或经由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的解码方法在解码侧的应用。图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从yuv格式转换为rgb格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquidcrystaldisplay,lcd)、有机发光二极管(organiclightemittingdiode,oled)显示器、等离子显示器、投影仪、微led显示器、硅基液晶(liquidcrystalonsilicon,lcos)、数字光处理器(digitallightprocessor,dlp)或任何类别的其它显示器。虽然,图1中将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。本领域技术人员基于描述明显可知,不同单元的功能性或图1所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digitalsignalprocessor,dsp)、专用集成电路(application-specificintegratedcircuit,asic)、现场可编程门阵列(field-programmablegatearray,fpga)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一个或多个处理器以硬件执行指令从而执行本申请的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一个或多个处理器。在一些情况下,图1中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decodedpicturebuffer,dpb)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(图中未示出)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decodedpicturebuffer,dpb)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。编码器20的实施例可以包括分割单元(图2中未示出),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discretecosinetransform,dct)或离散正弦变换(discretesinetransform,dst)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。变换处理单元206可以用于应用dct/dst的整数近似值,例如为hevc/h.265指定的变换。与正交dct变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantizationparameter,qp)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantizationparameter,qp)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如hevc的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discretecosinetransform,dct)或逆离散正弦变换(discretesinetransform,dst),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。可选地,线缓冲器216的缓冲器单元216(或简称“缓冲器”216)可以用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。环路滤波器单元220(或简称环路滤波器220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptiveoffset,sao)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptiveloopfilter,alf),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。经解码图片缓冲器(decodedpicturebuffer,dpb)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。dpb230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamicrandomaccessmemory,dram)(包含同步dram(synchronousdram,sdram)、磁阻式ram(magnetoresistiveram,mram)、电阻式ram(resistiveram,rram))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供dpb230和缓冲器216。在某一实例中,经解码图片缓冲器(decodedpicturebuffer,dpb)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decodedpicturebuffer,dpb)230用于存储经重构块215。预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(ratedistortionoptimization,rdo)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如dc(或均值)模式和平面模式的非方向性模式,或如h.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如dc(或均值)模式和平面模式的非方向性模式,或如正在发展中的h.266中定义的方向性模式。在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在dbp230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前图像块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(advancedmotionvectorprediction,amvp)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的amvp模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,qt)分割、二进制树(binary-tree,bt)分割或三叉树(triple-tree,tt)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。帧间预测单元244可以包含运动估计(motionestimation,me)单元(图2中未示出)和运动补偿(motioncompensation,mc)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(x、y坐标)与当前图像块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motionvector,mv)。运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的pu的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前图像块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前图像块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variablelengthcoding,vlc)方案、上下文自适应vlc(contextadaptivevlc,cavlc)方案、算术编码方案、上下文自适应二进制算术编码(contextadaptivebinaryarithmeticcoding,cabac)、基于语法的上下文自适应二进制算术编码(syntax-basedcontext-adaptivebinaryarithmeticcoding,sbac)、概率区间分割熵(probabilityintervalpartitioningentropy,pipe)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的视频编码过程。应当理解的是,本申请中的视频编码器可以只包括视频编码器20中的部分模块,例如,本申请中的视频编码器可以包括图像解码单元和划分单元。其中,图像解码单元可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。另外,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。当视频条带经编码为经帧内编码(i)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即b或p)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于dpb330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,b条带、p条带或gpb条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本申请的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptiveparameterset,aps)、序列参数集(sequenceparameterset,sps)、图片参数集(pictureparameterset,pps)或条带标头中的一个或多个中的语法元素。逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。逆变换处理单元312用于将逆变换(例如,逆dct、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptiveoffset,sao)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptiveloopfilter,alf),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的视频解码法。应当理解的是,本申请中的视频编码器可以只包括视频编码器30中的部分模块,例如,本申请中的视频编码器可以包括划分单元和图像编码单元。其中,图像编码单元可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。另外,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行钳位(clip)或移位(shift)等操作。例如,按照相邻仿射编码块(采用仿射运动模型进行预测的编码块可以称为仿射编码块)的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以做进一步的处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitdepth,则运动矢量的范围为-2^(bitdepth-1)~2^(bitdepth-1)-1,其中“^”符号表示幂次方。如bitdepth为16,则取值范围为-32768~32767。如bitdepth为18,则取值范围为-131072~131071。再如,还可以对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量mv)的取值进行约束,使得所述四个4x4子块mv的整数部分之间的最大差值不超过n(例如,n可以取1)个像素。参见图4,图4是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。如图4所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specificintegratedcircuit,asic)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specificintegratedcircuit,asic)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(staticrandomaccessmemory,sram)、动态随机存储器(dynamicrandomaccessmemory,dram)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。参见图5,图5是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图3的解码器30)或视频编码器(例如图2的编码器20)。在另一个实施例中,视频译码设备400可以是上述图3的解码器30或图2的编码器20中的一个或多个组件。视频译码设备400包括:用于接收数据的入口端口410和接收单元(rx)420,用于处理数据的处理器、逻辑单元或中央处理器(cpu)430,用于传输数据的发射器单元(tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(eo)组件,用于光信号或电信号的出口或入口。处理器430通过硬件和软件实现。处理器430可以实现为一个或多个cpu芯片、核(例如,多核处理器)、fpga、asic和dsp。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例的编码方法/解码方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(rom)、随机存取存储器(ram)、随机存取存储器(ternarycontent-addressablememory,tcam)和/或静态随机存取存储器(sram)。参见图6,图6是根据一示例性实施例的可用作图1中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请实施例的编码方法或者解码方法。换言之,图6为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的图像块的划分方法。为避免重复,这里不再详细描述。在本申请实施例中,该处理器510可以是中央处理单元(centralprocessingunit,cpu),该处理器510还可以是其他通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现成可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。该存储器530可以包括只读存储器(rom)设备或者随机存取存储器(ram)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法的至少一个程序。例如,应用程序535可以包括应用1至n,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。为了更好地理解本申请实施例的编码方法和解码方法中的图像预测过程,下面先对帧间预测的一些相关概念和基本内容进行详细介绍。帧间预测是指在已重建的图像中,为当前图像中的当前图像块寻找匹配的参考块,将该参考块中的像素点的像素值作为当前图像块中像素点的像素值的预测值,(此过程称为运动估计(motionestimation,me))。运动估计是为当前图像块在参考图像中尝试多个参考块,然后采用率失真优化(rate-distortionoptimization,rdo)或者其他方法从该多个参考块中最终确定出一个或者两个参考块(双向预测时需要两个参考块),并利用该参考块对当前图像块进行帧间预测。其中,当前图像块的运动信息包括了预测方向的指示信息(通常为前向预测、后向预测或者双向预测),一个或两个指向参考块的运动矢量(motionvector,mv),以及参考块所在图像的指示信息(通常记采用参考帧索引(referenceindex)来表示)。前向预测是指当前图像块从前向参考图像集合中选择一个参考图像获取参考块。后向预测是指当前图像块从后向参考图像集合中选择一个参考图像获取参考块。双向预测是指从前向参考图像集合和后向参考图像集合中各选择一个参考图像来获取参考块。当使用双向预测方法时,当前编码块会存在两个参考块,每个参考块各自需要运动矢量和参考帧索引进行指示,然后根据两个参考块内像素点的像素值确定当前图像块内像素点像素值的预测值。在hevc中,存在两种帧间预测模式,分别为amvp模式和merge模式。在amvp模式中,是先遍历当前编码块空域或者时域相邻的已编码块(记为邻块),根据各个邻块的运动信息构建候选运动矢量列表,然后通过率失真代价从候选运动信息列表中确定出最优的运动矢量,将率失真代价最小的候选运动信息作为当前编码块的运动矢量预测值(motionvectorpredictor,mvp)。其中,邻块的位置及其遍历顺序都是预先定义好的。率失真代价可以根据公式(1)来计算获得,其中j为率失真代价(rate-distortioncost),sad为使用候选运动矢量预测值进行运动估计后得到的像素预测值与原始像素值之间的绝对误差和(sumofabsolutedifferences,sad),r为码率,λ为拉格朗日乘子,编码端将选择的运动矢量预测值在候选运动矢量列表中的索引值和参考帧索引值传递到解码端。进一步地,编码端可以在mvp为中心的邻域内进行运动搜索获得当前编码块实际的运动矢量,然后将mvp与实际运动矢量之间的差值(motionvectordifference)传递到解码端。j=sad+λr(1)另外,根据运动模型的不同,amvp模式可以分为基于平动模型的amvp模式以及基于非平动模型的amvp模式。在merge模式中,是先通过当前编码单元空域或者时域相邻的已编码单元的运动信息,构建候选运动信息列表,然后通过率失真代价从候选运动信息列表中确定最优的运动信息作为当前编码单元的运动信息,最后再将最优的运动信息在候选运动信息列表中位置的索引值(记为mergeindex,下同)传递到解码端。在merge模式中,当前编码单元空域和时域候选运动信息可以如图7所示,其中,空域候选运动信息来自空间相邻的5个块(a0,a1,b0,b1和b2),若相邻块不可得或者为预测模式为帧内预测,则不将该相邻块加入候选运动信息列表。当前编码单元的时域候选运动信息可以根据参考帧和当前帧的图序计数(pictureordercount,poc)对参考帧中对应位置块的mv进行缩放后获得。在获取参考帧对应位置块可以先判断参考帧中位置为t的块是否可得,若不可得则选择位置在c的块。当采用平动模型进行预测时,编码单元内的所有像素都采用了相同的运动信息,然后根据运动信息进行运动补偿,得到编码单元的像素的预测值。但是在现实世界中,运动多种多样,存在很多非平动运动的物体,如旋转的物体,在不同方向旋转的过山车,投放的烟花和电影中的一些特技动作,特别是在用户生成内容(usergeneratedcontent,ugc)场景中的运动物体,对它们的编码,如果采用当前编码标准中的基于平动运动模型的块运动补偿技术,编码效率会受到很大的影响,因此,为了提高编码效果,提出了一种基于非平动运动模型的预测。非平动运动模型预测指在编解码端使用相同的运动模型推导出当前编码块内每一个子运动补偿单元的运动信息,然后根据子运动补偿单元的运动信息进行运动补偿,得到每一个子块的预测子块,从而提高预测效率。常用的非平动运动模型有4参数仿射运动模型或者6参数仿射运动模型。占位符也可以称为格式占位符,占位符主要起到格式占位的作用,表示在该位置有输入或者输出。在很多场景下,图像的像素值可以用占位符来表示。3d点云数据由于数据量巨大,经常需要先将3d点云数据转化为2d平面数据作为定位图层。如图8所示,3d点云数据包含三维坐标(x,y,z)和反射率(r)等数据,在转化为2d平面数据时,可以将3d点云数据的(x,y)直接作为2d平面数据的(x,y)坐标(x和y相当于像素在图片中的位置),将3d点云数据中的高度z映射到2d平面数据的r通道上,将反射率r映射到g通道上,这样就实现了将3d点云数据到2d平面数据的转换。但是由于定位图层覆盖很大的地理区域,定位图层的数据量仍然非常大,因此,如何进一步降低定位图层的数据量是一个重要的问题。定位图层中数据包括高程数据,高程数据是定位图层中的点相对于基准面的高度数据。一般来说,高程数据所表示的建筑物或者其他物体的表面是连续的,因此,高度变化也是连续的,因此,高程数据的占位符一般也具有连续性的特点(连续出现‘1’或‘0’)。图9示出了12张网格图片的最高两位连续为“11”和“10”的占比情况,通过统计发现,图9中的12张网格图片中的最高两位连续为“11”的概率在70%以上,也就是说,高程数据具有连续性的特点。因此,根据高程数据连续性的特点,可以对高程数据进行异或或者取反操作,能够降低高程数据的数据量,从而降低图层数据的数据量。当图像中的像素值包含高程数据时,通过预先对高程数据进行异或或者取反操作,能够降低高程数据的数据量,进而减少编码时产生的码流占用的存储空间。因此,本申请提供了一种图像的编码方法和解码方法,下面分别对本申请实施例的解码方法和编码方法进行详细的介绍。图10是本申请实施例的图像解码方法的示意性流程图。图10所示的方法可以由解码装置或者解码器执行。图10示出了解码的主要过程,解码端在获取到码流之后,可以先对码流进行解压,然后再进行异或处理或者取反处理,最终得到图像块。具体地,解码端既可以是在根据图像块的残差块和预测块得到图像块之后对图像块进行的异或处理或者取反处理,最终得到图像块。解码端也可以是在得到图像块的残差块和预测块之后,先对图像块的残差块进行异或处理或者取反处理,得到处理后的残差块,然后再根据处理后的残差块和预测块最终得到图像块。在本申请中,编码端可以在对图像正式编码之前,先对图像进行预处理(对图像的像素值进行取反处理或者异或处理),然后再进行编码,得到码流。相应的,解码端在解码时可以先通过解码得到图像,然后再对图像进行相应的处理(取反处理或者异或处理),得到最终的图像。下面结合图11对这种处理方式进行介绍。如图11所示,通过解码码流可以获取到图像块(解码的具体过程可以参见图3所示的解码的相关过程),接下来,可以根据图像块的位置将这些图像块拼接成图像,然后再对该图像进行异或处理或者取反处理,以得到处理后的图像。在图11所示的方法中,是先通过解析码流得到图像,然后再对图像进行处理。也就是说,在图11所示的方法是先完成解码的过程,然后再对解码得到的图像进行处理。下面结合图12对本申请实施例的解码方法进行详细说明。图12是本申请实施例的图像解码方法的示意性流程图。图12所示的方法可以由解码装置或者解码器执行。图12所示的方法包括步骤1001至1005,下面对步骤1001至1005进行详细的介绍。1001、获取码流。步骤1001中获取的码流可以是下文中图16所示的编码方法中编码得到的码流。1002、根据码流获取图像块的残差块。步骤1002中可以通过解析码流的方式获取当前图像块的残差块,具体的解析过程可以参见图3所示的解码的相关过程。1003、根据码流获取图像块的预测块。在获取图像块的预测块时既可以采用帧间预测方式也可以采用帧内预测方式,这里不做限定。另外,步骤1003中通过码流获取图像块的预测块的过程可以参见图3所示的解码的相关过程。应理解,步骤1002和步骤1003既可以同时进行,也可以先后进行,本申请对步骤1002和步骤1003的先后顺序不做限制。1004、根据图像块的残差块和图像块的预测块,得到图像块。在步骤1004中,可以通过将残差块和预测块进行叠加,从而得到图像块,具体过程可以参见图3所示的解码的相关过程。1005、对图像块进行处理,得到处理后的图像块。应理解,在图12所示的解码方法中,是先通过码流解码得到的相应的图像块,然后再对图像块进行处理,相应的,图12所示的方法对应的编码端在对图像块进行编码时,是先对图像块进行处理,然后再对处理得到的图像块进行编码生成码流。上述步骤1005中对图像块进行从处理具体可以是对图像块的像素值进行异或处理或者取反处理,下面分别对这两种方式进行详细的介绍。第一种方式:对图像块的像素值进行取反处理。在第一种方式下,在对图像块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:图像块的像素值的n个比特中第i个比特的取值,与处理后的图像块的像素值的n个比特中的第i个比特的取值相反。其中,图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。例如,如表1所示,图像块的像素值为0x4f(01001111),处理后的图像块的像素值为0x70(01110000),图像块的像素值中的最后6个比特(001111)与处理后的图像块的像素值中的最后6个比特(110000)所处的位置相同,都是从第5位到第0位。图像块的像素值的最后6个比特位于第一比特之后,并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位。处理后的图像块的像素值中的最后6个比特的取值分别与图像块的像素值中的最后6个比特的取值相反。在对图像块的像素值进行处理时,可以通过对图像块的最后6个比特的取值进行取反就可以得到处理后的图像块。应理解,在表1所示的例子中,编码端是图像块的像素值由0x70转化为0x40,而解码端则是将图像块的像素值由0x40转化为0x70,最终得到的原始的图像的像素值。表1第二种方式:对图像块的像素值进行异或处理。在第二种方式下,在对图像块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:处理后的图像块的像素值的n个比特中的第1个比特的取值与所述图像块的n个比特中的第1个比特的取值相反;处理后的图像块的n个比特中的第i+1个比特的取值是图像块的n个比特中的第i+1个比特的取值与处理后的图像块的n个比特中的第i个比特进行异或处理的结果。其中,图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,或者,图像块的像素值的n个比特位于图像块的像素值的最高比特位之后并且与图像块的像素值的最高比特位相邻。另外,上述图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。应理解,在第二种方式下,可以是对图像块的像素值的n个比特中的第1个比特的取值进行取反,而对图像块的n个比特中的第i+1个比特的取值与处理后的图像块的n个比特中的第i个比特进行异或处理,以得到处理后的图像块的n个比特中的第i+1个比特的取值。例如,如表2所示,图像块的像素值为0x48(01001000),处理后的图像块的像素值为0x70(01110000),图像块的像素值中的最后6个比特(001000)与处理后的图像块的像素值中的最后6个比特(110000)所处的位置相同,都是从第5位到第0位。图像块的像素值的最后6个比特位于第一比特之后,并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位。由表2可知,处理后的图像块的最后6个比特中的第1个比特的取值与图像块的最后6个比特中的第1个比特的取值相反。再如,由表2可知,处理后的图像块的最后6个比特中的第i+1个比特的取值是图像块的最后6个比特中的第i+1个比特的取值与处理后的图像块的最后6个比特中的第i个比特进行异或处理的结果,i≤n。应理解,在上述图像块的最后6个比特中,第i+1个比特的位数是低于第i个比特的位数的。具体地,如表2所示,处理后的图像块的最后6个比特中的第2个比特的取值(取值为1)是图像块的最后6个比特中的第2个比特的取值(取值为0)与处理后的图像块的最后6个比特中的第1个比特的取值(取值为1)进行异或处理的结果。处理后的图像块的最后6个比特中的第3个比特的取值(取值为0)是图像块的最后6个比特中的第3个比特的取值(取值为1)与处理后的图像块的最后6个比特中的第2个比特的取值(取值为1)进行异或处理的结果。应理解,在表2所示的例子中,编码端是图像块的像素值由0x70转化为0x48,而解码端则是将图像块的像素值由0x48转化为0x70,最终得到的原始的图像的像素值。表2本申请实施例中,编码端通过对图像块的像素值进行异或处理或者取反处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的图像块进行(取反或者异或)处理,从而能够将编码端处理(异或处理或者取反处理)过的图像块进行还原,进而获得最终的图像块。可选地,上述步骤1002中获取图像块的残差块,具体包括:对码流进行反变换、反量化和熵解码处理,得到所述残差块。上述解码过程对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。可选地,上述步骤1002中获取图像块的残差块,具体包括:对码流进行熵解码处理,得到所述残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够尽可能的避免图像失真,保证图像最终的显示效果。可选地,上述码流是对定位图层进行编码得到的。可选地,上述定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。应理解,在图12所示的解码方法对应的编码端是先对图像块进行处理,然后再对处理后的图像块进行编码生成码流。实际上,编码端也可以先对图像块进行处理,得到图像块的残差块,然后再对图像块的残差块进行处理,得到图像块的残差块,然后再对图像块的残差块进行编码生成码流。在这种情况下,解码端在解码时可以在解码得到残差块之后就对残差块进行处理,然后再结合处理后的残差块和图像块的预测块,得到图像块,下面对这种解码方式进行详细的介绍。图13是本申请实施例的图像解码方法的示意性流程图。图13所示的方法可以由解码装置或者解码器执行。图13所示的方法包括步骤2001至2004,下面对步骤2001至2004进行详细的介绍。2001、获取码流。步骤2001中获取的码流可以是下文中图20所示的编码方法中编码得到的码流。2002、根据码流获取图像块的残差块。步骤2002中可以通过解析码流的方式获取当前图像块的残差块,具体的解析过程可以参见图3的相关内容。2003、根据码流获取图像块的预测块。步骤2003中在获取图像块的预测块时,既可以采用帧间预测方式也可以采用帧内预测方式,这里不做限定。步骤2003中获取图像块的预测块的过程可以参见图3所示的解码的相关过程。应理解,上述步骤2002和步骤2003既可以同时进行,也可以先后进行,本申请对步骤2002和步骤2003的先后顺序不做限制。2004、对残差块进行处理,得到处理后的残差块。上述步骤2004中对残差块进行从处理具体可以是对残差块的像素值进行异或处理或者取反处理,下面分别对这两种方式进行详细的介绍。第三种方式:对残差块的像素值进行取反处理。在第三种方式下,在对残差块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:残差块的像素值的n个比特中的第i个比特的取值,与处理后的残差块的像素值的n个比特中的第i个比特的取值相反,残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同。其中,残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。第三种方式下对残差块的像素值进行取反处理,与第一种方式下对图像块的像素值进行取反处理的过程类似,区别在于第三种方式下是对残差块的像素值进行处理,而在第一种方式下是对图像块的像素值进行处理。第三种方式下对残差块的像素值的具体处理过程可以参见第一种方式下的相关的描述,这里不再详细介绍。第四种方式:对残差块的像素值进行异或处理。在第四种方式下,在对残差块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:处理后的残差块的n个比特中的第1个比特的取值与残差块的n个比特中的第1个比特的取值相反,处理后的残差块的n个比特中的第i+1个比特的取值是残差块的n个比特中的第i+1个比特的取值与处理后的残差块的n个比特中的第i个比特进行异或处理的结果。残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,或者,残差块的像素值的n个比特位于残差块的像素值的最高比特位之后并且与残差块的像素值的最高比特位相邻。残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。第四种方式下对残差块的像素值进行异或处理,与第二种方式下对图像块的像素值进行异或处理的过程类似,区别在于在第四种方式下是对残差块的像素值进行处理,而在第二种方式下是对图像块的像素值进行处理。第四种方式下对残差块的像素值的具体处理过程可以参见第二种方式的相关的描述,这里不再详细介绍。2005、根据处理后的残差块和预测块,得到图像块。在步骤2005中,可以通过将处理后的残差块和预测块进行叠加,从而得到图像块,具体过程可以参见图3所示的解码的相关过程。本申请实施例中,编码端通过对图像块的像素值进行异或处理或者取反处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间,而解码端通过对解码得到的图像块进行(取反或者异或)处理,从而能够将编码端处理(异或处理或者取反处理)过的图像块进行还原,进而获得最终的图像块。可选地,上述步骤2002中获取图像块的残差块,具体包括:对码流进行反变换、反量化和熵解码处理,得到所述残差块。上述解码处理对应于图像的有损编码,这种方式能够使得编码得到的码流尽可能的占用较小的存储空间。可选地,上述步骤2002中获取图像块的残差块,具体包括:对码流进行熵解码处理,得到所述残差块。上述仅进行熵解码处理的解码方式对应于无损编码,这种编码方式能够保证图像的显示效果。可选地,上述码流是对定位图层进行编码得到的。可选地,上述定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。上文结合图12和图13对本申请实施例的图像解码方法进行了详细的描述,下面结合图14至图26对本申请实施例的图像编码方法进行描述。图14是本申请实施例的图像编码方法的示意性流程图。图14所示的方法可以由编码装置或者编码器执行。图14示出了编码的主要过程,编码端可以先对图像块进行异或处理或者取反处理,然后在对异或处理或者取反处理后的图像块进行编码压缩,进而得到码流。具体地,编码端既可以先对图像块进行异或处理或者取反处理,然后再对异或处理或者取反处理后的图像块进行编码,得到码流。编码端也可以先对图像块进行预测,得到图像块的预测块和残差块,然后再对残差块进行异或处理或者取反处理,最后再对异或处理或者取反处理后的残差块进行编码,得到码流。在本申请中,编码端可以在对图像正式编码之前,先对图像进行预处理(对图像的像素值进行取反处理或者异或处理),然后再进行编码,得到码流。下面结合图16对这种方式进行介绍。如图15所示,在正式编码之前,先对图像的像素值进行异或处理或者取反处理,得到处理后的图像,接下来,再对图像进行编码。在对图像进行编码时,可以先将图像划分成图像块,然后再对得到的图像块进行编码(编码的具体过程可以参见图3所示的编码的相关过程),得到码流。在图15所示的方法中,是先对图像进行预处理,然后再对图像进行编码。下面结合图16对本申请实施例的编码方法进行详细说明。图16是本申请实施例的图像编码方法的示意性流程图。图16所示的方法可以由编码装置或者编码器执行。图16所示的方法包括步骤3001至3004,下面对步骤3001至3004进行详细的介绍。3001、获取图像块。上述图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数。可选地,上述图像块来自于定位图层。该定位图层是可以是3d点云数据映射得到的2d平面数据。3d点云数据映射得到2d平面数据的过程可以参见图8。可选地,上述定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。3002、对图像块进行处理,得到处理后的图像块。在步骤3002中可以采用多种方式对图像块进行处理,下面对这些处理方式进行描述。第五种方式:对图像块的像素值进行取反处理。在第五种方式下,在对图像块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:图像块的像素值的n个比特中第i个比特的取值,与处理后的图像块的像素值的n个比特中的第i个比特的取值相反。其中,图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。上述第五种方式与上述第一种方式中对图像块的像素值的处理方式相同,第一种方式下的说明内容也适用于第五种方式,为了避免不必要的重复,这里不再对第五种方式进行详细描述。在本申请实施例中,通过对图像块的像素值进行取反处理,能够降低图像块的像素值的数据量的大小,进而减少生成的码流的大小。进一步的,上述n在不同的取值下,对应的编码性能也不相同,当n取某个特定的数值时,对应的编码性能最优,减少的比特是最多的。如图17,图像块的像素值共对应8个比特,对图像块的像素值中的n个比特进行取反处理时,能够减小一定的比特数,当n=3时,比特数减小的程度最大,相应的编码性能也是最优的。在实际编码过程中,可以根据测试的结果或者经验来设置n的数值,例如,当图像块的像素值共对应8个比特位时,可以选择n=3或者n=4,这样能够取得较好的编码性能,尽可能的降低图像块的数据量。第六种方式:对图像块的像素值进行异或处理。在第六种方式下,在对图像块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:处理后的图像块的n个比特中的第1个比特的取值与所述图像块的n个比特中的第1个比特的取值相反;处理后的图像块的n个比特中的第i+1个比特的取值是图像块的n个比特中的第i+1个比特的取值与处理后的图像块的n个比特中的第i个比特进行异或处理的结果。其中,图像块的像素值的n个比特位于图像块的像素值的第一比特之后并且与第一比特相邻,第一比特是图像块的像素值中取值为1并且位数最高的比特位,或者,图像块的像素值的n个比特位于图像块的像素值的最高比特位之后并且与图像块的像素值的最高比特位相邻。另外,上述图像块的像素值的n个比特与处理后的图像块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。上述第六种方式与上述第二种方式中对图像块的像素值的处理方式相同,第二种方式下的说明内容也适用于第六种方式,为了避免不必要的重复,这里不再对第六种方式进行详细描述。在本申请实施例中,通过对图像块的像素值进行异或处理,能够降低图像块的像素值的数据量的大小,进而减少生成的码流的大小。进一步的,上述n在不同的取值下,对应的编码性能也不相同,一般来说,当n的取值越大时,对应的编码性能越好,减少的比特也越多。如图18,图像块的像素值共对应8个比特,对图像块的像素值中的n个比特进行异或处理时,能够减小一定的比特数,当n=6时,比特数减小的程度最大,相应的编码性能也是最优的。在实际编码过程中,可以根据测试的结果或者经验来设置n的数值,例如,当图像块的像素值共对应8个比特位时,可以为n设置一个较大的数值,例如,将n设置为5或者6,这样能够取得较好的编码性能,尽可能的降低图像块的数据量。在步骤3002对图像块的像素值进行处理时,既可以对图像块的像素值进行取反处理,也可以对图像块的像素值进行异或处理,具体可以如图19所示。步骤3002具体可以细化为图19中的步骤3002a和步骤3000b这两种实现方式。其中,步骤3002a和步骤3002b分别为:3002a、对图像块的像素值进行取反处理,得到处理后的图像块。3002b、对图像块的像素值进行异或处理,得到处理后的图像块。其中,步骤3002a对应于上文中的第五种方式,步骤3002b对应于上文中的第六种方式。应理解,在图19中,在执行完步骤3001之后,可以执行步骤3002a或者步骤3002b中的任意一种,然后再执行步骤3003。3003、对处理后的图像块进行预测,得到残差块。在步骤3003中,可以先对处理后的图像块进行预测,得到处理后的图像块的预测块,然后再根据处理后的图像块以及处理后的图像块的预测块,得到处理后图像块的残差块(可以将处理后的图像块与处理后的图像块的预测块进行做差,得到残差块)。3004、对残差块进行编码,得到码流。步骤3004中对残差块进行编码时,既可以采用无损编码,也可以采用有损编码。当采用无损编码时,可以对残差块进行变换、量化和熵编码处理,得到编码码流。通过采用无损编码的方式对残差块进行编码,能够尽可能的避免图像失真,保证图像最终的显示效果。当采用有损编码时,可以直接对残差块进行熵编码处理,得到编码码流。通过采用有损编码的方式对残差块进行编码,能够减少最终得到的码流占用的存储空间。本申请实施例中,编码端通过对图像块的像素值进行异或处理或者取反处理,能够在图像块的像素值包含连续的占位符的情况下,降低图像块的数据量,进而使得编码生成的码流占用更少的存储空间。上述步骤3003中对处理后的图像块进行预测,得到残差块以及对残差块进行编码,得到码流的过程可以参见上文中图2所示的相关编码过程。在图16所示的编码过程中,是先对图像块先进行异或处理或者取反处理,然后再对处理后的图像块进行编码,得到码流。实际上,在编码过程中,也可以先对图像块进行预测,进而得到图像块的残差块,然后再对残差块进行异或处理或者取反处理,然后再对处理后的残差块进行编码,得到码流。下面结合图20对这种编码方式进行详细的介绍。图20是本申请实施例的图像编码方法的示意性流程图。图20所示的方法可以由编码装置或者编码器执行。图20所示的方法包括步骤4001至4004,下面对步骤4001至4004进行详细的介绍。4001、获取图像块。上述图像块的像素值采用m个比特表示,每个比特的取值为0或1,m为大于1的整数。可选地,上述图像块来自于定位图层,该定位图层是可以是3d点云数据映射得到的2d平面数据。3d点云数据映射得到2d平面数据的过程可以参见图8。可选地,上述定位图层的像素值包含栅格化后的高程数据。上述定位图层的像素值包含m个比特,每个比特表示每个栅格的占有位。由于定位图层的像素值中包含栅格化后的高程数据,而高程数据中高位出现字符“11”的概率比较高,因此,通过对包含高程数据的定位图层的像素值进行处理,能够降低定位图层的像素值的数据量,进而减少最终得到的码流占用的存储空间。4002、对图像块进行预测,得到图像块的残差块。在步骤4002中,可以先对图像块进行预测,得到图像块的预测块,然后根据图像块以及图像块的预测块,得到图像块的残差块(可以将图像块与图像块的预测块进行做差,得到残差块)。4003、对残差块进行处理,得到处理后的残差块。在步骤4003中可以采用多种方式对图像块进行处理,下面对这些处理方式进行描述。第七种方式:对残差块的像素值进行取反处理。在第七种方式下,在对残差块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:残差块的像素值的n个比特中的第i个比特的取值,与处理后的残差块的像素值的n个比特中的第i个比特的取值相反,残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同。其中,残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,i和n均为正整数,i≤n,n<m。上述第七种方式与上述第三种方式中对图像块的像素值的处理方式相同,为了避免不必要的重复,这里不再对第七种方式进行详细描述。第八种方式:对残差块的像素值进行异或处理。在第八种方式下,在对残差块进行处理后,处理后的图像块的像素值和图像块的像素值可以满足以下关系:处理后的残差块的n个比特中的第1个比特的取值与残差块的n个比特中的第1个比特的取值相反,处理后的残差块的n个比特中的第i+1个比特的取值是残差块的n个比特中的第i+1个比特的取值与处理后的残差块的n个比特中的第i个比特进行异或处理的结果。残差块的像素值的n个比特位于残差块的像素值的第一比特之后并且与第一比特相邻,第一比特是残差块的像素值中取值为1并且位数最高的比特位,或者,残差块的像素值的n个比特位于残差块的像素值的最高比特位之后并且与残差块的像素值的最高比特位相邻。残差块的像素值的n个比特与处理后的残差块的像素值的n个比特所处的位置相同,第i个比特的位数高于第i+1个比特的位数,i和n均为正整数,i≤n,n<m。上述第八种方式与上述第四种方式中对图像块的像素值的处理方式相同,为了避免不必要的重复,这里不再对第八种方式进行详细描述。在步骤4003对残差块的像素值进行处理时,既可以对残差块的像素值进行取反处理,也可以对残差块的像素值进行异或处理,具体可以如图21所示。步骤4003具体可以细化为图21中的步骤4003a和步骤4003b这两种实现方式。其中,步骤4003a和步骤4003b分别为:4003a、对残差块的像素值进行取反处理,得到处理后的残差块。4003b、对残差块的像素值进行异或处理,得到处理后的残差块。其中,步骤4003a对应于上文中的第七种方式,步骤4003b对应于上文中的第八种方式。应理解,在图21中,在执行完步骤4002之后,可以执行步骤4003a或者步骤4003b中的任意一种,然后再执行步骤4004。4004、对处理后的残差块进行编码,得到码流。步骤4004中对处理后的残差块进行编码时,既可以采用无损编码,也可以采用有损编码。当采用无损编码时,可以对处理后的残差块进行变换、量化和熵编码处理,得到编码码流。通过采用无损编码的方式对处理后的残差块进行编码,能够尽可能的避免图像失真,保证图像最终的显示效果。当采用有损编码时,可以直接对处理后的残差块进行熵编码处理,得到编码码流。通过采用有损编码的方式对处理后的残差块进行编码,能够减少最终得到的码流占用的存储空间。上述步骤4003和步骤4004的具体实现过程可以参见上文中图2所示的编码的相关过程。本申请实施例中,编码端通过对残差块的像素值进行异或处理或者取反处理,能够在残差块的像素值包含连续的占位符的情况下,降低残差块的数据量,进而使得编码生成的码流占用更少的存储空间。为了更好地对本申请实施例进行说明,下面结合图22和图23以定位图层的高程数据的处理为例进行说明。图22是处理定位图层的高程数据的示意性流程图。图22所示的过程包括步骤5001和步骤5002,下面对步骤5001和步骤5002进行说明。5001、从高程数据的最高位开始寻找字符‘1’,确定高程数据的第i位首次出现了字符‘1’;5002、从高程数据的第i位字符开始,依次与相邻高位的字符进行异或处理,直到最低有效位(leastsignificantbit,lsb)。例如,高程数据为0x70(01110000),从该高程数据的第7位(最高位)出发,在该高程数据的第6位寻找到了字符‘1’,接下来,从该高程数据的第5位出发,依次将当前位与相邻高位的字符进行异或,下面结合表3对该高程数据的异或操作过程进行描述。如表3所示,高程数据的第5位至第0位分别是110000,与其相邻的高位字符分别为111000,通过异或处理得到001000。由于高程数据的第7位和第6位不做异或处理,因此,经过异或处理后高程数据的第7位和第6位的字符保持不变,最终进行异或操作处理后的高程数据为0x48(01001000)。表3本申请中,通过对高程数据中的部分位进行异或操作,能够减小高程数据的数值,进而能够减少高程数据所在的图层数据大小。具体地,高程数据中连续出现“11”的概率较大,通过对高程数据进行异或处理,能够减少高程数据中连续出现的“11”,这样就减小了高程数据的数值,相当于图像的像素值变小了。为了进一步的简化高程数据的处理过程,还可以将寻找字符‘1’的过程省略掉,保留高程数据的最高位有效位(mostsignificantbit,msb),而直接从高程数据的次高位开始进行异或处理。下面结合附图进行详细说明。图23是处理定位图层的高程数据的示意性流程图。图23所示的过程包括步骤6001和步骤6002,下面对步骤6001和步骤6002进行说明。6001、保持高程数据的msb保持不变;6002、从高程数据的msb之后的位开始,依次将当前位与相邻高位进行异或处理,直到lsb。应理解,在实际执行过程中,可以不执行步骤6001,而直接执行步骤6002。这里仍以高程数据为0x70(01110000)为例,该高程数据的msb为第7位,需要保留,该高程数据的第6位至第0位需要进行异或处理。如表4所示,高程数据的第6位至第0位分别是1110000,与其相邻的高位字符分别为0111000,通过异或处理得到结果1001000。由于高程数据的msb不进行异或处理,因此,最终经过异或处理后得到的高程数据为01001000。表4本申请中,通过从高程数据的msb保持不变,从高程数据的次高位开始进行异或操作,能够简化异或操作执行时的复杂度。由于在高程数据中,“11”连续出现的概率比较高,因此,通过对高程数据进行取反操作,也能够起到降低高程数据的数据量的目的。因此,在本申请中,除了可通过对高程数据进行异或处理来降低高程数据的数据量之外,还可以通过对高程数据进行取反处理,以降低高程数据的数据量。图24是处理定位图层的高程数据的示意性流程图。图24所示的过程包括步骤7001和步骤7002,下面对步骤7001和步骤7002进行说明。7001、从高程数据的最高位开始寻找字符‘1’,确定高程数据的第i位首次出现了字符‘1’;7002、从高程数据的第i位字符开始,对高程数据的字符进行取反,直到最低有效位(leastsignificantbit,lsb)。例如,仍以高程数据0x70(01110000)为例,从该高程数据的第7位(最高位)出发,在该高程数据的第6位寻找到了字符‘1’,接下来,将高程数据的第5位至第0位进行取反处理,得到0x4f(01001111)。通过对高程数据进行取反处理,可以降低高程数据的数据量(从0x70变换成了0x4f)。应理解,在上述步骤7002中进行取反处理时,也可以从最lsb开始到第i个字符进行取反处理,本申请对取反处理的先后顺序不做限定。为了更好地说明本申请实施例的编码方法的效果,下面结合具体的测试结果对本申请实施例的图像编码方法的效果进行说明。表5示出了采用高效视频编码-屏幕内容编码(highefficiencyvideocoding-screencontentcoding,hevc-scc)对便携式网络图形(portablenetworkgraphics,png)格式图片进行编码后的数据量,以及采用hevc-scc和xor(异或)操作对png格式图片进行编码后的数据量。如表5所示,测试图片一共包含12个png格式的图片(分别为1a.png至1e.png以及2a.png至2g.png),由表5可知,采用hevc-scc编码后的数据量小于png格式图片的数据量,而在hevc-scc编码过程中再采用异或处理的话,最终得到的码流的数据量就更小。具体地,通过对表5中所示的12张测试图片的测试效果进行统计发现,采用hevc-scc对图片进行编码后得到的码流的数据量相对于图片的原始数据量的下降了16.3%,而采用hevc-scc+xor的编码方式得到的码流的数据量相对于图片的数据量下降了16.8%。因此,在编码过程中进行异或处理能够降低图片的数据量。表5下面结合图25和图26对本申请实施例的编码方法的过程进行详细的介绍。图25是本申请实施例的图像编码方法的示意性流程图。图25所示的方法可以由编码装置或者编码器执行。图25所示的方法包括步骤8001至8006,下面对步骤8001至8006进行描述。8001、获取图片。8002、将图片划分成图像块。这里的图片也可以称为图像,为了便于对图片进行编码,一般先将图片划分成多个图像块,然后再对每个图像块进行编码。8003、对图像块的像素值进行取反或者异或处理,得到取反或者异或处理后的图像块。步骤8003中对图像块的像素值进行取反的具体过程可以参见上文中的第五种方式中的相关描述,步骤8003中对图像块的像素值进行异或处理的具体过程可以参见上文中第六种方式中的相关描述。8004、对取反或者异或处理后的图像块进行预测,得到预测块。步骤8004中,既可以采用帧间预测的方式,也可以采用帧内预测的方式得到处理后的图像块的预测块。8005、对预测块进行变换和量化。8006、对变换和量化后的结果进行熵编码,得到编码码流。步骤8004至步骤8006中的编码过程可以参见图2所示的编码的相关过程。图26是本申请实施例的图像编码方法的示意性流程图。图26所示的方法可以由编码装置或者编码器执行。图26所示的方法包括步骤9001至9006,下面对步骤9001至9006进行描述。9001、获取图片。9002、将图片划分成图像块。上述图片也可以称为图像,为了便于对图片进行编码,一般先将图片划分成多个图像块,然后再对每个图像块进行编码。9003、对图像块进行预测,得到残差块。步骤9003中,可以先对图像块进行预测,得到图像块的预测块,然后再根据图像块以及图像块的预测块,得到该图像块的残差块。具体地,可以将图像块与该图像块的残差块进行做差,以得到该图像块的残差块。上述步骤9003中的预测的具体过程可以参见图2所示的预测的相关过程。9004、对残差块的像素值进行取反或者异或处理。步骤9004中对残差块的像素值进行取反的具体过程可以参见上文中的第七种方式中的相关描述,步骤9004中对残差块的像素值进行异或处理的具体过程可以参见上文中第八种方式中的相关描述。9005、对取反或者异或处理后的预测块进行变换和量化。9006、对变换和量化后的结果进行熵编码,得到编码码流。上述步骤9005和步骤9006中的编码的具体过程可以参见图2所示的编码的相关过程。在上述图25和图26所示的方法中,图25所示的方法是在对图像块进行编码之前先对图像块的像素值进行取反或者异或处理。图26所示的方法是在得到当前图像块的残差块之后再对残差块的像素值进行取反或者异或处理,相当于是在编码过程中对像素值进行取反或者异或处理。在本申请中,无论是编码前还是编码后对像素值进行取反处理或者异或处理,都能够降低数据量,从而使得最终得到的码流占用更少的存储空间。上文结合附图对本申请实施例的图像解码方法和编码方法进行了详细的介绍,下面结合图27至图30对对本申请实施例的图像解码装置和图像编码装置进行介绍。应理解,图27至图30中的图像解码装置能够执行本申请实施例的图像解码方法,图27至图30中的图像编码装置能够执行本申请实施例的图像编码方法。为了避免不必要的重复,下面在介绍本申请实施例的图像解码装置和图像编码装置时适当省略重复的描述。图27是本申请实施例的图像解码装置的示意性框图。图27所示的图像解码装置10000包括获取单元10001和处理单元10002。图像解码装置10000可以执行本申请实施例的图像解码方法,具体地,图像解码装置10000可以执行图12和图13所示的图像解码方法。图28是本申请实施例的图像编码装置的示意性框图。图28所示的图像编码装置11000包括获取单元11001和处理单元11002。图像编码装置11000可以执行本申请实施例的图像编码方法,具体地,图像编码装置11000可以执行图16以及图19至图26所示的方法中的步骤。图29是本申请实施例提供的图像解码装置的硬件结构示意图。图29所示的图像解码装置12000(该图像解码装置12000具体可以是一种计算机设备)包括存储器12001、存储器12002、通信接口12003以及总线12004。其中,存储器12001、存储器12002、通信接口12003通过总线12004实现彼此之间的通信连接。存储器12001可以是只读存储器(readonlymemory,rom),静态存储设备,动态存储设备或者随机存取存储器(randomaccessmemory,ram)。存储器12001可以存储程序,当存储器12001中存储的程序被存储器12002执行时,存储器12002用于执行本申请实施例的图像解码方法的各个步骤。存储器12002可以采用通用的中央处理器(centralprocessingunit,cpu),微处理器,应用专用集成电路(applicationspecificintegratedcircuit,asic),图形处理器(graphicsprocessingunit,gpu)或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的图像解码方法。存储器12002还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的图像解码方法的各个步骤可以通过存储器12002中的硬件的集成逻辑电路或者软件形式的指令完成。上述存储器12002还可以是通用处理器、数字信号处理器(digitalsignalprocessing,dsp)、专用集成电路(asic)、现成可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器12001,处理器12002读取存储器12001中的信息,结合其硬件完成本图像解码装置中包括的单元所需执行的功能,或者执行本申请方法实施例的图像解码方法。通信接口12003使用例如但不限于收发器一类的收发装置,来实现图像解码装置12000与其他设备或通信网络之间的通信。例如,可以通过通信接口12003获取待构建的神经网络的信息以及构建神经网络过程中需要的训练数据。总线12004可包括在图像解码装置12000各个部件(例如,存储器12001、存储器12002、通信接口12003)之间传送信息的通路。上述图像解码装置10000中的获取单元10001和处理单元10002相当于图像解码装置12000中的处理器12002。图30是本申请实施例提供的图像编码装置的硬件结构示意图。图30所示的图像编码装置13000(该图像解码装置13000具体可以是一种计算机设备)包括存储器13001、处理器13002、通信接口13003以及总线13004。其中,存储器13001、处理器13002、通信接口13003通过总线13004实现彼此之间的通信连接。上文中对图像解码装置12000中的各个模块的限定和解释同样也适用于图像编码装置13000,这里不再详细描述。上述存储器13001可以用于存储程序,处理器13002用于执行存储器13001存储的程序,当存储器13001存储的程序被执行时,处理器13002用于执行本申请实施例的图像编码方法的各个步骤。另外,当图像编码装置13000对图像进行编码时,可以通过通信接口获取待编码图像,然后对获取到的待编码图像进行编码后得到编码后的数据,编码后的数据可以通过该通信接口13003传输给解码设备。当图像编码装置13000对图像进行解码时,可以通过通信接口获取图像,然后对获取到的图像进行解码后得到待显示的图像。上述图像编码装置11000中的获取单元11001和处理单元11002相当于图像编码装置13000中的处理器13002。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(read-onlymemory,rom)、随机存取存储器(randomaccessmemory,ram)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本
技术领域
:的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1