基于交替方向乘子算法与移动边缘计算的网络资源优化调度决策方法与流程

文档序号:23392004发布日期:2020-12-22 13:58阅读:140来源:国知局
基于交替方向乘子算法与移动边缘计算的网络资源优化调度决策方法与流程

本发明涉及一种基于交替方向乘子算法与移动边缘计算的无人机支持的物联网资源优化调度决策方法,通过交替方向乘子算法,设计一种在物联网设备、配备有移动边缘计算(mobileedgecomputing,mec)的无人机和无线接入点(accesspoint,ap)之间数据卸载、数据计算和数据传输过程中,通过优化资源调度策略,有效减少系统能耗的决策优化方法,属于网络资源分配和系统决策的相关领域。



背景技术:

当前,物联网是新一代信息技术的重要组成部分。物联网随着rfid(radiofrequencyidentification)、智能传感器、通信技术和互联网协议的发展而不断推进。其中,物联网的通信技术被广泛应用,它包含两种通信方式,第一种是将异构对象连接在一起,另一种通信技术是数据无线传输交互,在100米范围内使用无线电波交换数据。

由于物联网设备本身数据计算的局限性,所以它对计算处理能力的要求越来越高。与传统的云计算系统相比,边缘云计算技术更加有利于数据计算与处理,提高用户服务质量。但是,随着物联网的应用规模越来越大,数据计算处理要求也随时提高,用户对系统性能提出了更高质量的要求。因此,mec的概念应运而生。mec除了可以实现网络内缓存功能外,它还使计算资源更接近用户,具有低服务延迟和高服务质量的特点。近些年来,许多文献围绕mec技术进行了研究与讨论。对此,浙江工业大学的qian等人研究了启用多址mec,通过对其研究,发现智能终端可以将其计算工作卸载到边缘服务器,并建立系统模型,联合优化计算资源,达到了最小化系统成本的目的。河北工程大学的sun等人提出了一种新的基于移动边缘计算的物联网架构去处理移动边缘的数据流,并且利用基于软件定义网络的迁移方案最小化核心网络流量。深圳大学的cui等人为满足用户需求,联合考虑能量消耗和时间延迟节省了系统的计算资源和能耗。

现如今,无人机的广泛应用也吸引了学术界的广泛关注。无人机的可运动性为物联网设备与用户带了极大的便利。庆熙大学的kim等人结合通信技术和无人机的优点,将任务卸载到能够提供计算资源的移动边缘服务器上,利用优化算法降低能量消耗和处理时间。北京邮电大学的zhang等人提出了新的终端设备计算策略,通过优化无人机轨迹设计,使系统能耗达到最小。西北工业大学的liu等人提出了多领导多跟随博弈来描述由两层无人机组成的mec网络中的卸载问题,实现了延迟的最小化和利润的最大化。

尽管上述研究物联网、无人机与移动边缘计算技术结合,对系统能耗、时延、收益等性能进行了不同方面、不同层次的优化,然而在将无人机整合入物联网时,仍将面临一些潜在的问题和挑战。例如,上述研究中只能选择一架无人机卸载数据,当物联网设备数量过多时,时间的消耗会显著增加,从而影响系统的整体能耗。另外一个问题是如何分配数据卸载、数据计算和数据传输的时间,以达到系统能耗最小。因此,这些问题在设计系统时均须仔细考虑。

综上所述,本发明面向物联网场景中数据卸载、数据计算和数据传输等问题,提出一种基于交替方向乘子算法(alternatingdirectionmethodofmultipliers,admm)与移动边缘计算的网络资源优化调度决策方法,通过联合考虑场景下物联网设备、无人机和ap的状态,同时优化数据卸载时间、数据计算时间和数据传输时间,以达到有效减少系统能耗的目的。



技术实现要素:

本发明的主要目的是在场景内资源优化分配最优的角度上,考虑场景内存在多架配备有mec的无人机、多个物联网设备和ap的情况下,联合考虑数据卸载时间、数据计算时间和数据传输时间,以降低系统能耗作为优化目标,对场景进行建模,并应用admm算法对模型进行迭代,获得快速收敛且低系统能耗资源优化调度最优策略。本方法解决了在场景下存在多架配备有mec的无人机、多个物联网设备和无线接入点的情况下,如何确定最优资源调度策略的问题,并通过执行最优资源调度策略有效减少系统能耗。

本发明所适应的无人机辅助的物联网系统场景模型见图1。

本发明技术方案中的系统运行原理流程图见图2。

本发明系统能量消耗与admm算法中惩罚参数ρ关系图见图3。

本发明系统能量消耗与无人机数量关系图见图4。

本发明数据卸载,数据计算,数据传输三个方面的能量消耗与无人机数量关系图见图5。

本发明数据卸载、数据计算、数据传输三个方面的时间消耗与无人机数量关系图见图6。

本发明数据计算时间与mec服务器计算能力关系图见图7。

本发明的无人机辅助的物联网系统场景模型如图1所示,基于admm算法与移动边缘计算的无人机支持的物联网资源优化调度决策方法,在某个通信场景下,存在n个物联网设备、k架配备有mec的无人机和ap。当已知物联网设备和无人机的数量后,根据实际环境情况设置数据卸载模型、计算模型和通信模型,并确定系统总能耗。而后结合场景和优化目标,构建模型优化问题,最后采用基于admm的分布式优化算法对其求解,从而达到系统能耗最小化的目的。具体依次按以下步骤实现:

步骤(1),在三维笛卡尔坐标系下,把o定义为所有物联网设备的几何中心。每个物联网设备的位置表示为(xn,yn,0),表示为共有n个物联网设备,其中xn,yn为物联网设备的x轴和y轴坐标。假设无人机飞行于目标区域上空,无人机共有k架,每架无人机停留在一个固定位置上,表示为(xk,yk,h),其中xk,yk,h为无人机的x轴、y轴和z轴坐标。第k架无人机悬停的时间为tk秒。同时,由于无人机配备了mec服务器,为物联网设备提供数据计算服务。ap的位置固定,表示为(xs,ys,0),其中xs,ys为ap的x轴和y轴坐标。

步骤(2),计算系统总能耗,具体步骤如下:

步骤(2.1),计算数据卸载传输消耗的总能量。dnk表示第n个物联网设备向第k架无人机卸载的数据量,u表示物联网设备向无人机卸载数据的时间。将ank定义为第n个物联网设备与第k架无人机关联,其中ank=1表示第n个物联网设备选择第k架无人机卸载数据。物联网设备卸载到无人机的数据量d表示为

第n个物联网设备与第k架无人机之间的距离dnk计算表示为

假设距离dnk=1时物联网设备到无人机的信道增益设为b0。那么每个物联网设备的信道功率增益bnk为

设b为信道带宽,pi为每个物联网设备的传输功率。σ2为噪声功率,无人机与物联网设备之间信道采用自由空间路径损耗模型。数据卸载速率runk表示为

第n个物联网设备向第k架无人机卸载数据时间计算unk表示为

数据卸载传输消耗的总能量eu

步骤(2.2),计算mec服务器数据任务计算消耗的总能量。设c为无人机计算数据时cpu周期总数,c为无人机计算物联网设备的数据任务时间。实际计算频率为fnk,cnk为第k架无人机计算第n个物联网设备数据时的cpu周期数,求得第k架无人机计算第n个物联网设备的数据时间cnk为

mec服务器数据任务计算消耗的总能量ec

其中,kn=10-26为有效开关电容,γn=3是一个正常数。

步骤(2.3),计算无人机与ap数据传输消耗的总能量。s为无人机向ap传输计算结果的时间,将onk设为第k架无人机向ap传输第n个物联网设备结果数据量,无人机向ap传输物联网设备的结果数据量o为

计算无人机与ap之间的距离dsk为

距离dsk=1时无人机到ap的信道增益同样也为b0。那么每个物联网设备的信道功率增益bsk为

ps为每架无人机的传输功率,无人机与ap之间信道采用自由空间路径损耗模型,计算后的结果传送速率rknk为

因此,得到计算后的结果传送时间snk为

无人机与ap数据传输消耗的总能量es

得到整个系统消耗的能量e为

步骤(3),根据步骤(1)-(2),结合场景和优化目标,构建模型优化问题,具体步骤如下:

步骤(3.1),由于ank的取值为0或1,所以在求解之前需要先对二元变量ank进行变量松弛,使得0≤ank≤1。得到问题

约束1是对二元变量ank进行变量松弛。约束2表示数据卸载、数据计算以及数据结果传送时间的总和不得超过无人机悬停时间。约束3表示物联网设备将所需计算的数据全部卸载到无人机。约束4表示无人机需要为每个物联网设备提供足够的计算资源。约束5表示第k架无人机需要将所处理的结果量全部传送给ap。

步骤(3.2),对上述问题进行分解,对于每个无人机k,可以定义将这三个变量作为{u,c,s}的局部变量。

对于每个无人机的局部变量,定义如下集合ηk为其可行集:

对于每个无人机消耗的能量wk为

那么全局共识问题可以等价写成

步骤(4),根据步骤(3),采用基于admm的分布式优化算法对其求解,具体步骤如下:

步骤(4.1),首先推导出具有全局一致约束的增广拉格朗日量

其中,拉格朗日乘子为ρ为惩罚参数。

步骤(4.2),推导变量和拉格朗日乘子迭代过程,局部变量迭代过程为

全局变量迭代过程为

拉格朗日乘子迭代过程为

步骤(4.3),变量和拉格朗日乘子的更新,由于无人机的数量为k,所以将迭代分解为k个子问题,求解在迭代[t+1]时的优化问题

接下来更新全局变量和拉格朗日乘子,并将消息传送给每个无人机,通过将梯度设置为0,有

可以得到结果如下

在迭代[t]过程中,将拉格朗日乘数初始化为零,即可以简化为

本发明的优势在于,在具有多架配备有mec的无人机、多个物联网设备和ap的通信场景下,针对配置有mec服务器的无人机支持的物联网系统,通过将mec技术与物联网设备相结合,联合考虑数据卸载、数据计算和数据传输,使系统能耗达到最小。通过仿真实验考察基于交替方向乘子算法与移动边缘计算的无人机支持的物联网资源优化调度决策方法对场景中系统能耗和数据处理执行时间的影响。

附图说明

图1,通信场景模型包含物联网设备、配备有mec的无人机和ap的网络模型示意图。

图2,基于交替方向乘子算法与移动边缘计算的资源优化调度决策方法设计流程图。

图3,系统能量消耗与admm算法中惩罚参数ρ关系图,图中圆形表示惩罚参数ρ=0.4,正方形表示惩罚参数ρ=0.8,菱形表示惩罚参数ρ=1.2。

图4,系统能量消耗与无人机数量关系图,图中圆形表示本发明所述方法,正方形表示一般线性规划优化方法。

图5,数据卸载,数据计算,数据传输三个方面的能量消耗与无人机数量关系图,图中圆形表示数据卸载,正方形表示数据计算,菱形表示数据传输。

图6,数据卸载,数据计算,数据传输三个方面的时间消耗与无人机数量关系图,图中圆形表示数据卸载,正方形表示数据计算,菱形表示数据传输,六角星形表示无人机悬停。

图7,数据计算时间与mec服务器计算能力关系图,图中圆形表示数据卸载量为10kbytes,正方形表示数据卸载量为15kbytes,菱形表示数据卸载量为20kbytes,六角星形表示数据卸载量为25kbytes。

具体实施方式

下面结合附图和实例对基于交替方向乘子算法与移动边缘计算的无人机支持的物联网资源优化调度决策方法的技术方案做进一步说明。

本发明所述方法流程图如图2所示,包括以下步骤:

步骤一,将构建的无人机辅助的物联网系统初始化,设定无人机数量、物联网设备数量,并确定无人机、物联网设备、ap位置;

步骤二,根据初始化条件并结合实际情况,计算系统总能耗e,包括数据卸载传输消耗的能量eu、mec服务器数据任务计算消耗的总能量ec和无人机与ap数据传输消耗的总能量es

步骤三,结合场景和优化目标,构建系统总能耗模型优化问题,将非凸问题转化为凸问题并对问题进行分解;

步骤四,采用基于admm的分布式优化算法对分解后的问题进行求解,首先推导出具有全局一致约束的增广拉格朗日量,其次进行变量和拉格朗日乘子的迭代和更新。

图3为系统能量消耗与admm算法中惩罚参数ρ关系图。由图3可知,本发明所述方法在不同惩罚参数ρ下系统能量消耗的情况。在前20次迭代进程中效果十分明显,在进行第45次迭代后进入稳定状态。系统能耗收敛在10450j左右。并且可以发现这三个迭代过程最终收敛于相近的效用值,并且不同的值收敛进程差异并不显著。

图4为系统能量消耗与无人机数量关系图。由图4可知,随着无人机数量的增多,显然系统能量消耗增大。这是由于物联网设备可以尽可能地将数据进行卸载,从而消耗的能量增多。当无人机数量为8时,本发明所述方法对应的系统能耗仅为16687j,而一般线性规划优化方法对应的系统能耗则高达18791j。从另一个角度,在相同的系统能耗情况下,本发明方法可增加无人机的数量,例如系统能耗为25000j时,在本发明所述方法下可使用12架无人机,而在一般线性规划优化方法下仅可使用11架无人机。

图5为数据卸载,数据计算,数据传输三个方面的能量消耗与无人机数量关系图。由图5可知,随着无人机数量的增加,能量消耗有所增加。在所模拟的场景中,无人机计算能量消耗最小,但是增加速度迅疾,无人机数量为4时,对应的数据计算能耗为322j,数据卸载能耗为6565j,而无人机数量为6时,对应的数据计算能耗为1410j,数据卸载能耗为9885j,说明无人机数量对其计算消耗能量的影响还是很显著的。

图6为数据卸载,数据计算,数据传输三个方面的时间消耗与无人机数量关系图。由图6可知,随着无人机数量的增加,时间消耗有所增加。在所模拟的场景中,无人机计算能量消耗最小,但三个方面的时间消耗差异不大。无人机数量为5时,对应的数据计算时耗为20s,数据卸载时耗为30s,数据传输时耗为25s。

图7为数据计算时间与mec服务器计算能力关系图。由图7可知,在无人机可接受数据卸载量变化的情况下,数据计算时间随着mec服务器处理能力的增加而减少,减少程度逐渐缓慢。这是因为mec服务器处理能力的增加,mec服务器处理数据时间加快,减少了在计算方面的时间消耗。mec服务器计算能力为900hz时,对应的数据计算时耗为11s,mec服务器计算能力为1000hz时,对应的数据计算时耗为9s。并且可以发现无人机可接受数据卸载量的增加,mec服务器处理数据时间也会增加,这是由于物联网设备卸载数据量增多,mec服务器处理时间相应增加。在mec服务器计算能力为800hz的情况下,数据卸载量为10kbytes对应的数据计算时耗为12.5s,数据卸载量为15kbytes对应的数据计算时耗为12.7s,数据卸载量为20kbytes对应的数据计算时耗为13.2s,数据卸载量为25kbytes对应的数据计算时耗为13.5s。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1