针对无线通信系统中的无线电资源管理的方法和设备与流程

文档序号:28495892发布日期:2022-01-15 04:03阅读:245来源:国知局
针对无线通信系统中的无线电资源管理的方法和设备与流程

1.本公开涉及无线通信中的无线电资源管理(rrm)。


背景技术:

2.第3代合作伙伴计划(3gpp)长期演进(lte)是一种允许高速分组通信的技术。为了lte目标已提出了许多方案,包括旨在降低用户和供应商成本、改进服务质量、以及扩展和改进覆盖和系统容量的那些。作为上层要求,3gpp lte需要降低每比特成本、增加服务可用性、灵活使用频带、简单结构、开放接口以及终端的适当功耗。
3.国际电信联盟(itu)和3gpp已开始着手开发用于新无线电(nr)系统的要求和规范。3gpp必须识别和开发将及时满足紧急市场需求和itu无线电通信部门(itu-r)国际移动电信(imt)-2020进程所提出的更长期要求二者的新rat成功标准化所需的技术组件。此外,nr应该能够使用即使在更遥远的未来也可用于无线通信的至少高达100ghz范围的任何频谱带。
4.nr的目标是应对包括增强移动宽带(embb)、大规模机器型通信(mmtc)、超可靠和低时延通信(urllc)等的所有使用场景、要求和部署场景的单个技术框架。nr应固有地向前兼容。
5.在无线通信中,可以执行rrm测量以确定是否执行移动性。例如,ue可以执行rrm测量以获得包括针对相邻小区的rsrp/rsrq的测量结果,并且将测量结果报告给服务小区。服务小区可以通过向ue发送针对一个或更多个目标小区的移动性命令来进行响应,并且ue可以基于对应的移动性命令来对目标小区中的一个执行移动性。
6.如上所述,rrm测量对于执行移动性是必要的。因此,如果rrm测量由于一些原因而被延迟,则到目标小区的移动性也可能被延迟,这可能导致服务质量降级。


技术实现要素:

7.技术问题
8.本公开的一方面是提供一种针对无线通信系统中的rrm的方法和设备。
9.本公开的另一方面是提供一种在无线通信系统中的移动性过程期间针对rrm的方法和设备。
10.本公开的另一方面是提供一种在无线通信系统中的daps移动性过程期间针对rrm的方法和设备。
11.本公开的另一方面是提供一种在无线通信系统中的daps移动性过程期间用于处置针对rrm的配置的方法和设备。
12.技术方案
13.根据本公开的实施方式,一种由无线通信系统中的无线装置执行的方法包括以下步骤:从源小区接收测量配置;发起从源小区到目标小区的双激活协议栈(daps)移动性;检测daps移动性的失败;在检测到daps移动性的失败之后:向源小区发送针对daps移动性的
失败的信息;以及基于从源小区接收到的测量配置,对一个或更多个相邻小区执行无线电资源管理(rrm)测量。
14.根据本公开的实施方式,一种无线通信系统中的无线装置包括:收发器;存储器;以及至少一个处理器,其在操作上联接到收发器和存储器,并且被配置为:控制收发器从源小区接收测量配置,发起从源小区到目标小区的双激活协议栈(daps)移动性,检测daps移动性的失败,并且在检测到daps移动性的失败之后:控制收发器向源小区发送针对daps移动性的失败的信息,以及基于从源小区接收到的测量配置,对一个或更多个相邻小区执行无线电资源管理(rrm)测量。
15.根据本公开的实施方式,一种用于无线通信系统中的无线装置的处理器,其中,该处理器被配置为控制无线装置执行操作,所述操作包括以下操作:从源小区接收测量配置;发起从源小区到目标小区的双激活协议栈(daps)移动性;检测daps移动性的失败;在检测到daps移动性的失败之后:向源小区发送针对daps移动性的失败的信息;以及基于从源小区接收到的测量配置,对一个或更多个相邻小区执行无线电资源管理(rrm)测量。
16.有益效果
17.本公开可以具有各种有利效果。
18.例如,ue可以基于源小区配置在切换失败之后对一个或更多个相邻小区执行rrm测量,以使得可以快速发起新的切换。由于在切换失败之后执行源小区的rrm可以防止rrc重建过程,并且ue能够继续向源小区发送数据传输,因此可以进一步减少中断时间。
19.可以通过本公开的具体实施方式获得的有利效果不限于以上列出的有利效果。例如,相关领域的普通技术人员可以理解和/或从本公开推导出各种技术效果。因此,本公开的具体效果不限于本文明确描述的那些,而是可以包括可以从本公开的技术特征理解或推导出的各种效果。
附图说明
20.图1示出了可以应用本公开的技术特征的5g使用场景的示例。
21.图2示出了可以应用本公开的技术特征的无线通信系统的示例。
22.图3示出了可以应用本公开的技术特征的无线通信系统的示例。
23.图4示出了可以应用本公开的技术特征的无线通信系统的另一示例。
24.图5示出了可以应用本公开的技术特征的用户平面协议栈的框图。
25.图6示出了可以应用本公开的技术特征的控制平面协议栈的框图。
26.图7例示了基于3gpp的无线通信系统中的帧结构。
27.图8例示了3gpp nr系统中的数据流示例。
28.图9示出了可以应用本公开的技术特征的双连接性(dc)架构的示例。
29.图10示出了可以应用本公开的技术特征的切换过程的示例。
30.图11示出了可以应用本公开的技术特征的条件切换过程的示例。
31.图12示出了可以应用本公开的技术特征的在发起切换和随机接入之前的针对daps切换的源协议和目标协议的状态的示例。
32.图13示出了可以应用本公开的技术特征的在随机接入和切换完成消息的发送期间针对daps切换的源协议和目标协议的状态的示例。
33.图14示出了可以应用本公开的技术特征的在rar和源ran节点的释放之后的针对daps切换的源协议和目标协议的状态的示例。
34.图15示出了根据本公开的实施方式的用于源rrm处置的方法的示例。图15中例示的步骤可以由无线装置和/或ue来执行。
35.图16示出了根据本公开的实施方式的用于daps切换中的源rrm处置的方法的示例。
36.图17示出了用于实现本公开的实施方式的ue。
37.图18示出了可以应用本公开的技术特征的无线通信系统的另一示例。
38.图19示出了可以应用本公开的技术特征的ai装置的示例。
39.图20示出了可以应用本公开的技术特征的ai系统的示例。
具体实施方式
40.下面所描述的技术特征可由第3代合作伙伴计划(3gpp)标准化组织的通信标准、电气和电子工程师协会(ieee)的通信标准等使用。例如,3gpp标准化组织的通信标准包括长期演进(lte)和/或lte系统的演进。lte系统的演进包括lte-advanced(lte-a)、lte-a pro和/或5g新无线电(nr)。ieee标准化组织的通信标准包括诸如ieee 802.11a/b/g/n/ac/ax的无线局域网(wlan)系统。上述系统针对下行链路(dl)和/或上行链路(ul)使用诸如正交频分多址(ofdma)和/或单载波频分多址(sc-fdma)的各种多址技术。例如,仅ofdma可用于dl并且仅sc-fdma可用于ul。另选地,ofdma和sc-fdma可用于dl和/或ul。
41.在本公开中,“a或b”可以意指“仅a”、“仅b”或“a和b两者”。换句话说,本公开中的“a或b”可以被解释为“a和/或b”。例如,本公开中的“a、b或c”可以意指“仅a”、“仅b”、“仅c”或“a、b和c的任何组合”。
42.在本公开中,斜线(/)或逗号(,)可以意指“和/或”。例如,“a/b”可以表示“a和/或b”。因此,“a/b”可以表示“仅a”、“仅b”或“a和b两者”。例如,“a、b、c”可以意指“a、b或c”。
43.在本公开中,“a和b中的至少一个”可以意指“仅a”、“仅b”或“a和b两者”。另外,本公开中的表述“a或b中的至少一个”或“a和/或b中的至少一个”可以被解释为与“a和b中的至少一个”相同。
44.另外,在本公开中,“a、b和c中的至少一个”可以意指“仅a”、“仅b”、“仅c”或“a、b和c的任何组合”。另外,“a、b或c中的至少一个”或“a、b和/或c中的至少一个”可以意指“a、b和c中的至少一个”。
45.此外,本公开中使用的括号可以意指“例如”。具体地,当其示为“控制信息(pdcch)”时,“pdcch”可以被提出作为“控制信息”的示例。换句话说,本公开中的“控制信息”不限于“pdcch”,并且“pddch”可以被提出作为“控制信息”的示例。另外,即使当示为“控制信息(即,pdcch)”时,“pdcch”也可以被提出作为“控制信息”的示例。
46.在本公开中的一个附图中单独描述的技术特征可以单独地或同时地实现。
47.贯穿本公开所使用的术语可以被如下定义:
[0048]“移动性”是指用于i)改变ue的pcell(即,切换或pcell改变),ii)改变ue的pscell(即,sn改变或pscell改变)和/或iii)添加针对ue的pscell(即,sn添加或pscell添加)的过程。因此,移动性可以包括切换、sn改变或sn添加中的至少一个。换句话说,移动性可以包括
pcell改变、pscell改变或pscell添加中的至少一个。贯穿本公开,执行到目标小区的移动性可以指代应用目标小区的移动性命令或者在目标小区的移动性命令中应用rrc重配置参数。此外,rrc重配置和rrc连接重配置可以互换使用。
[0049]“条件移动性”是指执行到多个候选目标小区当中满足触发条件的目标小区的移动性。贯穿本公开,执行到目标小区的条件移动性可以指代在多个候选目标小区当中应用满足针对目标小区的移动性条件的目标小区的条件移动性命令,或者在多个候选目标小区当中满足针对目标小区的移动性条件的目标小区的条件移动性命令中应用rrc重配置参数。
[0050]“针对目标小区的移动性条件”是指针对到目标小区的移动性的触发条件。也就是说,针对目标小区的移动性条件是指应当满足以触发到目标小区的移动性的条件。移动性条件可以包括事件、触发时间(ttt)、偏移值或阈值中的至少一个。如果针对至少ttt满足针对事件的进入条件,则可以满足事件的移动性条件。例如,如果针对目标小区的信号质量优于针对源小区的信号质量达偏移值或偏移值以上,则可以满足针对事件a3的进入条件。针对另一示例,如果针对目标小区的信号质量优于相邻小区阈值,则可以满足针对事件a4的进入条件。针对另一示例,如果针对目标小区的信号质量优于相邻小区阈值并且针对源小区的信号质量低于服务小区阈值,则可以满足针对事件a5的进入条件。
[0051]“rrm测量的报告条件”可以是应当满足以触发(发送)包括rrm测量的结果的测量报告的条件。报告条件可以类似于移动性条件。例如,报告条件可以包括事件、ttt、偏移值或阈值中的至少一个。如果针对至少ttt满足针对事件的进入条件,则可以满足针对事件的报告条件。例如,如果针对相邻小区的信号质量优于针对源小区的信号质量达偏移值或偏移值以上,则可以满足针对事件a3的进入条件。针对另一示例,如果针对相邻小区的信号质量优于相邻小区阈值,则可以满足针对事件a4的进入条件。针对另一示例,如果针对相邻小区的信号质量优于相邻小区阈值并且针对源小区的信号质量低于服务小区阈值,则可以满足针对事件a5的进入条件。
[0052]
贯穿本公开,术语“无线接入网络(ran)节点”、“基站”、“enb”、“gnb”和“小区”可以互换使用。此外,ue可以是一种无线装置,并且贯穿本公开,术语“ue”和“无线装置”可以互换使用。
[0053]
创建以下附图以解释本公开的特定实施方式。附图中所示的特定装置的名称或特定信号/消息/字段的名称是以示例的方式提供的,并且因此本公开的技术特征不限于以下附图中使用的特定名称。
[0054]
图1示出了可以应用本公开的技术特征的5g使用场景的示例。
[0055]
图1所示的5g使用场景仅是示例性的,本公开的技术特征可应用于图1中未示出的其它5g使用场景。
[0056]
参照图1,5g的三个主要要求领域包括(1)增强移动宽带(embb)领域、(2)大规模机器型通信(mmtc)领域以及(3)超可靠和低时延通信(urllc)领域。一些使用情况可能需要多个领域以便于优化,其它使用情况可能只聚焦于仅一个关键性能指标(kpi)。5g在于以灵活和可靠的方式支持这些各种使用情况。
[0057]
embb聚焦于移动宽带接入的数据速率、时延、用户密度、容量和覆盖范围的全面增强。embb针对~10gbps的吞吐量。embb远远超过基本移动互联网接入并且覆盖云和/或增强
现实中的丰富的交互式工作和媒体和娱乐应用。数据是5g的关键驱动因素之一,在5g时代可能首次无法看到专用语音服务。在5g中,预期简单地使用通信系统所提供的数据连接将语音作为应用处理。业务量增加的主要原因是内容的大小增加以及需要高数据速率的应用的数量增加。随着越来越多的装置连接到互联网,流服务(音频和视频)、交互式视频和移动互联网连接将变得越来越常见。这些应用中的许多需要常开连接以向用户推送实时信息和通知。在移动通信平台中可应用于工作和娱乐二者的云存储和应用快速增长。云存储是驱动上行链路数据速率增长的特殊使用情况。5g还用于云上的远程任务并且当使用触觉接口时需要低许多的端对端延迟以维持良好的用户体验。在娱乐中,例如,云游戏和视频流是增加对移动宽带能力的需求的另一关键因素。娱乐在包括诸如火车、汽车和飞机的高移动性环境的任何地方的智能电话和平板计算机中是至关重要的。另一使用情况是用于娱乐的增强现实和信息检索。这里,增强现实需要非常低的时延和瞬时数据量。
[0058]
mmtc被设计为允许成本低、数量大且电池驱动的装置之间的通信,旨在支持诸如智能计量、物流以及场和身体传感器的应用。mmtc针对使用电池~10年和/或~1百万装置/km2。mmtc允许所有领域中的嵌入式传感器的无缝集成并且是最广泛使用的5g应用之一。可能到2020年,物联网(iot)装置预期达到204亿。工业iot是5g在实现智能城市、资产跟踪、智能公用事业、农业和安全基础设施方面起到关键作用的领域之一。
[0059]
urllc将使得装置和机器能够以超可靠性、非常低的时延和高可用性通信,使得它成为车辆通信、工业控制、工厂自动化、远程手术、智能电网和公共安全应用的理想选择。urllc针对~1ms的时延。urllc包括将通过具有超可靠性/低时延的链路改变行业的新服务(例如,关键基础设施和自动驾驶车辆的远程控制)。可靠性和时延的水平对于智能电网控制、工业自动化、机器人、无人机控制和协调是至关重要的。
[0060]
接下来,将更详细地描述包括在图1的三角形中的多个使用情况。
[0061]
5g可补充光纤到户(ftth)和基于线缆的宽带(或docsis)作为传送额定每秒数百兆比特至每秒千兆比特的流的手段。可需要这种高速以传送具有4k或以上(6k、8k及以上)的分辨率的tv以及虚拟现实(vr)和增强现实(ar)。vr应用和ar应用包括大多数沉浸式体育项目。某些应用可能需要特殊网络设置。例如,在vr游戏的情况下,游戏公司可能需要将核心服务器与网络运营商的边缘网络服务器集成以使延迟最小化。
[0062]
预期具有用于车辆的移动通信的许多使用情况的汽车将成为5g的重要的新驱动因素。例如,乘客的娱乐同时需求高容量和高移动宽带。这是因为未来的用户将继续期望高质量的连接,而不管其位置和速度如何。汽车领域中的另一使用情况是增强现实仪表板。驾驶员可通过增强现实仪表板识别透过前窗看到的黑暗中的物体。增强现实仪表板显示将向驾驶员告知物体的距离和移动的信息。在未来,无线模块允许车辆之间的通信、车辆与支持基础设施之间的信息交换以及车辆与其它连接的装置(例如,伴随行人的装置)之间的信息交换。安全系统允许驾驶员引导另选动作过程以使得他可更安全地驾驶,从而降低事故风险。下一步将是远程控制车辆或自动驾驶车辆。这需要不同自动驾驶车辆之间以及不同车辆与基础设施之间的非常可靠和非常快速的通信。在未来,自动驾驶车辆将执行所有驾驶活动,驾驶员将仅聚焦于车辆本身无法识别的交通。自动驾驶车辆的技术要求需要超低时延和高速可靠性以将交通安全性增加至人无法实现的水平。
[0063]
智能城市和智能家居(称为智能社会)将嵌入在高密度无线传感器网络中。智能传
感器的分布式网络将识别城市或房屋的成本和能量高效维护的条件。针对各个家庭可执行相似的设置。温度传感器、窗户和加热控制器、防盗报警器和电器全部无线连接。这些传感器中的许多通常需要低数据速率、低功率和低成本。然而,例如,某些类型的装置可能需要实时高清晰度(hd)视频以用于监测。
[0064]
能量(包括热量或气体)的消耗和分配高度分散,需要分布式传感器网络的自动控制。智能电网使用数字信息和通信技术将这些传感器互连以收集信息并作用于信息。该信息可包括供应商和消费者行为,从而允许智能电网根据效率、可靠性、经济性、生产可持续性和自动方法改进燃料(例如,电力)的分配。智能电网可被视为具有低时延的另一传感器网络。
[0065]
卫生领域具有可受益于移动通信的许多应用。通信系统可支持远程医疗以在远程地点提供临床护理。这可有助于减少距离障碍并改进在偏远的农村地区不持续可用的卫生服务的可达性。其还用于在重症监护和紧急情况下挽救生命。基于移动通信的无线传感器网络可为诸如心率和血压的参数提供远程监测和传感器。
[0066]
无线和移动通信在工业应用中变得越来越重要。对于安装和维护而言布线成本高。因此,在许多行业中,利用可重配置的无线链路替换线缆的可能性是一个有吸引力的机会。然而,实现这一点要求无线连接以与线缆相似的延迟、可靠性和容量操作并且其管理简化。低时延和非常低的错误概率是连接到5g所需的新要求。
[0067]
物流和货运跟踪是移动通信的重要使用情况,其允许使用基于位置的信息系统在任何地方跟踪库存和包裹。物流和货运跟踪的使用情况通常需要低数据速率,但需要大范围和可靠位置信息。
[0068]
nr支持多个参数集(或,子载波间隔(scs))以支持各种5g服务。例如,当scs是15khz时,可以支持传统蜂窝频带中的广域。当scs是30khz/60khz时,可以支持高密度城市(dense-urban)、较低时延和更宽的载波带宽。当scs是60khz或更高时,可以支持大于24.25ghz的带宽以克服相位噪声。
[0069]
nr频带可以被定义为两种类型的频率范围(即,fr1和fr2)。频率范围的数值可以改变。例如,两种类型(fr1和fr2)的频率范围可以如下表1所示。为了便于解释,在nr系统中使用的频率范围中,fr1可以表示“低于6ghz范围”,fr2可以表示“高于6ghz范围”并且可以被称为毫米波(mmw)。
[0070]
[表1]
[0071]
频率范围指定对应的频率范围子载波间隔fr1450mhz-6000mhz15、30、60khzfr224250mhz-52600mhz60、120、240khz
[0072]
如上所述,可以改变nr系统的频率范围的数值。例如,fr1可以如下表2中所示包括410mhz到7125mhz的频带。也就是说,fr1可以包括6ghz(或5850、5900、5925mhz等)或更多的频带。例如,包括在fr1中的6ghz(或5850、5900、5925mhz等)或更多的频带可以包括免授权频带。免授权频带可以用于各种目的(例如,用于针对车辆(例如,自主驾驶)的通信)。
[0073]
[表2]
[0074]
频率范围指定对应频率范围子载波间隔fr1410mhz-7125mhz15、30、60khz
fr224250mhz-52600mhz60、120、240khz
[0075]
图2示出了可以应用本公开的技术特征的无线通信系统的示例。参照图2,无线通信系统可包括第一装置210和第二装置220。
[0076]
第一装置210包括基站、网络节点、发送ue、接收ue、无线装置、无线通信装置、车辆、配备有自动驾驶功能的车辆、连接的汽车、无人机、无人驾驶飞行器(uav)、人工智能(ai)模块、机器人、ar装置、vr装置、混合现实(mr)装置、全息装置、公共安全装置、mtc装置、iot装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、与5g服务有关的装置、或者与第四次工业革命有关的装置。
[0077]
第二装置220包括基站、网络节点、发送ue、接收ue、无线装置、无线通信装置、车辆、配备有自动驾驶功能的车辆、连接的汽车、无人机、uav、ai模块、机器人、ar装置、vr装置、mr装置、全息装置、公共安全装置、mtc装置、iot装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、与5g服务有关的装置、或者与第四次工业革命有关的装置。
[0078]
例如,ue可包括移动电话、智能电话、膝上型计算机、数字广播终端、个人数字助理(pda)、便携式多媒体播放器(pmp)、导航装置、平板个人计算机(pc)、平板pc、超极本、可穿戴装置(例如,智能手表、智能眼镜、头戴式显示器(hmd))。例如,hmd可以是穿戴在头上的显示装置。例如,hmd可用于实现ar、vr和/或mr。
[0079]
例如,无人机可以是通过无线电控制信号来飞行而无需人登上其的飞行物体。例如,vr装置可包括在虚拟世界中实现对象或背景的装置。例如,ar装置可包括实现虚拟世界的对象和/或背景与真实世界的对象和/或背景的连接的装置。例如,mr装置可包括实现虚拟世界的对象和/或背景与真实世界的对象和/或背景的融合的装置。例如,全息装置可包括通过利用由彼此相遇的两个激光产生的光的干涉现象来记录和播放立体信息(称为全息术)以实现360度立体图像的装置。例如,公共安全装置可包括用户的身体可穿戴的视频中继装置或视频装置。例如,mtc装置和iot装置可以是不需要人直接干预或操纵的装置。例如,mtc装置和iot装置可包括智能仪表、自动售货机、温度计、智能灯泡、门锁和/或各种传感器。例如,医疗装置可以是用于诊断、治疗、缓解、处理或预防疾病的装置。例如,医疗装置可以是用于诊断、治疗、缓解或矫正损伤或病症的装置。例如,医疗装置可以是用于检查、替换或修改结构或功能的装置。例如,医疗装置可以是用于控制妊娠的装置。例如,医疗装置可包括治疗装置、手术装置、(体外)诊断装置、助听器和/或程序装置等。例如,安全装置可以是被安装以防止可能发生的风险并维护安全的装置。例如,安全装置可包括相机、闭路tv(cctv)、记录仪或黑匣子。例如,金融科技装置可以是能够提供诸如移动支付的金融服务的装置。例如,金融科技装置可包括支付装置或销售点(pos)。例如,气候/环境装置可包括用于监测或预测气候/环境的装置。
[0080]
第一装置210可包括至少一个或更多个处理器(例如,处理器211)、至少一个存储器(例如,存储器212)和至少一个收发器(例如,收发器213)。处理器211可执行贯穿本公开所描述的第一装置的功能、过程和/或方法。处理器211可执行一个或更多个协议。例如,处理器211可执行空中接口协议的一个或更多个层。存储器212连接到处理器211并且可存储各种类型的信息和/或指令。收发器213连接到处理器211并且可由处理器211控制以发送和接收无线信号。
[0081]
第二装置220可包括至少一个或更多个处理器(例如,处理器221)、至少一个存储器(例如,存储器222)和至少一个收发器(例如,收发器223)。处理器221可执行贯穿本公开所描述的第二装置220的功能、过程和/或方法。处理器221可执行一个或更多个协议。例如,处理器221可执行空中接口协议的一个或更多个层。存储器222连接到处理器221并且可存储各种类型的信息和/或指令。收发器223连接到处理器221并且可由处理器221控制以发送和接收无线信号。
[0082]
存储器212、存储器222可内部或外部连接到处理器211、处理器221,或者可经由诸如有线或无线连接的各种技术连接到其它处理器。
[0083]
第一装置210和/或第二装置220可具有不止一个天线。例如,天线214和/或天线224可被配置为发送和接收无线信号。
[0084]
图3示出了可应用本公开的技术特征的无线通信系统的示例。
[0085]
具体地,图3示出了基于演进-umts地面无线电接入网络(e-utran)的系统架构。上述lte是使用e-utran的演进-utms(e-umts)的一部分。
[0086]
参照图3,无线通信系统包括一个或更多个用户设备(ue)310、e-utran和演进分组核心(epc)。ue 310是指由用户携带的通信设备。ue 310可以是固定的或移动的。ue 310可被称为诸如移动站(ms)、用户终端(ut)、订户站(ss)、无线装置等的另一术语。
[0087]
e-utran由一个或更多个演进节点b(enb)320组成。enb 320朝向ue 310提供e-utra用户平面和控制平面协议端。enb 320通常是与ue 310进行通信的固定站。enb 320托管诸如小区间无线电资源管理(rrm)、无线电承载(rb)控制、连接移动性控制、无线电准入控制、测量配置/供给、动态资源分配(调度器)等的功能。enb 320可被称为诸如基站(bs)、基站收发器系统(bts)、接入点(ap)等的另一术语。
[0088]
下行链路(dl)表示从enb 320到ue 310的通信。上行链路(ul)表示从ue 310到enb 320的通信。侧链路(sl)表示ue 310之间的通信。在dl中,发送器可以是enb 320的一部分,并且接收器可以是ue 310的一部分。在ul中,发送器可以是ue 310的一部分,接收器可以是enb 320的一部分。在sl中,发送器和接收器可以是ue 310的一部分。
[0089]
epc包括移动性管理实体(mme)、服务网关(s-gw)和分组数据网络(pdn)网关(p-gw)。mme托管诸如非接入层面(nas)安全性、空闲状态移动性处理、演进分组系统(eps)承载控制等的功能。s-gw托管诸如移动性锚定等的功能。s-gw是具有e-utran作为端点的网关。为了方便,mme/s-gw 330在本文中将被简称为“网关”,但将理解,该实体包括mme和s-gw二者。p-gw托管诸如ue互联网协议(ip)地址分配、分组滤波等的功能。p-gw是具有pdn作为端点的网关。p-gw连接到外部网络。
[0090]
ue 310借助于uu接口连接到enb 320。ue 310借助于pc5接口彼此互连。enb 320借助于x2接口彼此互连。enb 320还借助于s1接口连接到epc,更具体地,借助于s1-mme接口连接到mme并且借助于s1-u接口连接到s-gw。s1接口支持mme/s-gw与bs之间的多对多关系。
[0091]
图4示出了可以应用本公开的技术特征的无线通信系统的另一示例。
[0092]
具体地,图4示出基于5g nr的系统架构。5g nr(在下文中,简称为“nr”)中所使用的实体可吸收图3中介绍的实体(例如,enb、mme、s-gw)的一些或所有功能。nr中所使用的实体可通过名称“ng”标识以区别于lte/lte-a。
[0093]
参照图4,无线通信系统包括一个或更多个ue 410、下一代ran(ng-ran)和第5代核
心网络(5gc)。ng-ran由至少一个ng-ran节点组成。ng-ran节点是与图3所示的enb 320相对应的实体。ng-ran节点由至少一个gnb 421和/或至少一个ng-enb 422组成。gnb 421朝向ue 410提供nr用户平面和控制平面协议端。ng-enb 422朝向ue 410提供e-utra用户平面和控制平面协议端。
[0094]
5gc包括接入和移动性管理功能(amf)、用户平面功能(upf)和会话管理功能(smf)。amf托管诸如nas安全性、空闲状态移动性处置等的功能。amf是包括传统mme的功能的实体。upf托管诸如移动性锚定、协议数据单元(pdu)处置的功能。upf是包括传统s-gw的功能的实体。smf托管诸如ue ip地址分配、pdu会话控制的功能。
[0095]
gnb 421和ng-enb 422借助于xn接口彼此互连。gnb 421和ng-enb 422还借助于ng接口连接到5gc,更具体地,借助于ng-c接口连接到amf并且借助于ng-u接口连接到upf。
[0096]
描述了上述网络实体之间的协议结构。在图3和/或图4的系统上,ue和网络(例如,ng-ran和/或e-utran)之间的无线接口协议的层可以基于在通信系统中众所周知的开放系统互连(osi)模型的较低三层被分类为第一层(l1)、第二层(l2)和第三层(l3)。
[0097]
图5示出了可以应用本公开的技术特征的用户平面协议栈的框图。图6示出了可以应用本公开的技术特征的控制平面协议栈的框图。
[0098]
图5和图6中所示的用户/控制平面协议栈被用在nr中。然而,通过用enb/mme替换gnb/amf,可以在不损失一般性的情况下在lte/lte-a中使用图5和图6中所示的用户/控制平面协议栈。
[0099]
参照图5和图6,物理(phy)层属于l1。phy层向媒体接入控制(mac)子层和更高层提供信息传送服务。phy层提供mac子层传输信道。mac子层和phy层之间的数据经由传输信道传送。在不同的phy层之间(即,在发送侧的phy层和接收侧的phy层之间)经由物理信道来传送数据。
[0100]
mac子层属于l2。mac子层的主要服务和功能包括逻辑信道和传输信道之间的映射、属于一个或不同逻辑信道的mac服务数据单元(sdu)的到传递到传输信道上的物理层的传输块(tb)的复用/从自传输信道上的物理层传递的传输块(tb)的解复用、调度信息报告、通过混合自动重传请求(harq)的纠错、借助于动态调度在ue之间的优先级处置、借助于逻辑信道优先级(lcp)在一个ue的逻辑信道之间的优先级处理等。mac子层提供无线电链路控制(rlc)子层逻辑信道。
[0101]
rlc子层属于l2。rlc子层支持三种发送模式(即,透明模式(tm)、未确认模式(um)和确认模式(am)),以便于保证无线电承载所需的各种服务质量(qos)。rlc子层的主要服务和功能取决于发送模式。例如,rlc子层提供针对所有三种模式的上层pdu的传送,但是仅通过针对am的arq提供纠错。在lte/lte-a中,rlc子层提供rlc sdu的级联、分段和重组(仅针对um和am数据传送)以及rlc数据pdu的重新分段(仅针对am数据传送)。在nr中,rlc子层提供rlc sdu的重新分段(仅针对am)和分段(仅针对am和um)以及sdu的重组(仅针对am和um)。也就是说,nr不支持rlc sdu的级联。rlc子层提供分组数据汇聚协议(pdcp)子层rlc信道。
[0102]
pdcp子层属于l2。针对用户平面的pdcp子层的主要服务和功能包括报头压缩和解压缩、用户数据的传送、重复检测、pdcp pdu路由、pdcp sdu的重传、加密和解密等。针对控制平面的pdcp子层的主要服务和功能包括加密和完整性保护、控制平面数据的传送等。
[0103]
服务数据适配协议(sdap)子层属于l2。sdap子层仅在用户平面中定义。sdap子层
仅针对nr定义。sdap的主要服务和功能包括在qos流和数据无线电承载(drb)之间的映射,以及在dl分组和ul分组二者中标记qos流id(qfi)。sdap子层提供5gc qos流。
[0104]
无线电资源控制(rrc)层属于l3。rrc层仅在控制平面中定义。rrc层控制ue和网络之间的无线电资源。为此,rrc层在ue和bs之间交换rrc消息。rrc层的主要服务和功能包括与as和nas相关的系统信息的广播,寻呼,ue和网络之间的rrc连接的建立、维持和释放,包括密钥管理的安全性功能,无线电承载的建立、配置、维持和释放,移动性功能,qos管理功能,ue测量报告和对报告的控制,从nas到ue/从ue到nas的nas消息传送。
[0105]
换句话说,rrc层控制与无线电承载的配置、重配置和释放相关的逻辑信道、传输信道和物理信道。无线电承载是指由l1(phy层)和l2(mac/rlc/pdcp/sdap子层)提供的针对ue和网络之间的数据发送的逻辑路径。设置无线电承载意指定义无线电协议层的特性和用于提供特定服务的信道,并且设置每个特定参数和操作方法。无线电承载可以被划分成信令rb(srb)和数据rb(drb)。srb被用作用于在控制平面中发送rrc消息的路径,并且drb被用作用于在用户平面中发送用户数据的路径。
[0106]
rrc状态指示ue的rrc层是否在逻辑上连接到e-utran的rrc层。在lte/lte-a中,当在ue的rrc层和e-utran的rrc层之间建立rrc连接时,ue处于rrc连接状态(rrc_connected)。否则,ue处于rrc空闲状态(rrc_idle)。在nr中,另外引入rrc不活动状态(rrc_inactive)。rrc_inactive可以用于各种目的。例如,可以在rrc_inactive中有效地管理大规模机器类型通信(mmtc)ue。当满足特定条件时,进行从上述三种状态中的一种状态到另一种状态的转换。
[0107]
可以根据rrc状态执行预定操作。在rrc_idle中,可以执行由nas配置的公共陆地移动网络(plmn)选择、系统信息(si)的广播、小区重选移动性、核心网络(cn)寻呼和非连续接收(drx)。ue应当已经被分配了在跟踪区域中唯一地标识ue的标识符(id)。没有rrc上下文存储在bs中。
[0108]
在rrc_connected中,ue与网络(即,e-utran/ng-ran)具有rrc连接。还针对ue建立网络-cn连接(c-平面/u-平面二者)。ue as上下文被存储在网络和ue中。ran知道ue所属于的小区。网络可以向ue发送和/或从ue接收数据。还执行包括测量的网络控制的移动性。
[0109]
在rrc_idle中执行的大多数操作可以在rrc_inactive中执行。但是,代替rrc_idle中的cn寻呼,在rrc_inactive中执行ran寻呼。换句话说,在rrc_idle中,由核心网络发起针对移动终端(mt)数据的寻呼,并且由核心网络管理寻呼区域。在rrc_inactive中,由ng-ran发起寻呼,并且ng-ran管理基于ran的通知区域(rna)。此外,代替在rrc_idle中由nas配置的用于cn寻呼的drx,在rrc_inactive中由ng-ran配置用于ran寻呼的drx。此外,在rrc_inactive中,针对ue建立5gc-ng-ran连接(c-平面/u-平面二者),并且在ng-ran和ue中存储ue as上下文。ng-ran知道ue所属于的rna。
[0110]
nas层位于rrc层的顶部。nas控制协议执行诸如认证、移动性管理、安全性控制的功能。
[0111]
物理信道可以根据ofdm处理被调制,并且利用时间和频率作为无线电资源。物理信道由时域中的多个正交频分复用(ofdm)符号和频域中的多个子载波组成。一个子帧由时域中的多个ofdm符号组成。资源块是资源分配单元,并且由多个ofdm符号和多个子载波组成。另外,每个子帧可以使用针对物理下行链路控制信道(pdcch)(即,l1/l2控制信道)的对
应子帧的特定ofdm符号(例如,第一ofdm符号)的特定子载波。发送时间间隔(tti)是针对资源分配由调度器使用的基本时间单位。tti可以以一个或更多个时隙为单位来定义,或者可以以小时隙为单位来定义。
[0112]
根据通过无线电接口传送数据的方式和特性来对传输信道进行分类。dl传输信道包括用于发送系统信息的广播信道(bch)、用于发送用户业务或控制信号的下行链路共享信道(dl-sch)、以及用于寻呼ue的寻呼信道(pch)。ul传输信道包括用于发送用户业务或控制信号的上行链路共享信道(ul-sch)和用于初始接入小区的随机接入信道(rach)。
[0113]
通过mac子层提供了不同种类的数据传送服务。每个逻辑信道类型由传送的信息的类型来定义。逻辑信道被分类为两组:控制信道和业务信道。
[0114]
控制信道仅用于控制平面信息的传送。控制信道包括广播控制信道(bcch)、寻呼控制信道(pcch)、公共控制信道(ccch)和专用控制信道(dcch)。bcch是用于广播系统控制信息的dl信道。pcch是传送寻呼信息、系统信息改变通知的dl信道。ccch是用于发送ue和网络之间的控制信息的信道。该信道用于没有与网络的rrc连接的ue。dcch是在ue和网络之间发送专用控制信息的点对点双向信道。该信道由具有rrc连接的ue使用。
[0115]
业务信道仅用于用户平面信息的传送。业务信道包括专用业务信道(dtch)。dtch是针对用户信息的传送专用于一个ue的点对点信道。dtch可以存在于ul和dl二者中。
[0116]
关于逻辑信道和传输信道之间的映射,在dl中,bcch可以被映射到bch,bcch可以被映射到dl-sch,pcch可以被映射到pch,ccch可以被映射到dl-sch,dcch可以被映射到dl-sch,并且dtch可以被映射到dl-sch。在ul中,ccch可以被映射到ul-sch,dcch可以被映射到ul-sch,并且dtch可以被映射到ul-sch。
[0117]
图7例示了基于3gpp的无线通信系统中的帧结构。
[0118]
图7中示出的帧结构纯粹是示例性的,并且子帧的数量、时隙的数量和/或帧中的符号的数量可以不同地改变。在基于3gpp的无线通信系统中,可以在针对一个ue聚合的多个小区之间不同地配置ofdm参数集(例如,子载波间隔(scs)、发送时间间隔(tti)持续时间)。例如,如果ue被配置有针对针对小区聚合的小区的不同scs,则包括相同数量的符号的时间资源(例如,子帧、时隙或tti)的(绝对时间)持续时间可以在聚合小区之间是不同的。在本文中,符号可以包括ofdm符号(或cp-ofdm符号)、sc-fdma符号(或离散傅里叶变换-扩展-ofdm(dft-s-ofdm)符号)。
[0119]
参照图7,下行链路发送和上行链路发送被组织成帧。每个帧具有tf=10ms的持续时间。每个帧被划分为两个半帧,其中半帧中的每一个具有5ms的持续时间。每个半帧由5个子帧组成,其中每个子帧的持续时间tsf为1ms。每个子帧被划分为时隙,并且子帧中的时隙数量取决于子载波间隔。每个时隙包括基于循环前缀(cp)的14个ofdm符号或12个ofdm符号。在正常cp中,每个时隙包括14个ofdm符号,并且在扩展cp中,每个时隙包括12个ofdm符号。参数集基于指数可缩放子载波间隔δf=2u*15khz。下表示出了根据子载波间隔δf=2u*15khz,每时隙的ofdm符号的数量、每帧的时隙的数量和每正常cp的时隙的数量。
[0120]
[表3]
[0121]
unslotsymbnframe,uslotnsubframe,uslot014101114202
21440431480841416016
[0122]
下表示出了根据子载波间隔δf=2u*15khz,每时隙的ofdm符号的数量、每帧的时隙的数量以及每扩展cp的时隙的数量。
[0123]
[表4]
[0124]
unslotsymbnframe,uslotnsubframe,uslot212404
[0125]
时隙在时域中包括多个符号(例如,14个或12个符号)。针对每个参数集(例如,子载波间隔)和载波,从由更高层信令(例如,无线电资源控制(rrc)信令)指示的公共资源块(crb)nstart,ugrid处开始,定义nsize,ugrid,x*nrbsc子载波和子帧的资源网格,其中nstart,ugrid,x是资源网格中的资源块(rb)的数量并且下标x针对下行链路是dl并且针对上行链路是ul。nrbsc是每rb的子载波的数量。在基于3gpp的无线通信系统中,nrbsc通常是12。针对给定的天线端口p、子载波间隔配置u和发送方向(dl或ul)存在一个资源网格。针对子载波间隔配置u的载波带宽nsize,ugrid由更高层参数(例如,rrc参数)给出。针对天线端口p和子载波间隔配置u的资源网格中的每个元素被称为资源元素(re),并且一个复符号可以被映射到每个re。资源网格中的每个re由频域中的索引k和表示相对于时域中的参考点的符号位置的索引l唯一地标识。在基于3gpp的无线通信系统中,rb由频域中的12个连续子载波定义。在3gppnr系统中,rb被分类为crb和物理资源块(prb)。crb针对子载波间隔配置u在频域中从0向上编号。针对子载波间隔配置u的crb 0的子载波0的中心与用作针对资源块网格的公共参考点的“点a”重合。在3gpp nr系统中,prb被定义在带宽部分(bwp)内并且从0到nsizebwp,i-1编号,其中i是带宽部分的数量。带宽部分i中的物理资源块nprb与公共资源块ncrb之间的关系如下:nprb=ncrb+nsizebwp,i,其中nsizebwp,i是带宽部分相对于crb 0开始的公共资源块。bwp包括多个连续的rb。载波可以包括最多n个(例如,5个)bwp。ue可以配置有给定分量载波上的一个或更多个bwp。在被配置给ue的bwp当中一次只能有一个bwp处于活动状态。活动bwp在小区的操作带宽内定义ue的操作带宽。
[0126]
在本公开中,术语“小区”可以指代一个或更多个节点向其提供通信系统的地理区域,或指无线电资源。地理区域的“小区”可以被理解为覆盖范围,在该覆盖范围内,节点可以使用载波来提供服务,并且作为无线电资源(例如,时间-频率资源)的“小区”与作为由载波配置的频率范围的带宽(bw)相关联。与无线电资源相关联的“小区”由下行链路资源和上行链路资源的组合(例如,下行链路(dl)分量载波(cc)和上行链路(ul)cc的组合)来定义。小区可以仅由下行链路资源来配置,或者可以由下行链路资源和上行链路资源来配置。由于dl覆盖范围(其是节点能够发送有效信号的范围)和ul覆盖范围(其是节点能够从ue接收有效信号的范围)取决于承载信号的载波,所以节点的覆盖范围可以与节点所使用的无线电资源的“小区”的覆盖范围相关联。因此,术语“小区”可以用于有时表示节点的服务覆盖范围,在其它时间表示无线电资源,或在其它时间表示使用无线电资源的信号可达到有效强度的范围。
[0127]
在载波聚合(ca)中,聚合两个或更多个cc。ue可以根据其能力在一个或更多个cc上同时接收或发送。连续cc和非连续cc二者都支持ca。当ca被配置时,ue仅具有与网络的一
个无线电资源控制(rrc)连接。在rrc连接建立/重建/切换时,一个服务小区提供非接入层面(nas)移动性信息,并且在rrc连接重建/切换时,一个服务小区提供安全性输入。该小区被称为主小区(pcell)。pcell是在主频率上操作的小区,其中ue执行初始连接建立过程或发起连接重建过程。根据ue能力,辅小区(scell)可以被配置为与pcell一起形成服务小区集合。scell是在特殊小区之上提供附加无线电资源的小区。因此,针对ue的配置的服务小区集合始终由一个pcell和一个或更多个scell组成。针对双连接操作,术语特殊小区(spcell)是指主小区组(mcg)的pcell或辅小区组(scg)的pscell。spcell支持pucch发送和基于竞争的随机接入,并且总是被激活。mcg是与主节点相关联的一组服务小区,包括spcell(pcell)和可选的一个或更多个scell。scg是与辅节点相关联的服务小区的子集,针对配置有双连接(dc)的ue包括pscell和零个或更多个scell。针对处于rrc_connected中的未配置有ca/dc的ue,仅存在包括pcell的一个服务小区。针对处于rrc_connected中的配置有ca/dc的ue,术语“服务小区”用于表示包括spcell和所有scell的小区集合。在dc中,在ue中配置两个mac实体:一个针对mcg并且一个针对scg。
[0128]
图8例示了3gpp nr系统中的数据流示例。
[0129]
在图8中,“rb”表示无线电承载,并且“h”表示报头。无线电承载被分类为两组:针对用户平面数据的数据无线电承载(drb)和针对控制平面数据的信令无线电承载(srb)。使用无线电资源通过phy层向/从外部设备发送/接收mac pdu。mac pdu以传输块的形式到达phy层。
[0130]
在phy层中,上行链路传输信道ul-sch和rach分别被映射到它们的物理信道pusch和prach,并且下行链路传输信道dl-sch、bch和pch分别被映射到pdsch、pbch和pdsch。在phy层中,上行链路控制信息(uci)被映射到pucch,并且下行链路控制信息(dci)被映射到pdcch。与ul-sch相关的mac pdu由ue基于ul许可经由pusch发送,并且与dl-sch相关的mac pdu由bs基于dl指派经由pdsch发送。
[0131]
本公开中的数据单元(例如,pdcp sdu、pdcp pdu、rlc sdu、rlc pdu、rlc sdu、mac sdu、mac ce、mac pdu)是基于资源分配(例如,ul许可、dl指派)在物理信道(例如,pdsch、pusch)上发送/接收的。在本公开中,上行链路资源分配也被称为上行链路许可,并且下行链路资源分配也被称为下行链路指派。资源分配包括时域资源分配和频域资源分配。在本公开中,在随机接入响应中,上行链路许可由ue动态地在pdcch上接收,或者通过rrc半持久地配置给ue。在本公开中,下行链路指派由ue动态地在pdcch上接收,或者通过来自bs的rrc信令半持久地配置给ue。
[0132]
在各个实施方式中,可以使用如表5至表8中所述的定时器值。
[0133]
[表5]
[0134]
[0135][0136]
[表6]
[0137][0138]
[表7]
[0139]
[0140][0141]
[表8]
[0142][0143]
此外,在各个实施方式中,常量n311可以被定义为从较低层接收到的针对pcell的连续“同步”或“早期同步”指示的最大数量。图9示出了可以应用本公开的技术特征的双连接性(dc)架构的示例。
[0144]
参照图9,例示了与mn 911和sn 921二者进行通信的mn 911、sn 921和ue 930。如图9所示,dc是指ue(例如,ue 930)利用由包括mn(例如,mn 911)和一个或更多个sn(例如,sn 921)的至少两个ran节点提供的无线电资源的方案。换句话说,dc是指ue连接到mn和一个或更多个sn二者并且与mn和一个或更多个sn二者进行通信的方案。由于mn和sn可以在不同的站点中,所以mn和sn之间的回程可以被解释为非理想回程(例如,节点之间的相对大的延迟)。
[0145]
mn(例如,mn 911)是指在dc情况下向ue提供服务的主ran节点。sn(例如,sn 921)是指在dc情况下向ue提供服务的附加ran节点。如果一个ran节点向ue提供服务,则ran节点可以是mn。如果mn存在,则sn可以存在。
[0146]
例如,mn可以与其覆盖范围相对大于小小区的覆盖范围的宏小区相关联。然而,mn不必须与宏小区相关联,也就是说,mn可以与小小区相关联。贯穿本公开,与宏小区相关联的ran节点可以被称为“宏小区节点”。mn可以包括宏小区节点。
[0147]
例如,sn可以与其覆盖范围相对小于宏小区的覆盖范围的小小区(例如,微小区、微微小区、毫微微小区)相关联。然而,sn不必须与小小区相关联,也就是说,sn可以与宏小
区相关联。贯穿本公开,与小小区相关联的ran节点可以被称为“小小区节点”。sn可以包括小小区节点。
[0148]
mn可以与主小区组(mcg)相关联。mcg可以指代与mn相关联的一组服务小区,并且可以包括主小区(pcell)和可选的一个或更多个辅小区(scell)。用户平面数据和/或控制平面数据可以通过mcg承载从核心网络传输到mn。mcg承载是指无线电协议位于mn中以使用mn资源的承载。如图9所示,mcg承载的无线电协议可以包括pdcp、rlc、mac和/或phy。
[0149]
sn可以与辅小区组(scg)相关联。scg可以指代与sn相关联的一组服务小区,并且可以包括主辅小区(pscell)和可选的一个或更多个scell。用户平面数据可以通过scg承载从核心网络传输到sn。scg承载是指无线电协议位于sn中以使用sn资源的承载。如图9所示,scg承载的无线电协议可以包括pdcp、rlc、mac和phy。
[0150]
用户平面数据和/或控制平面数据可以从核心网络传输到mn并且在mn中拆分(split)/复制,并且经拆分数据/经复制数据的至少一部分可以通过拆分承载转发到sn。拆分承载是指无线电协议位于mn和sn二者中以使用mn资源和sn资源二者的承载。如图9所示,位于mn中的拆分承载的无线电协议可以包括pdcp、rlc、mac和phy。位于sn中的拆分承载的无线电协议可以包括rlc、mac和phy。
[0151]
根据各个实施方式,pdcp锚定/pdcp锚定点/pdcp锚定节点是指包括拆分和/或复制数据的pdcp实体的ran节点,并且通过x2/xn接口将经拆分数据/经复制数据的至少一部分转发到另一ran节点。在图9的示例中,pdcp锚定节点可以是mn。
[0152]
根据各个实施方式,可以改变针对ue的mn。这可以被称为切换或mn切换。
[0153]
根据各个实施方式,sn可以新开始向ue提供无线电资源,与ue建立连接和/或与ue进行通信(即,可以新添加针对ue的sn)。这可以被称为sn添加。
[0154]
根据各个实施方式,可以在维持针对ue的mn的同时改变针对ue的sn。这可以被称为sn改变。
[0155]
根据各个实施方式,dc可以包括e-utran nr-dc(en-dc)和/或多无线电接入技术(rat)-dc(mr-dc)。en-dc是指其中ue利用由e-utran节点和nr ran节点提供的无线电资源的dc情况。mr-dc是指其中ue利用由具有不同rat的ran节点提供的无线电资源的dc情况。
[0156]
图10示出了可以应用本公开的技术特征的切换过程的示例。图10示例性地例示了针对切换过程的步骤,但是所例示的步骤也可以应用于移动性过程(例如,sn添加过程和/或sn改变过程)。
[0157]
参照图10,在步骤s1001中,源ran节点可以向ue发送测量控制消息。源ran节点可以根据漫游和接入限制信息以及例如可用多频带信息通过测量控制消息来配置ue测量过程。由源ran节点通过测量控制消息提供的测量控制信息可以帮助控制ue的连接移动性的功能。例如,测量控制消息可以包括测量配置和/或报告配置。
[0158]
在步骤s1003中,ue可以向源ran节点发送测量报告消息。测量报告消息可以包括对ue周围的可以由ue检测到的相邻小区的测量结果。ue可以根据在步骤s1001中接收的测量控制消息中的测量配置和/或测量控制信息来生成测量报告消息。
[0159]
在步骤s1005中,源ran节点可以基于测量报告进行切换(ho)决定。例如,源ran节点可以基于对相邻小区的测量结果(例如,小区质量、信号质量、信号强度、参考信号接收功率(rsrp)、参考信号接收质量(rsrp)、信道状态、信道质量、信号与干扰加噪声比(sinr))来
进行ho决定并确定ue周围的相邻小区当中的针对ho的目标ran节点。
[0160]
在步骤s1007中,源ran节点可以向在步骤s1005中确定的目标ran节点发送ho请求消息。也就是说,源ran节点可以执行与目标ran节点的切换准备。ho请求消息可以包括准备在目标ran节点处的切换的必要信息。
[0161]
在步骤s1009中,目标ran节点可以基于包括在ho请求消息中的信息来执行准入控制。目标ran节点可以配置和预留所需的资源(例如,c-rnti和/或rach前导码)。与在源ran节点中使用的as配置相比,要在目标ran节点中使用的as配置可以被独立地指定(即,“建立”)或者被指定为增量(即,“重配置”)。
[0162]
在步骤s1011中,目标ran节点可以向源ran节点发送ho请求确认(ack)消息。ho请求ack消息可以包括关于针对切换预留和准备的资源的信息。例如,ho请求ack消息可以包括要作为rrc消息发送给ue以执行切换的透明容器。容器可以包括新c-rnti、针对所选安全性算法的目标gnb安全性算法标识符、专用rach前导码和/或可能的一些其它参数(即,接入参数、sib)。如果配置无rach切换,则容器可以包括定时调整指示和可选的预先分配的上行链路许可。如果必要,ho请求ack消息还可以包括用于转发隧道的rnl/tnl信息。一旦源ran节点接收到ho请求ack消息,或者一旦在下行链路中发起切换命令的发送,就可以发起数据转发。
[0163]
在步骤s1013中,源ran节点可以向ue发送可以是rrc消息的切换命令。目标ran节点可以生成rrc消息,以执行要由源ran节点朝向ue发送的切换(即,包括mobilitycontrolinformation的rrcconnectionreconfiguration消息)。源ran节点可以执行消息的必要完整性保护和加密。ue可以接收具有必要参数(即,新c-rnti、目标enb安全性算法标识符以及可选的专用rach前导码、目标enb sib等)的rrcconnectionreconfiguration消息,并且由源enb命令以执行切换。如果配置了无rach切换,则rrcconnectionreconfiguration可以包括用于接入目标ran节点的定时调整指示和可选的预先分配的上行链路许可。如果未包括预分配的上行链路许可,则ue应当监测目标ran节点的pdcch以接收上行链路许可。ue可以不需要为了将harq/arq响应传递到源ran节点而延迟切换执行。如果配置先接后断ho,则在ue执行到目标ran节点的初始上行链路传输之前,可以在接收到具有mobilitycontrolinformation的rrcconnectionreconfiguration消息之后维持与源ran节点的连接。
[0164]
在步骤s1015中,ue可以切换到新小区(即,目标ran节点)。ue可以从旧小区(即,源ran节点)分离并同步到新小区(即,目标ran节点)。例如,ue可以执行对目标ran节点的随机接入。ue可以向目标ran节点发送随机接入前导码,并且从目标ran节点接收包括上行链路许可的随机接入响应。如果配置无rach切换,则可以省略步骤s1015,并且可以在步骤s1013中提供上行链路许可。上行链路许可可以用于ue向目标ran节点发送切换完成消息。
[0165]
在步骤s1017中,ue可以向目标ran节点发送切换完成消息(即,rrcconnectionreconfigurationcomplete消息)。当ue成功地接入目标ran节点或在配置了无rach的ho时接收到的上行链路许可时,只要可能,ue可以向目标ran节点发送用于确认切换的包括c-rnti的rrcconnectionreconfigurationcomplete消息以及上行链路缓冲器状态报告,以指示针对ue的切换过程完成。目标ran节点可以验证在rrcconnectionreconfigurationcomplete消息中发送的c-rnti。目标ran节点现在可以开始向ue发送数据。
[0166]
图11示出了可以应用本公开的技术特征的条件切换过程的示例。图11示例性地例示了条件切换过程的步骤,但是所例示的步骤也可以应用于条件移动性过程(例如,条件sn添加过程和/或条件sn改变过程)。
[0167]
参照图11,在步骤s1101中,源ran节点可以向ue发送测量控制消息。源ran节点可以根据漫游和接入限制信息以及例如可用多频带信息通过测量控制消息来配置ue测量过程。由源ran节点通过测量控制消息提供的测量控制信息可以帮助控制ue的连接移动性的功能。例如,测量控制消息可以包括测量配置和/或报告配置。
[0168]
在步骤s1103中,ue可以向源ran节点发送测量报告消息。测量报告消息可以包括对ue周围的可以由ue检测到的相邻小区的测量结果。ue可以根据在步骤s1101中接收到的测量控制消息中的测量配置和/或测量控制信息来生成测量报告消息。
[0169]
在步骤s1105中,源ran节点可以基于测量报告进行切换(ho)决定。例如,源ran节点可以做出ho决定并确定相邻小区上的候选目标ran节点(例如,小区质量、信号质量、信号强度、参考信号接收功率(rsrp)、参考信号接收质量(rsrp)、信道状态、信道质量、信号与干扰加噪声比(sinr))。
[0170]
在步骤s1107中,源ran节点可以向在步骤s1105中确定的目标ran节点1和目标ran节点2发送ho请求消息。也就是说,源ran节点可以执行与目标ran节点1和目标ran节点2的切换准备。ho请求消息可以包括在目标侧(例如,目标ran节点1和目标ran节点2)准备切换的必要信息。
[0171]
在步骤s1109中,目标ran节点1和目标ran节点2中的每一个可以基于包括在ho请求消息中的信息来执行准入控制。目标ran节点可以配置和预留所需的资源(例如,c-rnti和/或rach前导码)。与在源ran节点中使用的as配置相比,要在目标ran节点中使用的as配置可以被独立地指定(即,“建立”)或者被指定为增量(即,“重配置”)。
[0172]
在步骤s1111中,目标ran节点1和目标ran节点2可以向源ran节点发送ho请求确认(ack)消息。ho请求ack消息可以包括关于针对切换预留和准备的资源的信息。例如,ho请求ack消息可以包括作为rrc消息发送给ue以执行切换的透明容器。容器可以包括新c-rnti、针对所选安全性算法的目标gnb安全性算法标识符、专用rach前导码和/或可能的一些其它参数(即,接入参数、sib)。如果配置了无rach切换,则容器可以包括定时调整指示和可选的预先分配的上行链路许可。如果必要,ho请求ack消息还可以包括用于转发隧道的rnl/tnl信息。一旦源ran节点接收到ho请求ack消息,或者一旦在下行链路中发起切换命令的发送,就可以发起数据转发。
[0173]
在步骤s1113中,源ran节点可以向ue发送条件ho(cho)配置。cho配置也可以被称为条件重配置。cho配置可以包括针对候选目标ran节点(例如,目标ran节点1、目标ran节点2)中的每一个的cho配置。例如,cho配置可以包括针对目标ran节点1的cho配置和针对目标ran节点2的cho配置。针对目标ran节点1的cho配置可以包括针对目标ran节点1的切换条件以及目标ran节点1的切换命令。目标ran节点1的切换命令可以包括针对到目标ran节点1的切换的rrc重配置参数,其包括关于针对到目标ran节点1的切换而预留的资源的信息。类似地,针对目标ran节点2的cho配置可以包括针对目标ran节点2的切换条件和目标ran节点2的切换命令。目标ran节点2的切换命令可以包括针对到目标ran节点2的切换的rrc重配置参数,其包括关于针对到目标ran节点2的切换而预留的资源的信息。
[0174]
在步骤s1115中,ue可以执行对针对候选目标ran节点(例如,目标ran节点1、目标ran节点2)的切换条件的评估,并且在候选目标ran节点当中选择针对切换的目标ran节点。例如,ue可以对候选目标ran节点执行测量,并且基于对候选目标ran节点的测量结果来确定候选目标ran节点当中的候选目标ran节点是否满足针对候选目标ran节点的切换条件。如果ue标识出目标ran节点1满足针对目标ran节点1的切换条件,则ue可以选择目标ran节点1作为针对切换的目标ran节点。
[0175]
在步骤s1117中,ue可以执行对所选目标ran节点(例如,目标ran节点1)的随机接入。例如,ue可以向目标ran节点1发送随机接入前导码,并且从目标ran节点1接收包括上行链路许可的随机接入响应。如果配置了无rach切换,则可以省略步骤s1117,并且可以在步骤s1113中提供上行链路许可。上行链路许可可以用于ue向目标ran节点1发送ho完成消息。
[0176]
在步骤s1119中,ue可以向目标ran节点1发送ho完成消息。当ue已经成功地接入目标ran节点1(或者当配置了无rach的ho时,已经接收到上行链路许可)时,ue可以向目标ran节点1发送用于确认切换的包括c-rnti的ho完成消息以及上行链路缓冲器状态报告,以指示针对ue完成了切换过程。目标ran节点1可以验证在ho完成消息中发送的c-rnti。
[0177]
贯穿本公开,与切换有关的描述也可以应用于不仅包括切换还包括sn添加和/或sn改变的移动性。
[0178]
在下文中,描述了软切换和/或双激活协议栈(daps)切换。
[0179]
软切换/切换(handover/handoff)可以指在来自不同ran节点(即,源ran节点和目标ran节点)的瞬时接收信号之间进行选择的能力。在软切换/切换中,可以在到源ran节点的连接被破坏之前建立到目标ran节点的连接。因此,软切换/切换还可以被称为“make-before-break(mbb)”切换/切换。软切换/切换的主要优点是降低了由于切换失败而异常终止的概率。
[0180]
此外,daps切换是指基于daps的切换,其中源ran节点中的协议栈和目标ran节点中的协议栈二者在切换期间都可以是活动的。也就是说,在daps和/或daps切换中,可以维持源小区和目标小区的无线电承载和配置,直到在切换完成之后释放源小区为止。
[0181]
将结合图12至图14描述daps切换的详细定义/特征。
[0182]
图12示出了可以应用本公开的技术特征的在发起切换和随机接入之前的针对daps切换的源协议和目标协议的状态的示例。
[0183]
参照图12,在发起切换之前,可以仅使用源协议(即,源ran节点中的协议栈)和源密钥(即,与源ran节点相关联的密钥)。源协议可以包括phy实体、mac实体、rlc实体或pdcp实体中的至少一个。
[0184]
在发起随机接入之前,可以存在源协议和目标协议(即,目标ran节点中的协议栈)二者。目标协议可以包括phy实体、mac实体、rlc实体或pdcp实体中的至少一个。此外,可以存在源密钥和目标密钥(即,与目标ran节点相关联的密钥)二者。然而,当ue已经接收到切换命令时,在发起随机接入之前,可以仅使用源协议和源密钥。
[0185]
图13示出了可以应用本公开的技术特征的在随机接入和切换完成消息的发送期间针对daps切换的源协议和目标协议的状态的示例。
[0186]
参照图13,在随机接入期间,可以存在源协议和目标协议两者。此外,可以存在源密钥和目标密钥二者。源协议和源密钥可以用于从源ran节点接收数据/向源ran节点发送
数据。目标协议的phy实体和mac实体可以用于在目标ran节点中执行随机接入过程。目标协议中的rlc实体针对基于竞争的随机接入过程可以是活动的。
[0187]
在切换完成消息(即,rrcconnectionreconfigurationcomplete消息)的发送期间,可以存在源协议和目标协议两者。此外,可以存在源密钥和目标密钥二者。源协议和源密钥可以用于从源ran节点接收数据/向源ran节点发送数据。目标协议的phy实体、mac实体和srb pdcp实体可以用于执行rrcconnectionreconfigurationcomplete消息的发送。
[0188]
图14示出了可以应用本公开的技术特征的在rar和源ran节点的释放之后的针对daps切换的源协议和目标协议的状态的示例。
[0189]
参照图14,在执行daps切换的ue已经接收到随机接入响应(rar)之后,可以存在源协议和目标协议二者。此外,可以存在源密钥和目标密钥二者。源协议和源密钥可以用于从源ran节点接收数据/向源ran节点发送数据。此外,目标协议和目标密钥可以用于从目标ran节点接收数据/向目标ran节点发送数据。
[0190]
在释放源ran节点之后,源协议和源密钥可能已被删除。可以仅使用目标协议和目标密钥。
[0191]
贯穿本公开,术语“daps切换”、“软切换/切换”和“mbb切换”可以可互换地使用。
[0192]
根据各个实施方式,ue可以接收包括配置参数“mobilitycontrolinfo”的rrcconnectionreconfiguration消息。包括mobilitycontrolinfo的rrcconnectionreconfiguration消息的示例可以是切换命令和/或条件切换命令。如果ue接收到包括mobilitycontrolinfo的rrcconnectionreconfiguration消息并且ue能够遵守包括在rrcconnectionreconfiguration消息中的配置,则ue应该开始同步到目标pcell的下行链路。如果配置了makebeforebreak(即,mbb),则ue可以执行包括在ue已经停止与源小区的上行链路发送/下行链路接收之后重置mac实体的切换过程。如果配置了makebeforebreak,则何时停止与源小区的上行链路发送/下行链路接收以发起针对到目标小区的连接的重调谐,可以取决于ue实现。
[0193]
根据各个实施方式,在接收到针对pcell的n310连续“不同步”指示而t300、t301、t304和t311都不在运行时,ue可以启动定时器t310。在t310到期时,在t312到期时,在来自mcg mac的随机接入问题指示而t300、t301、t304和t311都不在运行时,或者在来自mcg rlc的指示(其被允许在pcell上发送)之后,针对srb或drb已经达到最大重传次数,ue可以考虑针对mcg要检测到的无线电链路失败(rlf)。
[0194]
根据各个实施方式,ue可以在检测到mcg的rlf时和/或在与mcg的同步失败重配置时发起rrc重新建立过程。
[0195]
在下文中,描述了在mbb切换期间的无线电链路监测(rlm)处置。
[0196]
即使在接收到mbb切换命令之后,ue也可以在源小区连接上继续rlm,直到对目标小区的随机接入是成功的,或者在无rach切换的情况下,ue成功地接收pdcch发送。
[0197]
只有到目标小区的mbb切换执行成功,ue才可以仅在目标小区连接上执行rlm。也就是说,只有到目标小区的随机接入成功或者ue在无rach切换的情况下成功地接收pdcch发送,ue才可以仅在目标小区连接上执行rlm。
[0198]
当在成功ho完成之后在目标小区上检测到rlf时并且如果ue尚未释放源小区连接,则ue可以在回退到源小区连接时恢复源小区上的rlm。
[0199]
在下文中,描述了在mbb切换期间的rlf处置。
[0200]
在检测到mbb切换失败(例如,t304到期)或在mbb切换期间检测到目标小区连接上的rlf(同时源小区连接是活动的)时,ue可以声明目标小区连接上的rlf,但是可以不触发rrc重新建立并且可以使用源小区连接来操作。
[0201]
ue可以向源小区发送包括适当的失败原因和目标小区上的任何可用的测量结果的rlf信息。
[0202]
仅当源小区连接和目标小区连接由于rlf或mbb切换失败而失败时,ue才可以在mbb切换期间触发rrc重新建立。
[0203]
在下文中,描述了无线电资源管理(rrm)测量。
[0204]
rrm测量可以包括信道质量指示符(cqi)测量、参考信号接收功率(rsrp)测量、参考信号接收质量(rsrq)测量和/或载波接收信号强度指示符(rssi)测量。由信号与干扰加噪声比(sinr)表示的信道质量的测量可以用于链路适配以及分组调度。在移动性期间,可能需要rsrp和/或rsrq以进行移动性决定。
[0205]
小区(例如,源小区和/或目标小区)的rrm可以包括:基于从小区接收的(测量)配置来对针对小区的一个或更多个相邻小区执行rrm测量,和/或向小区报告rrm测量的结果。例如,源小区的rrm可以包括基于从源小区接收的(测量)配置(即,源小区配置)来对针对源小区的一个或更多个相邻小区执行rrm测量,和/或向源小区报告rrm测量的结果。源小区的rrm还可以被称为源小区rrm处置,或者简称为源rrm处置。
[0206]
作为mbb切换的增强中的一个,正在讨论daps解决方案以在移动性期间实现0ms的中断时间。针对daps,可以维持源小区和目标小区的无线电承载,直到目标小区可以发送rrc重配置消息以释放源小区配置。为了实现0ms的中断时间,源小区可以在切换期间指派哪些dl数据由目标小区传送而其它dl/ul数据经由源小区传送,并且ue将仅从目标小区接收dl/向目标小区发送ul数据,并且目标小区可以向源小区指示该路径可以在切换完成之后从源小区切换到目标小区。
[0207]
在daps中,可以考虑源小区和目标小区之间的测量处置(例如,rrm/rlm处置),因为源小区和目标小区之间的多个连接在daps解决方案中应当是活动的。然而,还应当考虑如何开始和/或结束执行源小区和/或目标小区的rlm/rrm。例如,ue可以在mbb切换失败之后恢复回源小区。在这种情况下,ue尽快发起另一切换可能是高效的,以避免导致数据时延的rlf和rrc重建。
[0208]
因此,可能需要ue在mbb切换失败之后执行rrm测量和/或发送新的测量报告。此外,可能需要在daps切换期间处置源小区rrm,作为mbb增强。
[0209]
图15示出了根据本公开的实施方式的用于源rrm处置的方法的示例。图15中例示的步骤可以由无线装置和/或ue来执行。
[0210]
参照图15,在步骤s1501中,无线装置可以从源小区接收测量配置。测量配置可以是一种源小区配置(即,从源小区接收的配置)。测量配置可以包括rrm配置。
[0211]
在步骤s1503中,无线装置可以发起从源小区到目标小区的daps移动性。无线装置可以发起在移动性过程期间维持到源小区和目标小区二者的连接的daps移动性。
[0212]
在步骤s1505中,无线装置可以检测daps移动性的失败。例如,无线装置可以在诸如t304的移动性有效性定时器的到期和/或诸如针对目标小区的无效配置的重配置错误时
检测daps移动性的失败。
[0213]
在步骤s1507中,无线装置可以向源小区发送针对daps移动性的失败的信息。无线装置可以向源小区发送指示daps移动性已经失败的信息。
[0214]
在步骤s1509中,无线装置可以基于从源小区接收的测量配置来对一个或更多个相邻小区执行rrm测量。也就是说,无线装置可以恢复回源小区并执行源小区的rrm。贯穿本公开,无线装置在移动性过程中恢复回源小区可以指代在移动性失败之后使用在发起移动性过程之前接收到的源小区配置。因此,无线装置可以恢复回源小区并且基于在发起daps移动性之前接收到的源小区配置来执行源小区的rrm。
[0215]
根据各个实施方式,无线装置可以在发起从源小区到目标小区的daps移动性之前从源小区接收测量配置。
[0216]
根据各个实施方式,在检测到daps移动性的失败之后/时,无线装置可以在不执行rrc重建的情况下执行rrm测量。
[0217]
根据各个实施方式,无线装置可以在daps移动性期间对相邻小区执行rrm测量。无线装置可以在检测到daps移动性的失败之后向源小区发送关于对相邻小区的rrm测量的结果的信息。
[0218]
根据各个实施方式,相邻小区可以在daps移动性期间满足对相邻小区的rrm测量的报告条件。针对对相邻小区的rrm测量的结果的信息可以在daps移动性期间被存储在无线装置的存储器中而不是被发送到源小区。
[0219]
根据各个实施方式,无线装置可以从源小区接收针对目标小区的移动性命令。无线装置以基于移动性命令来发起daps移动性。在无线装置接收到移动命令之前,无线装置可以接收测量配置。
[0220]
根据各个实施方式,无线装置可以在检测到daps移动性的失败之后,在源小区上执行下行链路数据接收或上行链路数据发送中的至少一个。
[0221]
根据各个实施方式,无线装置可以在一个或更多个相邻小区中标识满足rrm测量的报告条件的相邻小区。无线装置可以向源小区发送包括针对相邻小区的rrm测量的结果的测量报告。无线装置可以从源小区接收针对相邻小区的移动性命令。无线装置可以基于移动性命令来执行到作为目标小区的相邻小区的移动性(例如,daps移动性)。无线装置可以基于到目标小区的移动性是成功的来发送移动性完成消息。
[0222]
根据各个实施方式,无线装置可以对源小区执行rlm直到发送移动性完成消息。无线装置可以从发送移动性完成消息的时间开始执行对目标小区的rlm。
[0223]
根据各个实施方式,在到目标小区的移动性成功之后,无线装置可以基于从目标小区接收到的测量配置来对相邻小区(即,目标小区的rrm)执行rrm测量。
[0224]
根据各个实施方式,无线装置可以在维持包括源小区的测量配置的源小区的配置(即,源小区配置)的同时执行从源小区到目标小区的移动性。无线装置可以基于源小区的测量配置来执行测量(例如,rrm测量)。无线装置可以基于rrm测量来存储测量信息,而不是向源小区报告测量信息。无线装置可以在检测到到目标小区的移动性失败之后向源小区报告测量信息。
[0225]
图16示出了根据本公开的实施方式的用于daps切换中的源rrm处置的方法的示例。图16中例示的步骤可以由无线装置和/或ue来执行。
[0226]
参照图16,在步骤s1601中,ue可以从源小区接收关于针对切换的增强型mbb指示(或者,mbb切换指示/daps切换指示)和切换命令的信息。ue可以维持与源小区相关的rrm测量配置(即,源小区配置),并且还在切换期间执行rrm测量。也就是说,ue可以在从源小区接收到切换命令之前已经从源小区接收到源小区配置,这意指ue可以在发起切换之前已经从源小区接收到源小区配置。如果附加的相邻小区在切换期间满足rrm测量的报告条件(即,应当满足用于触发(发送)包括rrm测量的结果的测量报告的条件),则ue可以不立即向源小区报告测量结果。相反,ue可以存储报告信息(即,测量结果)。
[0227]
增强型mbb指示可以用于执行与daps切换相关的操作,其中,维持无线电承载和源小区的配置(即,源小区配置)和目标小区的配置(即,目标小区配置)直到在切换完成之后释放了源小区。针对daps切换,可以需要源小区的rlm直到向目标小区发送切换完成消息并且从向目标小区发送切换完成消息的时间开始需要目标小区的rlm。
[0228]
在步骤s1603中,ue可以在维持源小区连接的同时尝试到目标小区的随机接入。目标小区可以响应于随机接入试验。与源小区相关联的ran节点可以保持对ul/dl数据的调度。ue可以保持监测源小区的无线电链路(即,在执行到目标小区的随机接入的同时对源小区执行rlm)。
[0229]
在步骤s1605中,ue可以声明针对目标小区的切换失败。例如,ue可以在诸如t304的切换有效性定时器的到期和/或诸如针对目标小区的无效配置的重配置错误时声明切换失败。ue可以释放整个目标小区配置。如果没有小区执行测量报告(即,不存在满足rrm测量的报告条件的小区),则ue可以根据从源小区接收到的配置来保持rrm测量。也就是说,ue可以在声明切换失败之后,基于在发起切换之前接收到的源小区配置来执行rrm测量。如果存在在切换期间存储的要报告的任何信息(例如,测量结果)(即,对满足报告条件的小区上的rrm测量的结果),则ue可以向源小区(包括满足rrm测量报告条件的所有小区)发送针对测量报告(例如,measurementreport)的rrc信令。ue和源小区还可以继续执行与源小区的ul/dl数据发送。
[0230]
在步骤s1607中,ue可以从源小区接收针对切换的mbb指示和新切换命令的新信息。在接收到包括新相邻小区满足报告条件的测量报告消息时,源小区可以提供针对切换的增强型mbb指示和切换命令的新信息。
[0231]
在步骤s1609中,在成功切换时,ue可以根据与源小区相关的配置(即,源小区配置)停止对源小区的rlm和rrm测量。ue可以释放包括源小区的测量配置的源小区配置。ue可以开始对目标小区的rlm,并且根据与目标小区相关的配置(即,由目标小区生成并从目标小区接收的配置,其可以被称为目标小区配置)来执行rrm测量。
[0232]
如果ue从较低层接收到针对所发送的指示移动性完成的消息的较低层确认(例如,切换完成消息),则ue的rrc实体可以声明切换成功。
[0233]
在下文中,描述了针对双连接移动性(例如,daps移动性和/或mbb移动性)的源连接性控制。针对双连接移动性的源连接性控制可以包括:i)rrc消息发送控制,和ii)源小区连接控制。
[0234]
(1)rrc消息发送
[0235]
直到移动性完成,ue可以在源小区上发送/接收源rrc消息,但是可以不在目标小区上发送/接收源rrc消息。然而,也有可能直到移动性完成之前,ue不仅可以在源小区上发
送/接收源rrc消息,还可以在目标小区上发送/接收源rrc消息。在移动性完成之后,ue可以不发送/接收源rrc消息。此外,在移动性完成之后,ue可以在源小区上发送/接收复制的目标rrc消息,而ue可以正常地在目标小区上发送/接收目标rrc消息。
[0236]
(2)源小区连接控制
[0237]
源小区可以能够在移动性完成之前的持续时间内提供关于保持/释放与源小区的连接性的条件。目标小区可以能够在移动性完成之后的持续时间内提供关于保持/释放与源小区的连接性的条件。服务小区的质量可以被认为是针对对保持/释放与源小区的连接性的控制的条件。
[0238]
在下文中,描述了用于在移动性失败之后恢复回源小区配置的详细过程。
[0239]
例如,ue应该:
[0240]
1》如果mcg的t304到期:
[0241]
2》如果已配置,则释放在rach-configdedicated中提供的专用前导码;
[0242]
2》如果针对任何drb配置了dapsconfig,并且在源pcell中没有检测到无线电链路失败:
[0243]
3》释放目标pcell配置;
[0244]
3>重置目标mac并且释放目标mac配置;
[0245]
3》针对具有daps pdcp实体的每个drb:
[0246]
4》释放针对目标的相关联的逻辑信道和rlc实体;
[0247]
4》将pdcp实体重配置为正常pdcp;
[0248]
3》针对每个srb:
[0249]
4》如果没有接收到masterkeyupdate:
[0250]
5》配置具有与针对目标的pdcp实体相同的状态变量的针对源的pdcp实体;
[0251]
4》释放针对目标的pdcp实体;
[0252]
4》释放针对目标的相关联的逻辑信道和rlc实体;
[0253]
3》释放针对目标的物理信道配置;
[0254]
3》恢复回在源中使用的sdap配置;
[0255]
3》如果存在任何,则丢弃在目标(k
gnb
密钥、s-k
gnb
密钥、s-k
enb
密钥、k
rrcenc
密钥、k
rrcint
密钥、k
upint
密钥和k
upenc
密钥)中使用的密钥;
[0256]
3》恢复源中的挂起的srb;
[0257]
3》针对没有daps pdcp实体的每个drb:
[0258]
4》恢复回在源中的针对drb的ue配置,包括pdcp、rlc状态变量、安全性配置和存储在pdcp实体和rlc实体中的发送缓冲器和接收缓冲器中的数据;
[0259]
3》恢复回在源中使用的ue rrm配置;
[0260]
3》发起失败信息过程以报告daps切换失败。
[0261]
2》否则:
[0262]
3》恢复回在源pcell中使用的ue配置;
[0263]
3》发起连接重建过程。
[0264]
在上面的上下文中,“ue配置”可以包括每个无线电承载的状态变量和参数。
[0265]
1》否则,如果辅小区组的t304到期:
[0266]
2》如果已配置,则释放在rach-configdedicated中提供的专用前导码;
[0267]
2》发起scg失败信息过程以报告具有同步失败的scg重配置,在该同步失败之后,rrc重配置过程结束;
[0268]
1》否则,如果t304在经由其它rat接收到rrcreconfiguration时到期(切换到nr失败):
[0269]
2》重置mac;
[0270]
2》执行针对该失败情况定义的适用于其它rat的动作。
[0271]
针对另一示例,ue应该:
[0272]
1》如果ue没有成功地建立到目标无线电接入技术的连接;或者
[0273]
1》如果ue不能遵守包括在mobilityfromnrcommand消息中的配置的任何部分;或者
[0274]
1》如果在包括在mobilityfromnrcommand消息中的rat间信息中存在协议错误,则导致ue根据适用于目标rat的规范来使过程失败。
[0275]
2》恢复回在源pcell中使用的配置;
[0276]
2》发起连接重建过程。
[0277]
总之,在daps切换失败时,ue可以在针对未配置有daps的drb的切换命令(包括rlc和pdcp状态)的接收之前恢复回源小区配置。针对非daps drb,在daps切换失败时,经恢复的pdcp/rlc状态可以包括在切换命令的接收之前存储在pdcp实体和rlc实体的发送缓冲器和接收缓冲器中的数据。针对非daps drb,在daps切换失败时,经恢复的源小区配置还可以包括sdap(针对nr)配置和逻辑信道配置。如果在daps切换失败的情况下针对非daps drb恢复了数据,则不应该丢弃存储在发送缓冲器和接收缓冲器中的数据。
[0278]
图17示出了用于实现本公开的实施方式的ue。上面针对ue侧描述的本公开可以应用于本实施方式。
[0279]
ue包括处理器1710、电源管理模块1711、电池1712、显示器1717、键区1714、订户标识模块(sim)卡1715、存储器1720、收发器1730、一个或更多个天线1731、扬声器1740和麦克风1741。
[0280]
处理器1710可以被配置为实现本说明书中描述的所提出的功能、过程和/或方法。无线电接口协议的层可以实现于处理器1710中。处理器1710可以包括专用集成电路(asic)、其它芯片集、逻辑电路和/或数据处理装置。处理器1710可以是应用处理器(ap)。处理器1710可以包括数字信号处理器(dsp)、中央处理单元(cpu)、图形处理单元(gpu)、调制解调器(调制器和解调器)中的至少一个。处理器1710的示例可见于制造的snapdragon
tm
系列处理器、制造的exynos
tm
系列处理器、制造的a系列处理器、制造的helio
tm
系列处理器、制造的atom
tm
系列处理器或对应下一代处理器。
[0281]
处理器1710可以被配置为或被配置为控制收发器1730以实现在本公开中由ue和/或无线装置执行的步骤。
[0282]
电源管理模块1711针对处理器1710和/或收发器1730管理电源。电池1712向电源管理模块1711供电。显示器1713输出由处理器1710处理的结果。键区1714接收输入以由处
理器1710使用。键区1714可以在显示器1713上示出。sim卡1715是旨在安全地存储用于标识和认证移动电话装置(例如,移动电话和计算机)上的订户的国际移动订户标识(imsi)号码及其相关密钥的集成电路。它还可以在许多sim卡上存储联系信息。
[0283]
存储器1720在操作上与处理器1710联接并存储各种信息以操作处理器1710。存储器1720可以包括只读存储器(rom)、随机存取存储器(ram)、闪存、存储卡、存储介质和/或其它存储装置。当实施方式在软件中实现时,本文所描述的技术可以利用执行本文所描述的功能的模块(例如,过程、功能等)来实现。模块可以被存储在存储器1720中并由处理器1710执行。存储器1720可以实现于处理器1710内部或处理器1710外部,在存储器1720实现于处理器1710外部的情况下,存储器1720可以经由本领域中已知的各种手段在通信上与处理器1710联接。
[0284]
收发器1730在操作上与处理器1710联接,并且发送和/或接收无线电信号。收发器1730包括发送器和接收器。收发器1730可以包括基带电路以处理射频信号。收发器1730控制一个或更多个天线1731以发送和/或接收无线电信号。
[0285]
扬声器1740输出由处理器1710处理的声音相关结果。麦克风1741接收声音相关输入以由处理器1710使用。
[0286]
图18示出了可以应用本公开的技术特征的无线通信系统的另一示例。
[0287]
参照图18,无线通信系统可以包括第一装置1810(即,第一装置210)和第二装置1820(即,第二装置220)。
[0288]
第一装置1810可以包括至少一个收发器(例如,收发器1811)和至少一个处理芯片(例如,处理芯片1812)。处理芯片1812可以包括至少一个处理器(例如,处理器1813)和至少一个存储器(例如,存储器1814)。存储器可以在操作上可连接到处理器1813。存储器1814可以存储各种类型的信息和/或指令。存储器1814可以存储实现在由处理器1813执行时执行贯穿本公开描述的第一装置910的操作的指令的软件代码1815。例如,软件代码1815可以实现在由处理器1813执行时执行贯穿本公开描述的第一装置1810的功能、过程和/或方法的指令。例如,软件代码1815可以控制处理器1813以执行一个或更多个协议。例如,软件代码1815可以控制处理器1813执行无线电接口协议的一层或更多层。
[0289]
第二装置1820可以包括至少一个收发器(例如,收发器1821)和至少一个处理芯片(例如,处理芯片1822)。处理芯片1822可以包括至少一个处理器(例如,处理器1823)和至少一个存储器(例如,存储器1824)。存储器可以在操作上可连接到处理器1823。存储器1824可以存储各种类型的信息和/或指令。存储器1824可以存储实现由处理器1823执行时执行贯穿本公开描述的第二装置1820的操作的指令的软件代码1825。例如,软件代码1825可以实现在由处理器1823执行时执行贯穿本公开描述的第二装置1820的功能、过程和/或方法的指令。例如,软件代码1825可以控制处理器1823以执行一个或更多个协议。例如,软件代码1825可以控制处理器1823执行无线电接口协议的一层或更多层。
[0290]
本公开可以应用于诸如ai、机器人、自主驾驶/自动驾驶车辆和/或扩展现实(xr)的各种未来技术。
[0291]
《ai》
[0292]
ai是指人工智能和/或用于制造其的研究方法论的领域。机器学习是研究定义和解决ai中处理的各种问题的方法论的领域。机器学习可以被定义为通过利用任何任务的稳
定体验来提高任务的性能的算法。
[0293]
人工神经网络(ann)是机器学习中使用的模型。它可以意指问题解决能力的整个模型,包括形成突触网络的人工神经元(节点)。ann可以由不同层中的神经元之间的连接模式、用于更新模型参数的学习过程和/或用于生成输出值的激活函数来定义。ann可以包括输入层、输出层和可选的一个或更多个隐藏层。每个层可以包含一个或更多个神经元,并且ann可以包括将神经元链接到神经元的突触。在ann中,每个神经元可以输出针对通过突触输入的输入信号、权重和偏转(deflection)的激活函数的和。模型参数是通过学习确定的参数,包括神经元的偏转和/或突触连接的权重。超参数意指在学习之前要在机器学习算法中设置的参数,并且包括学习速率、重复编号、迷你批量大小、初始化功能等。ann学习的目标可以被视为确定使损失函数最小化的模型参数。损失函数可以用作索引以确定ann的学习过程中的最优模型参数。
[0294]
根据学习方法,机器学习可以被划分成监督学习、无监督学习和强化学习。监督学习是具有给定学习数据的标签的学习ann的方法。标签是ann在学习被输入到ann的数据时必须推断出的答案(或结果值)。无监督学习可以意指在没有被给定学习数据的标签的情况下学习ann的方法。强化学习可以意指学习方法,其中在环境中定义的代理学习选择使每个状态下的累积补偿最大化的行为和/或动作序列。
[0295]
被实现为包括ann当中的多个隐藏层的深度神经网络(dnn)的机器学习也被称为深度学习。深度学习是机器学习的一部分。在下文中,机器学习用于意指深度学习。
[0296]
图19示出了可以应用本公开的技术特征的ai装置的示例。
[0297]
ai装置1900可以被实现为诸如tv、投影仪、移动电话、智能电话、台式计算机、笔记本、数字广播终端、pda、pmp、导航装置、平板pc、可穿戴装置、机顶盒(stb)、数字多媒体广播(dmb)接收器、收音机、洗衣机、冰箱、数字标牌、机器人、车辆等的固定装置或移动装置。
[0298]
参照图19,ai装置1900可以包括通信部件1910、输入部件1920、学习处理器1930、感测部件1940、输出部件1950、存储器1960和处理器1970。
[0299]
通信部件1910可以使用有线和/或无线通信技术向诸如ai装置和ai服务器的外部装置发送数据和/或从诸如ai装置和ai服务器的外部装置接收数据。例如,通信部件1910可以利用外部装置发送和/或接收传感器信息、用户输入、学习模型和控制信号。通信部件1910所使用的通信技术可以包括全球移动通信系统(gsm)、码分多址(cdma)、lte/lte-a、5g、wlan、wi-fi、蓝牙
tm
、射频识别(rfid)、红外数据协会(irda)、zigbee和/或近场通信(nfc)。
[0300]
输入部件1920可以获取各种数据。输入部件1920可以包括用于输入视频信号的摄像头、用于接收音频信号的麦克风以及用于从用户接收信息的用户输入部件。摄像头和/或麦克风可以被视为传感器,并且从摄像头和/或麦克风获得的信号可以被称为感测数据和/或传感器信息。输入部件1920可以获取要在使用学习数据获取输出时使用的输入数据和用于模型学习的学习模型。输入部件1920可以获得原始输入数据,在这种情况下,处理器1970或学习处理器1930可以通过预处理输入数据来提取输入特征。
[0301]
学习处理器1930可以使用学习数据来学习由ann组成的模型。学习到的ann可以被称为学习模型。学习模型可以用于推断针对新的输入数据而不是学习数据的结果值,并且所推断的值可以用作用于确定要执行哪些动作的基础。学习处理器1930可以与ai服务器的
学习处理器一起执行ai处理。学习处理器1930可以包括集成和/或实现在ai装置1900中的存储器。另选地,学习处理器1930可以使用存储器1960、直接联接到ai装置1900的外部存储器和/或维持在外部装置中的存储器来实现。
[0302]
感测部件1940可以使用各种传感器来获取ai装置1900的内部信息、ai装置1900的环境信息和/或用户信息中的至少一个。包括在感测部件1940中的传感器可以包括接近传感器、照度传感器、加速度传感器、磁传感器、陀螺仪传感器、惯性传感器、rgb传感器、ir传感器、指纹识别传感器、超声波传感器、光学传感器、麦克风、光检测和测距(lidar)和/或雷达。
[0303]
输出部件1950可以生成与视觉、听觉、触觉等相关的输出。输出部件1950可以包括用于输出视觉信息的显示单元、用于输出听觉信息的扬声器和/或用于输出触觉信息的触觉模块。
[0304]
存储器1960可以存储支持ai装置1900的各种功能的数据。例如,存储器1960可以存储由输入部件1920获取的输入数据、学习数据、学习模型、学习历史等。
[0305]
处理器1970可以基于使用数据分析算法和/或机器学习算法确定和/或生成的信息来确定ai装置1900的至少一个可执行操作。然后处理器1970可以控制ai装置1900的组件以执行所确定的操作。处理器1970可以请求、检索、接收和/或利用学习处理器1930和/或存储器1960中的数据,并且可以控制ai装置1900的组件以执行在至少一个可执行操作当中的所预测的操作和/或被确定为可期望的操作。处理器1970可以生成用于控制外部装置的控制信号,并且可以在外部装置需要被链接以执行所确定的操作时将所生成的控制信号发送到外部装置。处理器1970可以获得针对用户输入的意图信息并且基于所获得的意图信息来确定用户的要求。处理器1970可以使用用于将语音输入转换为文本串的语音到文本(stt)引擎和/或用于获取自然语言的意图信息的自然语言处理(nlp)引擎中的至少一个以获得与用户输入相对应的意图信息。stt引擎和/或nlp引擎中的至少一个可以被配置为其至少一部分是根据机器学习算法来学习的ann。stt引擎和/或nlp引擎中的至少一个可以由学习处理器1930学习和/或由ai服务器的学习处理器学习,和/或通过其分布式处理学习。处理器1970可以收集包括ai装置1900的操作内容和/或用户对操作的反馈等的历史信息。处理器1970可以将所收集的历史信息存储在存储器1960和/或学习处理器1930中,和/或发送到诸如ai服务器的外部装置。所收集的历史信息可以用于更新学习模型。处理器1970可以控制ai装置1900的组件中的至少一些以驱动存储在存储器1960中的应用程序。此外,处理器1970可以彼此组合地操作包括在ai装置1900中的组件中的两个或更多个以驱动应用程序。
[0306]
图20示出了可以应用本公开的技术特征的ai系统的示例。
[0307]
参照图20,在ai系统中,ai服务器2020、机器人2010a、自动驾驶车辆2010b、xr装置2010c、智能电话2010d和/或家用电器2010e中的至少一个连接到云网络2000。应用了ai技术的机器人2010a、自动驾驶车辆2010b、xr装置2010c、智能电话2010d和/或家用电器2010e可以被称为ai装置2010a至2010e。
[0308]
云网络2000可以指形成云计算基础设施的一部分和/或驻留在云计算基础设施中的网络。云网络2000可以使用3g网络、4g或lte网络和/或5g网络来配置。也就是说,构成ai系统的装置2010a至2010e和2020中的每一个可以通过云网络2000彼此连接。具体地,装置2010a至2010e和2020中的每一个可以通过基站彼此通信,但是可以在不使用基站的情况下
彼此直接通信。
[0309]
ai服务器2020可以包括用于执行ai处理的服务器和用于执行关于大数据的操作的服务器。ai服务器2020通过云网络2000连接到构成ai系统的ai装置(即,机器人2010a、自动驾驶车辆2010b、xr装置2010c、智能电话2010d和/或家用器具2010e)中的至少一个或更多个,并且可以辅助所连接的ai装置2010a至2010e的至少一些ai处理。ai服务器2020可以代表ai装置2010a至2010e根据机器学习算法来学习ann,并且可以直接存储学习模型和/或将它们发送到ai装置2010a至2010e。ai服务器2020可以从ai装置2010a至2010e接收输入数据,使用学习模型相对于接收到的输入数据推断结果值,基于所推断的结果值生成响应和/或控制命令并且将所生成的数据发送到ai装置2010a至2010e。另选地,ai装置2010a至2010e可以使用学习模型直接推断针对输入数据的结果值,并且基于所推断的结果值来生成响应和/或控制命令。
[0310]
将描述可以应用本公开的技术特征的ai装置2010a至2010e的各个实施方式。图20中示出的ai装置2010a至2010e可以被看作图19中示出的ai装置1900的具体实施方式。
[0311]
本公开可以具有各种有益效果。
[0312]
例如,ue可以基于源小区配置在切换失败之后对一个或更多个相邻小区执行rrm测量,以使得可以快速发起新的切换。由于在切换失败之后执行源小区的rrm可以防止rrc重建过程,并且ue能够继续向源小区发送数据传输,因此可以进一步减少中断时间。
[0313]
可以通过本公开的具体实施方式获得的有益效果不限于以上列出的有益效果。例如,相关领域的普通技术人员可以理解和/或从本公开推导出各种技术效果。因此,本公开的具体效果不限于本文明确描述的那些,而是可以包括可以从本公开的技术特征理解或推导出的各种效果。
[0314]
鉴于本文所描述的示例性系统,参照多个流程图描述了可以根据所公开的主题实现的方法。尽管为了简单起见,方法被示出并描述为一系列步骤或框图,但将理解和意识到,要求保护的主题不受步骤或框图的次序限制,因为一些步骤可按照与本文所描绘和描述的不同次序发生或与其它步骤同时发生。此外,本领域技术人员将理解,流程图中所示的步骤不是排他性的,在不影响本公开的范围的情况下,可包括其它步骤或者可删除示例流程图中的一个或更多个步骤。
[0315]
本说明书中的权利要求可以以各种方式组合。例如,本说明书的方法权利要求中的技术特征可以被组合以在设备中实现或执行,并且设备权利要求中的技术特征可以被组合以在方法中实现或执行。此外,方法权利要求和设备权利要求中的技术特征可以被组合以在设备中实现或执行。此外,方法权利要求和设备权利要求中的技术特征可以被组合以在方法中实现或执行。其它实施方案在所附权利要求书的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1