用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系的制作方法

文档序号:30435168发布日期:2022-06-15 23:05阅读:118来源:国知局
用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系的制作方法

1.本公开整体涉及通信系统。更具体地,本公开涉及用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系。


背景技术:

2.为了满足消费者需求并改善便携性和便利性,无线通信设备已变得更小且功能更强大。消费者已变得依赖于无线通信设备,并期望得到可靠的服务、扩大的覆盖区域和增强的功能性。无线通信系统可为多个无线通信设备提供通信,每个无线通信设备都可由基站提供服务。基站可以是与无线通信设备通信的设备。
3.随着无线通信设备的发展,人们一直在寻求改善通信容量、速度、灵活性和/或效率的方法。然而,改善通信容量、速度、灵活性和/或效率可能会带来某些问题。
4.例如,无线通信设备可使用通信结构与一个或多个设备通信。然而,所使用的通信结构可能仅提供有限的灵活性和/或效率。如本讨论所示,改善通信灵活性和/或效率的系统和方法可能是有利的。


技术实现要素:

5.在一个示例中,一种用户装备(ue),该ue包括:高层处理器,该高层处理器被配置为确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;该高层处理器被配置为丢弃具有低优先级的该第二上行链路信道;和传输电路,该传输电路被配置为传输具有高优先级的该第一上行链路信道。
6.在一个示例中,一种基站(gnb),该gnb包括:高层处理器,该高层处理器被配置为确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;该高层处理器被配置为丢弃具有低优先级的该第二上行链路信道;和接收电路,该接收电路被配置为接收具有高优先级的该第一上行链路信道。
7.在一个示例中,一种由用户装备(ue)执行的方法,该方法包括:确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;丢弃具有低优先级的该第二上行链路信道;以及传输具有高优先级的该第一上行链路信道。
8.在一个示例中,一种由基站(gnb)执行的方法,该方法包括:确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;丢弃具有低优先级的该第二上行链路信道;以及接收具有高优先级的该第一上行链路信道。
附图说明
9.[图1]图1是示出一个或多个基站(gnb)和一个或多个用户装备(ue)的一个具体实施的框图,其中可实现用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系的系统和方法。
[0010]
[图2]图2是示出用于下行链路的资源网格的示例的图示。
[0011]
[图3]图3是示出用于上行链路的资源网格的一个示例的图示。
[0012]
[图4]图4示出了几个参数的示例。
[0013]
[图5]图5示出了用于图4中所示的参数的子帧结构的示例。
[0014]
[图6]图6示出了时隙和子时隙的示例。
[0015]
[图7]图7示出了调度时间线的示例。
[0016]
[图8]图8示出了dl控制信道监视区域的示例。
[0017]
[图9]图9示出了包括多于一个的控制信道元素的dl控制信道的示例。
[0018]
[图10]图10示出了ul控制信道结构的示例。
[0019]
[图11]图11是示出gnb的一个具体实施的框图。
[0020]
[图12]图12是示出ue的一种具体实施的框图。
[0021]
[图13]图13示出了可在ue中利用的各种部件。
[0022]
[图14]图14示出了可在gnb中利用的各种部件。
[0023]
[图15]图15是示出可在其中实施本文所述的系统和方法的ue的一种实施方式的框图。
[0024]
[图16]图16是示出可在其中实施本文所述的系统和方法的gnb的一种实施方式的框图。
[0025]
[图17]图17示出了用于在具有不同优先级的信道之间冲突的丢弃行为的示例。
[0026]
[图18]图18示出了用于在具有不同优先级的信道之间冲突的丢弃行为的其他示例。
[0027]
[图19]图19示出了用于在具有不同优先级的信道之间冲突的丢弃行为的另一个示例。
[0028]
[图20]图20示出了用于在具有不同优先级的信道之间冲突的丢弃行为的其他示例。
具体实施方式
[0029]
本发明描述了一种用户装备(ue),该ue包括高层处理器,该高层处理器被配置为确定高优先级信道与低优先级信道冲突。该高优先级信道和该低优先级信道是上行链路信道。该高层处理器还被配置为丢弃该低优先级上行链路信道的至少一部分。该ue还包括传输电路,该传输电路被配置为传输该高优先级信道。
[0030]
在一种方法中,如果该高优先级信道在与该低优先级信道相同的符号开始,或者该高优先级信道早于该低优先级信道开始,则该低优先级信道可被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0031]
在另一种方法中,如果低优先级信道的起始符号早于高优先级信道,则该高优先级信道可从重叠符号中删截该低优先级信道。
[0032]
在又一种方法中,如果低优先级信道的起始符号早于高优先级信道,则该低优先级信道可基于定时关系被完全丢弃或被该高优先级信道删截。在一个示例中,如果该高优先级信道的信道状态或传输在该低优先级传输开始之前是已知的,则该低优先级信道可被完全丢弃而不进行传输,并且仅传输该高优先级信道。在另一个示例中,如果该低优先级信道传输已经开始,则该高优先级信道可删截该正在进行的低优先级信道。
[0033]
如果该高优先级信道被配置有子时隙结构,则可假设该高优先级信道在包含该高优先级信道的子时隙之前是已知的。在另一个示例中,已知该高优先级信道的传输的定时可通过上行链路控制信息(uci)或信道类型来确定。
[0034]
本发明还描述了一种基站(gnb)。该gnb包括高层处理器,该高层处理器被配置为确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道。该高层处理器还被配置为丢弃该低优先级上行链路信道的至少一部分。该gnb还包括接收电路,该接收电路被配置为接收该高优先级信道。
[0035]
本发明还描述了一种由用户装备(ue)执行的方法。该方法包括确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道。该方法还包括丢弃该低优先级上行链路信道的至少一部分。该方法进一步包括传输该高优先级信道。
[0036]
本发明还描述了一种由基站(gnb)执行的方法。该方法包括确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道。该方法还包括丢弃该低优先级上行链路信道的至少一部分。该方法进一步包括接收该高优先级信道。
[0037]
第3代合作伙伴项目(也称为“3gpp”)是旨在为第三代和第四代无线通信系统制定全球适用的技术规范和技术报告的合作协议。3gpp可为下一代移动网络、系统和设备制定规范。
[0038]
3gpp长期演进(lte)是授予用来改善通用移动通信系统(umts)移动电话或设备标准以应付未来需求的项目的名称。在一个方面,已对umts进行修改,以便为演进的通用陆地无线电接入(e-utra)和演进的通用陆地无线电接入网络(e-utran)提供支持和规范。
[0039]
本文所公开的系统和方法的至少一些方面可结合3gpp lte、高级lte(lte-a)和其他标准(例如,3gpp第8、9、10、11和/或12版)进行描述。然而,本公开的范围不应在这方面受到限制。本文所公开的系统和方法的至少一些方面可用于其他类型的无线通信系统。
[0040]
无线通信设备可以是如下电子设备,该电子设备用于向基站传送语音和/或数据,基站进而可与设备的网络(例如,公用交换电话网(pstn)、互联网等)进行通信。在描述本文的系统和方法时,无线通信设备可另选地称为移动站、ue、接入终端、订户站、移动终端、远程站、用户终端、终端、订户单元、移动设备等。无线通信设备的示例包括蜂窝电话、智能电话、个人数字助理(pda)、膝上型计算机、上网本、电子阅读器、无线调制解调器等。在3gpp规范中,无线通信设备通常被称为ue。然而,由于本公开的范围不应限于3gpp标准,因此术语“ue”和“无线通信设备”在本文中可互换使用,以表示更通用的术语“无线通信设备”。ue还可更一般地称为终端设备。
[0041]
在3gpp规范中,基站通常称为节点b、演进节点b(enb)、家庭增强或演进的节点b(henb)或者一些其他类似术语。由于本公开的范围不应限于3gpp标准,因此术语“基站”、“节点b”、“enb”、“gnb”和/或“henb”在本文中可互换使用,以表示更一般的术语“基站”。此外,术语“基站”可用来表示接入点。接入点可以是为无线通信设备提供对网络(例如,局域
网(lan)、互联网等)的接入的电子设备。术语“通信设备”可用来表示无线通信设备和/或基站。enb还可更一般地称为基站设备。
[0042]
应当注意,如本文所用,“小区”可以是任何这样的通信信道:其由标准化或监管机构指定,以用于高级国际移动通信(imt-advanced)以及其全部或其子集,使其被3gpp采用为用于enb与ue之间的通信的授权频带(例如,频带)。还应当指出的是,在e-utra和e-utran总体描述中,如本文所用,“小区”可以被限定为“下行链路资源和可选的上行链路资源的组合”。下行链路资源的载波频率和上行链路资源的载波频率之间的链接,可以在下行链路资源上传输的系统信息中得到指示。
[0043]“配置的小区”是ue知晓并得到enb准许以传输或接收信息的那些小区。“配置的小区”可以是服务小区。ue可接收系统信息并对所有配置的小区执行所需的测量。用于无线电连接的“配置的小区”可包括主小区和/或零个、一个或多个辅小区。“激活的小区”是ue正在其上进行传输和接收的那些配置的小区。也就是说,激活的小区是ue监视其物理下行链路控制信道(pdcch)的那些小区,并且是在下行链路传输的情况下,ue对其物理下行链路共享信道(pdsch)进行解码的那些小区。“去激活的小区”是ue不监视传输pdcch的那些配置的小区。应当注意,可按不同的维度来描述“小区”。例如,“小区”可具有时间、空间(例如,地理)和频率特性。
[0044]
第五代(5g)蜂窝通信(也由3gpp称为“新无线电”、“新无线电接入技术”或“nr”)设想了使用时间/频率/空间资源以允许增强型移动宽带(embb)通信和超高可靠低延迟通信(urllc)服务以及大规模机器类型通信(mmtc)等服务。新无线电(nr)基站可称为gnb。gnb还可更一般地称为基站设备。
[0045]
对于在物理(phy)层处的ue内冲突处理,在高优先级上行链路(ul)传输与低优先级ul传输重叠的情况下,低优先级ul传输可在某些约束(特别是时间线)下被丢弃。在一些具体实施中,ul传输可以是pucch上的肯定调度请求(sr)、harq-ack、pusch或p/sp-csi。其他类型的ul传输可以包括srs、prach、pucch-bfr等。
[0046]
本文描述了丢弃行为的各种示例。本文还描述了处理时间线问题的示例。
[0047]
现在将参考附图来描述本文所公开的系统和方法的各种示例,其中相同的参考标号可指示功能相似的元件。如在本文附图中一般性描述和说明的系统和方法能够以各种不同的具体实施来布置和设计。因此,下文对附图呈现的几种具体实施进行更详细的描述并非意图限制要求保护的范围,而是仅仅代表所述系统和方法。
[0048]
图1是示出一个或多个基站(gnb)和一个或多个用户装备(ue)的一个具体实施的框图,其中可实现用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系的系统和方法。一个或多个ue 102使用一个或多个天线122a-n来与一个或多个gnb 160进行通信。例如,ue 102使用一个或多个天线122a-n将电磁信号传输到gnb 160并且从gnb 160接收电磁信号。gnb 160使用一个或多个天线180a-n来与ue 102进行通信。
[0049]
ue 102和gnb 160可使用一个或多个信道119、121来彼此通信。例如,ue 102可使用一个或多个上行链路信道121将信息或数据传输到gnb 160。上行链路信道121的示例包括pucch(物理上行链路控制信道)和pusch(物理上行链路共享信道)、prach(物理随机接入信道)等。例如,上行链路信道121(例如,pusch)可用于传输ul数据(即,传输块)、mac pdu和/或ul-sch(上行链路共享信道))。
[0050]
在此,ul数据可包括urllc数据。urllc数据可以是ul-sch数据。在此,可限定urllc-pusch(即,来自pusch的不同物理上行链路共享信道)以传输urllc数据。为了简单描述,术语“pusch”可表示以下中的任一者:(1)仅pusch(例如,常规pusch、非urllc-pusch等),(2)pusch或urllc-pusch,(3)pusch和urllc-pusch,或(4)仅urllc-pusch(例如,不是常规pusch)。
[0051]
而且,例如,上行链路信道121可用于传输混合自动重复请求缺认(harq-ack)、信道状态信息(csi)和/或调度请求(sr)。harq-ack可包括指示dl数据(即,传输块)、介质访问控制协议数据单元(mac pdu)和/或dl-sch(下行链路共享信道)的肯定确认(ack)或否定确认(nack)的信息。
[0052]
csi可包括指示下行链路的信道质量的信息。sr可用于请求用于新传输和/或重传的ul-sch(上行链路共享信道)资源。即,sr可用于请求用于传输ul数据的ul资源。
[0053]
例如,一个或多个gnb 160还可使用一个或多个下行链路信道119将信息或数据传输到一个或多个ue 102。下行链路信道119的示例包括pdcch、pdsch等。可使用其他种类的信道。pdcch可用于传输下行链路控制信息(dci)。
[0054]
一个或多个ue 102中的每一者可包括一个或多个收发器118、一个或多个解调器114、一个或多个解码器108、一个或多个编码器150、一个或多个调制器154、数据缓冲器104和ue操作模块124。例如,可在ue 102中实现一个或多个接收路径和/或传输路径。为方便起见,ue 102中仅示出了单个收发器118、解码器108、解调器114、编码器150和调制器154,但可实现多个并行元件(例如,多个收发器118、解码器108、解调器114、编码器150和调制器154)。
[0055]
收发器118可包括一个或多个接收器120以及一个或多个发射器158。一个或多个接收器120可使用一个或多个天线122a-n从gnb 160接收信号。例如,接收器120可接收并降频转换信号,以产生一个或多个接收的信号116。可将一个或多个接收的信号116提供给解调器114。一个或多个发射器158可使用一个或多个天线122a-n将信号传输到gnb 160。例如,一个或多个发射器158可升频转换并传输一个或多个调制的信号156。
[0056]
解调器114可解调一个或多个接收的信号116,以产生一个或多个解调的信号112。可将一个或多个解调的信号112提供给解码器108。ue102可使用解码器108来解码信号。解码器108可产生解码的信号110,该解码的信号可包括ue解码的信号106(也被称为第一ue解码的信号106)。例如,第一ue解码的信号106可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器104中。被包括在解码的信号110(也被称为第二ue解码的信号110)中的另一个信号可以包括开销数据和/或控制数据。例如,第二ue解码的信号110可提供ue操作模块124可用来执行一个或多个操作的数据。
[0057]
一般来讲,ue操作模块124可使ue 102能够与一个或多个gnb 160进行通信。ue操作模块124可包括ue调度模块126。
[0058]
ue调度模块126可针对具有如本文所述的不同优先级的上行链路信道冲突执行信道丢弃行为和定时关系。
[0059]
在nr中,支持不同的服务类型(例如,增强型移动宽带(embb)和超可靠低延迟(urllc))。为了支持不同的服务类型,针对不同的服务类型同时构造至少两个harq-ack码本。对于信道冲突处理,对于每个phy信道传输,在phy层处已知两级优先级。对于embb和
urllc之间的不同服务类型,具有embb数据或embb uci反馈的信道被认为是低优先级,并且具有urllc数据或urllc uci反馈的信道被认为是高优先级。如下所述,通过物理层或高层中的显式信令,在phy层已知信道的优先级。
[0060]
对于肯定sr,两级sr优先级在phy层中已知,在sr资源的rrc配置中显式地指示。具体地,配置用于urllc业务的sr具有高优先级,并且配置用于embb业务的sr具有低优先级。因此,用于urllc和embb的sr pucch资源可具有不同的pucch配置和参数,例如功率控制、bler要求等。
[0061]
对于动态授权pusch,通过物理层指示和/或信令(例如,调度dci中的不同的rnti、不同的dci格式或新位),在phy层中已知两级优先级。对于配置的授权pusch,可由用于类型1和类型2cg pusch的每个配置的准予(cg)配置中的显式指示(作为新rrc参数)来确定两级优先级。用于urllc业务的pusch具有高优先级,并且用于embb业务的pusch具有低优先级。
[0062]
可由对应的pdsch来确定pucch或pusch上的harq-ack码本的优先级。可通过物理层指示和/或信令(例如,调度dci中的不同的rnti、不同的dci格式或新位)来确定调度pdsch传输的两级优先级。可通过每个sps pdsch配置中的显式指示(作为新rrc参数)来确定sps pdsch传输的两级优先级,为sps pdsch提供到对应harq-ack码本的映射,以及为sps pdsch释放提供到ack的映射。因此,具有urllc业务的pdsch的harq-ack反馈或码本具有高优先级,并且具有embb业务的pdsch的harq-ack反馈或码本具有低优先级。
[0063]
pucch上的周期性csi或半持久csi(p/sp-csi)可用低优先级处理。因此,即使csi用于urllc csi报告,携带p/sp-csi的pucch也具有低优先级。pusch上的半持久csi sp-csi的优先级取决于输送sp-csi的pusch的2级phy优先级。非周期性csi(a-csi)的优先级取决于输送a-csi的pusch(具有或不具有ul-sch)的2级phy优先级。
[0064]
对于支持不同的服务类型的ue,高优先级上行链路信道可以是携带urllc数据或urllc uci的上行链路信道,并且低优先级上行链路信道可以是携带embb数据或embb uci的上行链路信道。对于在phy层处的ue内冲突处理,在高优先级ul传输与低优先级ul传输重叠的情况下,低优先级ul传输可在某些约束(特别是时间线)下被丢弃,至少对于包括pucch上的肯定sr、harq-ack、pusch或p/sp-csi的ul传输是如此。因此,在一些示例中,在相同优先级之间信道冲突的情况下,可重复使用rel-15处理方法。
[0065]
在不同优先级之间信道冲突的情况下,可传输高优先级信道,并且可丢弃低优先级信道。因此,在urllc ul信道与embb ul信道冲突的情况下,传输urllc ul信道,并且可丢弃embb信道。然而,仍然需要基于定时限制来进一步限定详细的丢弃行为。
[0066]
本文描述了用于在具有不同优先级的信道之间冲突的丢弃行为。在高优先级信道和低优先级信道之间可发生不同的重叠条件。特别地,如果低优先级信道具有长持续时间,则在高优先级信道到达之前,低优先级信道传输可能已经开始。本公开描述了在不同优先级之间信道冲突的情况下在不同的定时条件下的丢弃行为的示例。
[0067]
在第一情况下(情况1),高优先级信道传输早于低优先级信道开始或在与低优先级信道相同的符号开始。在这种情况下,如果高优先级信道在与低优先级信道(图17a)相同的符号开始,或者高优先级信道早于低优先级信道开始(图17b),则低优先级信道被完全丢弃而不进行传输,并且仅传输该高优先级信道,如图17所示。
[0068]
在第二情况下(情况2),高优先级信道传输在低优先级信道之后开始。在这种情况
下,如果低优先级信道的起始符号早于高优先级信道,则应当进一步讨论信道丢弃行为,并且可根据定时限制来考虑不同的方法,尤其是在低优先级信道之前是否已知高优先级信道传输。
[0069]
在第一方法(方法1)中,高优先级信道从重叠符号中删截低优先级信道。利用此方法,需要限定额外的定时关系。高优先级信道应在所有情况下抢占低优先级信道的传输。由于低优先级信道早于高优先级信道开始,因此当高优先级信道到达时,低优先级信道传输已经开始。因此,通过从重叠符号中删截低优先级信道来传输高优先级信道,如图18所示。
[0070]
在方法1中,高优先级信道应当删截高优先级信道和低优先级信道之间的至少所有重叠符号。如果在高优先级信道传输之后存在低优先级信道上的剩余符号,则在一种方法中,恢复低优先级信道传输上的剩余符号并仍然传输(如图18a所示)。在另一种方法中,在删截之后未恢复低优先级信道,因此低优先级信道传输上的剩余符号也被丢弃(如图18b所示)。假设低优先级信道被丢弃并且不被回收或检测到,这种方法可提供更简单的解决方案。
[0071]
在第二方法(方法2)中,根据定时关系,低优先级信道可被完全丢弃,或者可被高优先级信道删截。定时关系可包括pdsch或pusch调度的处理时间、dci解码的ue能力、sr触发的缓冲区状态等。具有不同优先级的信道可配置有相同或不同的帧结构。
[0072]
在一种情况下,高优先级信道(例如,pucch或pusch)可在子时隙级配置,并且低优先级信道可在时隙级配置。
[0073]
在另一种情况下,具有不同优先级的信道可配置有相同或不同的时隙或子时隙粒度。在一个示例中,高优先级信道和低优先级信道两者均在时隙级配置,这对于具有高子载波间隔(scs)设置的载波特别有用。在另一个示例中,高优先级信道和低优先级信道两者均在子时隙级配置。在该示例中,通过dci动态地指示或通过rrc信令半静态地指示信道的优先级。在另一个示例中,高优先级信道和低优先级信道被配置有不同的子时隙结构,例如embb服务配置有7符号子时隙,并且urllc服务配置有2符号子时隙。在所有情况下,通过dci动态地指示或通过rrc信令半静态地指示信道的优先级。
[0074]
在所有情况下,无序操作对于在同一ue中支持不同的服务类型(例如,embb和urllc操作)是至关重要的。可针对不同的服务类型指定不同的处理能力。或者,可对所有服务类型应用相同的处理能力。在相同的处理能力的情况下,urllc的短处理时间的较高ue能力也可适用于embb业务。
[0075]
对于具有早于高优先级信道的起始符号的低优先级信道之间的冲突的情况,针对ue已知高优先级信道的传输的状态时应当阐明高优先级信道的定时条件。根据phy信道上携带的uci或数据的类型,可不同地确定状态和信道传输。
[0076]
对于pdsch传输的harq-ack反馈,可使用pdsch到harq-ack的定时来确定从pdsch传输到对应harq-ack反馈的时隙或子时隙的数量。该时间包括dci接收、dci解码、pdsch接收、pdsch解码和用于harq-ack传输的准备。对于sps pdsch,pdsch传输不存在动态dci,由于也应当在sps配置中配置pdsch-harq-ack定时,因此ue也知道基于sps pdsch传输是否需要harq-ack反馈。
[0077]
另一方面,如果pdsch调度dci被正确解码,则可由ue调度harq-ack传输。假设在调度dci和调度的pdsch传输之后dl调度dci处理时间是n1个符号,则在处理pdsch调度dci并
正确解码之后,harq-ack反馈是已知的。对于sps pdsch传输,在检测到sps pdsch传输之后,harq-ack反馈是已知的。
[0078]
类似地,对于动态授权pusch传输,调度定时k2用于在调度dci之后确定pusch传输的时隙或子时隙的数量。该时间包括dci接收、dci解码和pusch传输的准备。
[0079]
另一方面,如果pusch调度dci被正确解码,则ue已知pusch传输。假设在调度dci传输之后ul调度dci处理时间是n2个符号,则在处理pusch调度dci并正确解码之后,pusch传输是已知的。
[0080]
对于激活的配置的授权(cg)pusch传输,传输时间是预先安排的。在一种方法中,ue可始终假设传输将在配置的pusch资源处发生。另一方面,如果用于给定业务的缓冲区中不存在数据,则ue可能不传输cg pusch。因此,是否发生pusch传输取决于缓冲区中是否存在用于具有给定服务类型的业务的数据。
[0081]
肯定sr状态类似于cg pusch传输,如果ue具有在给定服务类型的业务中传输的数据,则触发具有特定优先级的肯定sr。在phy层处,从紧接在配置的业务的前一个sr pucch资源之后到紧接在下一个配置的sr pucch资源之前,可已知肯定sr。
[0082]
因此,对于不同的优先级的信道冲突,当低优先级信道早于高优先级信道到达时,应当考虑信道的uci或数据内容。特别地,高优先级信道的处理时间和ue能力(例如,携带用于urllc的数据或uci的信道)应当用于确定在低优先级信道传输之前高优先级信道状态或传输是否是已知的。可基于低优先级和高优先级信道之间的定时条件来应用不同的低优先级信道丢弃行为。
[0083]
在第一子情况(子情况1)中,如果高优先级信道的传输的信道状态在低优先级传输开始之前是已知的,则低优先级信道被完全丢弃而不进行传输,并且仅传输高优先级信道。因此,如果高优先级信道的传输在低优先级传输开始之前是已知的,则低优先级信道可被丢弃而不进行传输,并且仅传输高优先级信道,如图19所示。
[0084]
作为方法1的扩展,如果高优先级信道在子时隙级配置,则假设高优先级信道传输在包含高优先级传输的子时隙开始处是已知的。因此,如果低优先级信道在包含高优先级信道的子时隙内开始,则低优先级信道应当被完全丢弃,并且仅传输高优先级信道。具体而言,具有不同时间约束的高优先级信道的传输状态可以是已知的,这取决于高优先级信道上携带的uci或数据。
[0085]
对于具有高优先级的sps pdsch传输或具有高优先级的动态调度的pdsch传输的pucch上的高优先级harq-ack,在一种方法中,如果pucch在子时隙级配置,则可假设harq-ack传输在包含用于harq-ack报告的pucch的子时隙开始处是已知的。因此,如果低优先级信道在包含用于harq-ack报告的pucch的子时隙内开始,则低优先级信道应当被完全丢弃,并且仅传输高优先级信道。注意,如果pucch在时隙级配置,则可假设harq-ack的pucch传输在包含用于harq-ack报告的pucch的时隙开始处是已知的。由于所有phy信道不能横穿时隙边界,因此低优先级信道应当被完全丢弃在时隙中,并且仅传输高优先级信道。
[0086]
在另一种方法中,在动态调度pdsch的情况下在dci检测之后或在检测到sps pdsch传输之后,假设状态是已知的。根据ue能力和处理时间,harq-ack报告可能是pdsch传输之后已知的n1个符号。在这种情况下,如果低优先级信道从pdsch传输之后的n1个符号开始或之后开始,则低优先级信道可被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0087]
类似地,对于动态授权高优先级pusch传输,在一种方法中,如果高优先级pusch在子时隙级配置,则可假设pusch传输在包含调度pusch传输的子时隙开始处是已知的。因此,如果低优先级信道在包含高优先级pusch传输的子时隙内开始,则低优先级信道应当被完全丢弃,并且仅传输高优先级信道。注意,如果高优先级pusch在时隙级配置,则可假设高优先级pusch传输在包含高优先级pusch的时隙开始处是已知的。由于所有phy信道不能横穿时隙边界,因此低优先级信道应当被完全丢弃在时隙中,并且仅传输高优先级信道。
[0088]
在另一种方法中,假设pusch传输在ul调度dci检测之后是已知的。根据ue能力和处理时间,harq-ack报告可能是ul调度dci传输之后已知的n2个符号。在这种情况下,如果低优先级信道从ul调度dci传输之后的n2个符号开始或之后开始,则低优先级信道可被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0089]
对于具有高优先级的cg pusch传输,如果在cg传输的缓冲区中存在数据,则在ue处已知传输。因此,如果在低优先级信道开始之前cg传输的缓冲区中存在数据,则低优先级信道应当被完全丢弃,并且仅传输高优先级信道。另一方面,如果cg传输的缓冲区中不存在数据,则可能不会发生cg pusch。因此,如果在低优先级信道开始之前cg传输的缓冲区中不存在数据,则低优先级信道应当按调度开始。如果数据在低优先级信道开始之后到达,则应当通过删截正在进行的低优先级信道来传输高优先级cg pusch信道,如下文的子情况2中所述。
[0090]
对于高优先级sr,如果在sr pucch资源之前在高优先级业务的缓冲区中存在数据,则在ue处已知肯定sr。因此,如果在低优先级信道开始之前高优先级业务的缓冲区中存在数据,则低优先级信道应当被完全丢弃,并且仅传输高优先级肯定sr pucch信道。另一方面,如果高优先级业务的缓冲区中不存在数据,则高优先级sr可能是否定的,并且可能不发生sr pucch传输。因此,如果在低优先级信道开始之前高优先级业务的缓冲区中不存在数据,则低优先级信道应当按调度开始。如果数据在低优先级信道开始之后到达,则应当通过删截正在进行的低优先级信道来传输高优先级肯定sr pucch信道,如下文的子情况2中所述。
[0091]
在第二子情况(子情况2)中,如果该低优先级信道传输已经开始,则该高优先级信道应当删截该正在进行的低优先级信道。如果高优先级信道的状态或传输在低优先级传输之前未知,则在高优先级信道的传输开始时低优先级信道传输已经开始。在这种情况下,高优先级信道应当删截正在进行的低优先级信道。然而,应当进一步阐明详细的删截行为(例如,删截的起始符号以及删截之后的行为)。
[0092]
下文论述删截行为的一些示例,并且可考虑几种方法。在一种方法中,通过从重叠符号中删截低优先级信道来传输高优先级信道,者与上述方法1相同。高优先级信道应当删截高优先级信道和低优先级信道之间的至少所有重叠符号。如果在高优先级传输之后存在低优先级信道上的剩余符号,则在一种方法中,还会丢弃低优先级信道传输上的剩余符号(如图20a所示)。假设低优先级信道被丢弃并且不被回收或检测到,这提供了更简单的解决方案。在另一种方法中,恢复低优先级信道传输上的剩余符号并仍然传输。
[0093]
在另一种方法中,高优先级信道可从当在ue处已知高优先级信道的传输时的符号中删截低优先级信道(如图20b所示)。作为方法1的简单扩展,如果高优先级信道在子时隙级配置,则假设高优先级信道传输在包含高优先级传输的子时隙开始处是已知的。因此,如
果低优先级信道在包含高优先级信道的子时隙之前开始,则可从包含高优先级信道的子时隙中删截低优先级信道。并且高优先级信道按调度传输。具体而言,具有不同时间约束的高优先级信道的传输状态可以是已知的,这取决于高优先级信道上携带的uci或数据。
[0094]
对于具有高优先级的sps pdsch传输或具有高优先级的动态调度的pdsch传输的pucch上的高优先级harq-ack,在一种方法中,如果pucch在子时隙级配置,则可假设harq-ack传输在包含用于harq-ack报告的pucch的子时隙开始处是已知的。因此,如果低优先级信道传输已经开始,则可从包含携带高优先级harq-ack的高优先级信道的子时隙开始处删截低优先级信道。并且高优先级信道按调度传输。注意,如果pucch在时隙级配置,则可假设harq-ack的pucch传输在包含用于harq-ack报告的pucch的时隙开始处是已知的。由于所有phy信道不能横穿时隙边界,因此低优先级信道应当被完全丢弃在时隙中,并且仅传输高优先级信道。
[0095]
在另一种方法中,在动态调度pdsch的情况下在调度dci检测之后或在检测到sps pdsch传输之后,假设状态是已知的。根据ue能力和处理时间,harq-ack报告可能是pdsch传输之后已知的n1个符号。在这种情况下,如果低优先级信道已经开始,则其可从pdsch传输之后的n1个符号中或之后由高优先级信道删截。并且高优先级信道按调度传输。
[0096]
类似地,对于动态授权高优先级pusch传输,在一种方法中,如果高优先级pusch在子时隙级配置,则可假设pusch传输在包含调度pusch传输的子时隙开始处是已知的。因此,如果低优先级信道已经开始,则可从包含高优先级pusch的子时隙开始处删截低优先级信道。并且高优先级信道按调度传输。注意,如果高优先级pusch在时隙级配置,则可假设高优先级pusch传输在包含高优先级pusch的时隙开始处是已知的。由于所有phy信道不能横穿时隙边界,因此低优先级信道应当被完全丢弃在时隙中,并且仅传输高优先级信道。
[0097]
在另一种方法中,假设pusch传输在ul调度dci检测之后是已知的。根据ue能力和处理时间,harq-ack报告可能是ul调度dci传输之后已知的n2个符号。在这种情况下,如果低优先级信道已经开始,则可在ul调度dci传输之后和高优先级信道传输之前的n2个符号中或之后删截低优先级信道。并且高优先级信道按调度传输。
[0098]
对于具有高优先级的cg pusch传输,如果在低优先级信道开始之前cg传输的缓冲区中不存在数据,则低优先级信道应当按调度开始。如果数据在低优先级信道开始之后到达,则应当通过删截正在进行的低优先级信道来传输高优先级cg pusch信道。在一种方法中,从重叠符号中删截低优先级信道。在另一种方法中,当数据到达用于cg pusch传输的缓冲区时,从符号中删截低优先级信道。注意,这可能是低优先级传输开始之后并且高优先级传输开始之前的任何符号,取决于数据到达时间。
[0099]
对于高优先级sr,如果在低优先级信道开始之前高优先级业务的缓冲区中不存在数据,则低优先级信道应当按调度开始。如果高优先级数据在低优先级信道开始之后到达,则应当通过删截正在进行的低优先级信道来传输高优先级肯定sr pucch信道。在一种方法中,从重叠符号中删截低优先级信道。在另一种方法中,当数据到达用于高优先级数据的缓冲区时,从符号中删截低优先级信道。注意,这可能是低优先级传输开始之后并且高优先级传输开始之前的任何符号,取决于数据到达时间。
[0100]
在所有情况下,如果在高优先级传输之后存在删截的低优先级信道上的剩余符号,则在一种方法中,还会丢弃低优先级信道传输上的剩余符号(如图20b所示)。假设低优
先级信道被丢弃并且不被回收或检测到,这提供了更简单的解决方案。在另一种方法中,恢复低优先级信道传输上的剩余符号并仍然传输。
[0101]
在仅具有embb服务的nr中,在pucch冲突的情况下,限定了用于uci多路复用的时间线条件。在不满足时间线的情况下,将其视为错误情况。相同的原理可应用于相同服务类型之间的信道冲突(例如,urllc pucch与另一个urllc pucch或pusch发生冲突)。
[0102]
对于具有不同优先级的信道之间的冲突,可使用时间线条件来确定低优先级信道的丢弃或删截位置。无时间线限制应当被限定为错误情况。这是因为高优先级信道应当在任何时间线条件下抢占低优先级。如果时间线可以满足在低优先级信道传输开始之前即将到来的高优先级信道传输是已知的,则完全丢弃低优先级信道是优选的。另一方面,当时间线不满足时仍然需要支持低优先级信道的高优先级信道删截。删截正在进行的低优先级信道的支持行为比详细的删截位置更重要。至少重叠符号应当由高优先级信道删截。在删截的情况下,低优先级信道的起始删截位置可以是灵活的并且由于不同的ue能力或具体实施而不同。这些细节可能留作ue具体实施问题,因为删截的低优先级信道可能被视为已损坏或毁坏,无法检测或解码。
[0103]
ue操作模块124可将信息148提供给一个或多个接收器120。例如,ue操作模块124可通知接收器120何时接收重传。
[0104]
ue操作模块124可将信息138提供给解调器114。例如,ue操作模块124可通知解调器114针对来自gnb 160的传输所预期的调制图案。
[0105]
ue操作模块124可将信息136提供给解码器108。例如,ue操作模块124可通知解码器108针对来自gnb 160的传输所预期的编码。
[0106]
ue操作模块124可将信息142提供给编码器150。信息142可包括待编码的数据和/或用于编码的指令。例如,ue操作模块124可指示编码器150编码传输数据146和/或其他信息142。其他信息142可包括pdsch harq-ack信息。
[0107]
编码器150可编码由ue操作模块124提供的传输数据146和/或其他信息142。例如,对数据146和/或其他信息142进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以用于传输、多路复用等。编码器150可将编码的数据152提供给调制器154。
[0108]
ue操作模块124可将信息144提供给调制器154。例如,ue操作模块124可通知调制器154将用于向gnb 160进行传输的调制类型(例如,星座映射)。调制器154可调制编码的数据152,以将一个或多个调制的信号156提供给一个或多个发射器158。
[0109]
ue操作模块124可将信息140提供给一个或多个发射器158。该信息140可包括用于一个或多个发射器158的指令。例如,ue操作模块124可指示一个或多个发射器158何时将信号传输到gnb 160。例如,一个或多个发射器158可在ul子帧期间进行传输。一个或多个发射器158可升频转换调制的信号156并将该调制的信号传输到一个或多个gnb 160。
[0110]
一个或多个gnb 160中的每一者可包括一个或多个收发器176、一个或多个解调器172、一个或多个解码器166、一个或多个编码器109、一个或多个调制器113、数据缓冲器162和gnb操作模块182。例如,可在gnb 160中实施一个或多个接收路径和/或传输路径。为方便起见,gnb160中仅示出了单个收发器176、解码器166、解调器172、编码器109和调制器113,但可实现多个并行元件(例如,多个收发器176、解码器166、解调器172、编码器109和调制器
113)。
[0111]
收发器176可包括一个或多个接收器178和一个或多个发射器117。一个或多个接收器178可使用一个或多个天线180a-n从ue 102接收信号。例如,接收器178可接收并降频转换信号,以产生一个或多个接收的信号174。可将一个或多个接收的信号174提供给解调器172。一个或多个发射器117可使用一个或多个天线180a-n将信号传输到ue 102。例如,一个或多个发射器117可升频转换并传输一个或多个调制的信号115。
[0112]
解调器172可解调一个或多个接收的信号174,以产生一个或多个解调的信号170。可将一个或多个解调的信号170提供给解码器166。gnb160可使用解码器166来解码信号。解码器166可产生一个或多个解码的信号164、168。例如,第一enb解码的信号164可包括接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器162中。第二enb解码的信号168可包括开销数据和/或控制数据。例如,第二enb解码的信号168可提供gnb操作模块182可用来执行一个或多个操作的数据(例如,pdsch harq-ack信思)。
[0113]
一般来讲,gnb操作模块182可使gnb 160能够与一个或多个ue102进行通信。gnb操作模块182可包括gnb调度模块194。gnb调度模块194可执行如本文所述的调度操作和资源分配。
[0114]
gnb操作模块182可将信息188提供给解调器172。例如,gnb操作模块182可通知解调器172针对来自ue 102的传输所预期的调制图案。
[0115]
gnb操作模块182可将信息186提供给解码器166。例如,gnb操作模块182可通知解码器166针对来自ue 102的传输所预期的编码。
[0116]
gnb操作模块182可将信息101提供给编码器109。信息101可包括待编码的数据和/或用于编码的指令。例如,gnb操作模块182可指示编码器109编码信息101,包括传输数据105。
[0117]
编码器109可编码由gnb操作模块182提供的被包括在信息101中的传输数据105和/或其他信息。例如,对被包括在信息101中的传输数据105和/或其他信息进行编码可涉及错误检测和/或纠正编码、将数据映射到空间、时间和/或频率资源以用于传输、多路复用等。编码器109可将编码的数据111提供给调制器113。传输数据105可包括待中继到ue102的网络数据。
[0118]
gnb操作模块182可将信息103提供给调制器113。该信息103可包括用于调制器113的指令。例如,gnb操作模块182可通知调制器113将用于向ue 102进行传输的调制类型(例如,星座映射)。调制器113可调制编码的数据111,以将一个或多个调制的信号115提供给一个或多个发射器117。
[0119]
gnb操作模块182可将信息192提供给一个或多个发射器117。该信息192可包括用于一个或多个发射器117的指令。例如,gnb操作模块182可指示一个或多个发射器117何时(何时不)将信号传输到ue 102。一个或多个发射器117可升频转换调制的信号115并将该调制的信号传输到一个或多个ue 102。
[0120]
应当注意,dl子帧可从gnb 160传输到一个或多个ue 102,并且ul子帧可从一个或多个ue 102传输到gnb 160。此外,gnb 160以及一个或多个ue 102均可在标准特殊子帧中传输数据。
[0121]
还应当注意,被包括在enb 160和ue 102中的元件或其部件中的一者或多者可在
s-ofdm符号定义的区域被称为re,并且通过时隙中的索引对(k,l)唯一地标识,其中k和l分别是频域和时域中的索引。虽然本文讨论了一个分量载波(cc)中的上行链路子帧,但是上行链路子帧是针对每个cc定义的。
[0132]
图4示出了若干参数401的示例。参数#1 401a可以是基本参数(例如,参考参数)。例如,基本参数401a的re 495a可以定义为在频域中具有15khz的子载波间隔405a,并且在时域中(即符号长度#1 403a)具有2048ts+cp的长度(例如,160ts或144ts),其中ts表示定义为1/(15000*2048)秒的基带采样时间单位。对于第i个参数,子载波间隔405可等于15*2-i
和有效ofdm符号长度2048*2-i
*ts。这可使得符号长度是2048*2-i
*ts+cp长度(例如,160*2-i
*ts或144*2-i
*ts)。换句话讲,第i+1个参数的子载波间隔是第i个参数的子载波间隔的两倍,并且第i+1个参数的符号长度是第i个参数的符号长度的一半。图4示出了四个参数,但是系统可支持另一个数量的参数。此外,该系统不必支持第0个参数至第i个参数(i=0,1,...,i)中的全部。
[0133]
例如,如上所述的第一sps资源上的第一ul传输可仅在参数#1上执行(例如,子载波间隔为15khz)。在此,ue 102可基于同步信号获取(检测)参数#1。此外,ue 102可接收包括配置参数#1的信息(例如,切换命令)的专用rrc信号。专用rrc信号可以是特定于ue的信号。在此,第一sps资源上的第一ul传输可在参数#1、参数#2(子载波间隔为30khz)和/或参数#3(子载波间隔为60khz)上执行。
[0134]
此外,如上所述的第二sps资源上的第二ul传输可仅在参数#3上执行。在此,例如,ue 102可接收包括配置参数#2和/或参数#3的信息的系统信息(例如,主信息块(mib)和/或系统信息块(sib))。
[0135]
此外,ue 102可接收包括配置参数#2和/或参数#3的信息(例如,切换命令)的专用rrc信号。可在bch(广播信道)和/或专用rrc信号上传输系统信息(例如,mib)。系统信息(例如,sib)可以包含关于何时评估ue 102是否被允许访问小区和/或定义其他系统信息的调度时的信息。系统信息(sib)可包含多个ue 102共用的无线电资源配置信息。即,专用rrc信号可包括用于ul传输中的每一个的多个参数配置(第一参数、第二参数和/或第三参数)中的每一个(例如,ul-sch传输中的每一个、pusch传输中的每一个)。此外,专用rrc信号可包括用于dl传输中的每一个的多个参数配置(第一参数、第二参数和/或第三参数)中的每一个(例如,pdcch传输中的每一个)。
[0136]
图5示出了图4中所示的参数501的子帧结构的示例。考虑到时隙583包括n
dl符号
(或n
ul符号
)=7个符号,第i+1个参数501的时隙长度是第i个参数501的时隙长度的一半,并且子帧(例如,1ms)中的时隙583的数量最终会翻倍。应当注意,无线电帧可包括10个子帧,并且无线电帧长度可等于10ms。
[0137]
图6示出了时隙683和子时隙607的示例。如果子时隙607未由高层配置,则ue 102和enb/gnb 160可仅使用时隙683作为调度单元。更具体地,可将给定传输块分配给时隙683。如果子时隙607由高层配置,则ue 102和enb/gnb 160可使用子时隙607以及时隙683。子时隙607可包括一个或多个ofdm符号。构成子时隙607的ofdm符号的最大数量可为n
dl符号-1(或n
ul符号-1)。
[0138]
子时隙长度可由高层信令配置。另选地,子时隙长度可由物理层控制信道(例如,通过dci格式)来指示。
[0139]
子时隙607可以从时隙683内的任何符号开始,除非它与控制信道发生冲突。基于起始位置的限制,微时隙长度可存在限制。例如,长度为n
dl符号-1(或n
ul符号-1)的子时隙607可从时隙683中的第二个符号开始。子时隙607的起始位置可由物理层控制信道(例如,通过dci格式)来指示。另选地,子时隙607的起始位置可来源于调度有关子时隙607中的数据的物理层控制信道的信息(例如,搜索空间索引、盲解码候选索引、频率和/或时间资源索引、prb索引、控制信道元素索引、控制信道元素聚合等级、天线端口索引等)。
[0140]
在配置子时隙607的情况下,可将给定传输块分配给时隙683、子时隙607、聚合的子时隙607或聚合的子时隙607和时隙683。该单元也可以是用于harq-ack位生成的单元。
[0141]
图7示出了调度时间线709的示例。对于正常的dl调度时间线709a,dl控制信道被映射到时隙783a的初始部分。dl控制信道711调度同一时隙783a中的dl共享信道713a。用于dl共享信道713a的harq-ack(即,指示是否成功地检测到每个dl共享信道713a中的传输块的每一个harq-ack)经由在后一时隙783b中的ul控制信道715a被报告。在这种情况下,给定时隙783可包含dl传输和ul传输中的一者。
[0142]
对于正常的ul调度时间线709b,dl控制信道711b被映射到时隙783c的初始部分。dl控制信道711b调度后一时隙783d中的ul共享信道717a。对于这些情况,dl时隙783c和ul时隙783d之间的关联定时(时间偏移)可由高层信令来固定或配置。另选地,其可由物理层控制信道(例如,dl分配dci格式、ul授权dci格式或另一dci格式,诸如可在公共搜索空间中被监视的ue公共信令dci格式)来指示。
[0143]
对于自给式基础dl调度时间线70%,dl控制信道711c被映射到时隙783e的初始部分。dl控制信道711c调度同一时隙783e中的dl共享信道713b。用于dl共享信道713b的harq-ack被报告为在ul控制信道715b中,这些ul控制信道被映射在时隙783e的结束部分。
[0144]
对于自给式基础ul调度时间线709d,dl控制信道711d被映射到时隙783f的初始部分。dl控制信道711d调度同一时隙783f中的ul共享信道717b。对于这些情况,时隙783f可包含dl部分和ul部分,并且dl传输和ul传输之间可存在保护时段。
[0145]
自给式时隙的使用可基于自给式时隙的配置。另选地,自给式时隙的使用可基于子时隙的配置。还另选地,自给式时隙的使用可基于缩短的物理信道(例如,pdsch、pusch、pucch等)的配置。
[0146]
图8示出了dl控制信道监视区域的示例。在第一示例(a)中,物理资源块(prb)889a被示出为具有符号长度801a和频率809a。在第二示例(a)中,物理资源块(prb)889b被示出为具有符号长度801b和频率809b。在一个具体实施中,prb 889a,b的带宽。
[0147]
在图8的示例中,一组或多组prb 889可被配置用于dl控制信道监视。换句话讲,控制资源集807a,b在频域中是一组prb 889a,b,ue 102在该组内尝试盲解码下行链路控制信息,其中prb 889a,b可以是或可以不是频率连续的。ue 102可以具有一个或多个控制资源集807a,b,并且一个dci消息可以位于一个控制资源集807a,b内。在频域中,prb 889是用于控制信道803a,b的资源单元大小(其可包括或可以不包括解调参考信号(dmrs))。dl共享信道805a,b可在比携带所检测的dl控制信道803a,b的符号更晚的ofdm符号处开始。另选地,dl共享信道805a,b可在携带所检测的dl控制信道803a,b的最后一个ofdm符号处开始(或在早于该最后一个ofdm符号的符号处开始)。换句话讲,可支持至少在频域中对相同或不同ue 102的数据的控制资源集807a,b中的至少一部分资源进行动态重用。
[0148]
图9示出了包括多于一个的控制信道元素的dl控制信道903a,b的示例。在第一示例(a)中,物理资源块(prb)989a被示出为具有符号长度901a和频率909a。在第二示例(a)中,物理资源块(prb)989b被示出为具有符号长度901b和频率909b。
[0149]
当控制资源集907a,b跨越多个ofdm符号时,控制信道候选可被映射至多个ofdm符号或可被映射至单个ofdm符号。一个dl控制信道元素903a,b可被映射在由单个prb 989a,b和单个ofdm符号定义的re上。如果多于一个dl控制信道元素903a,b用于单个dl控制信道传输,则可执行dl控制信道元素聚合911a,b。
[0150]
聚合的dl控制信道元素903a,b的数量被称为dl控制信道元素聚合等级。dl控制信道元素聚合等级可为1或2到整数幂。gnb 160可通知ue 102哪些控制信道候选被映射到控制资源集907a,b中的ofdm符号的每个子集。如果一个dl控制信道903a,b被映射到单个ofdm符号且不跨越多个ofdm符号,则dl控制信道元素聚合在一个ofdm符号内执行,即多个dl控制信道元素903a,b在一个ofdm符号内聚合。否则,可在不同ofdm符号中聚合dl控制信道元素903a,b。
[0151]
图10示出了ul控制信道结构的示例。在图10的示例中,物理资源块(prb)1089被示出为具有符号长度1001和频率1009。
[0152]
在第一示例(a)中,ul控制信道1013a可被映射在分别由prb 1089和频域和时域中的时隙限定的re上。该ul控制信道1013a可被称为长格式(或仅称为第一格式)。
[0153]
在第二示例(b)和第三示例(c)中,ul控制信道1013b,c可映射在时域中的有限的ofdm符号上的re上。这可称为短格式(或仅称为第二格式)。具有短格式的ul控制信道1013b,c可在单个prb 1089内的re上映射。另选地,具有短格式的ul控制信道1013b,c可在多个prb 1089内的re上映射。例如,可应用交错映射,即可将ul控制信道1013b,c映射至系统带宽内的每n个prb(例如,5个或10个)。
[0154]
图11是示出gnb 1160的一种具体实施的框图。gnb 1160可包括高层处理器1123、dl发射器1125、ul接收器1133和一个或多个天线1131。dl发射器1125可包括pdcch发射器1127和pdsch发射器1129。ul接收器1133可包括pucch接收器1135和pusch接收器1137。
[0155]
高层处理器1123可管理物理层的行为(dl发射器和ul接收器的行为)并向物理层提供高层参数。高层处理器1123可从物理层获得传输块。高层处理器1123可向ue的高层发送/从ue的高层获取高层消息,诸如rrc消息和mac消息。高层处理器1123可向pdsch发射器提供传输块,并且向pdcch发射器提供与传输块有关的传输参数。
[0156]
dl发射器1125可多路复用下行链路物理信道和下行链路物理信号(包括预留信号),并且经由传输天线1131对其进行传输。ul接收器1133可经由接收天线1131接收多路复用的上行链路物理信道和上行链路物理信号并对其进行解复用。pucch接收器1135可向高层处理器1123提供uci。pusch接收器1137可向高层处理器1123提供接收的传输块。
[0157]
图12是示出ue 1202的一种具体实施的框图。ue 1202可包括高层处理器1223、ul发射器1251、dl接收器1243和一个或多个天线1231。ul发射器1251可包括pucch发射器1253和pusch发射器1255。dl接收器1243可包括pdcch接收器1245和pdsch接收器1247。
[0158]
高层处理器1223可以管理物理层的行为(dl发射器和ul接收器的行为)并向物理层提供高层参数。高层处理器1223可以从物理层获得传输块。高层处理器1223可向ue的高层发送/从ue的高层获取高层消息,诸如rrc消息和mac消息。高层处理器1223可向pusch发
射器提供传输块并向pucch发射器1253提供uci。
[0159]
dl接收器1243可以经由接收天线1231接收多路复用的下行链路物理信道和下行链路物理信号并对它们进行解复用。pdcch接收器1245可向高层处理器1223提供dci。pdsch接收器1247可向高层处理器1223提供接收的传输块。
[0160]
应当注意,本文所述的物理信道的名称是示例。可使用其他名称,诸如“nrpdcch、nrpdsch、nrpucch和nrpusch”、“新一代-(g)pdcch、gpdsch、gpucch和gpusch”等。
[0161]
图13示出了可用于ue 1302的各种部件。结合图13描述的ue 1302可根据结合图1描述的ue 102来实施。ue 1302包括控制ue 1302的操作的处理器1303。处理器1303也可被称为中央处理单元(cpu)。存储器1305(可包括只读存储器(rom)、随机存取存储器(ram)、这两种存储器的组合或可存储信息的任何类型的设备)向处理器1303提供指令1307a和数据1309a。存储器1305的一部分还可包括非易失性随机存取存储器(nvram)。指令1307b和数据1309b还可驻留在处理器1303中。加载到处理器1303中的指令1307b和/或数据1309b还可包括来自存储器1305的指令1307a和/或数据1309a,这些指令和/或数据被加载以供处理器1303执行或处理。指令1307b可由处理器1303执行,以实现本文所述的方法。
[0162]
ue 1302还可包括外壳,该外壳容纳一个或多个发射器1358和一个或多个接收器1320以允许传输和接收数据。发射器1358和接收器1320可合并为一个或多个收发器1318。一个或多个天线1322a-n附接到外壳并且电耦合到收发器1318。
[0163]
ue 1302的各个部件通过总线系统1311(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦接在一起。然而,为了清楚起见,各种总线在图13中被示出为总线系统1311。ue 1302还可包括用于处理信号的数字信号处理器(dsp)1313。ue 1302还可包括为用户提供接入ue 1302的功能的通信接口1315。图13所示的ue 1302是功能框图而非具体部件的列表。
[0164]
图14示出了可用于gnb 1460的各种部件。结合图14描述的gnb 1460可根据结合图1描述的gnb 160来实施。gnb 1460包括控制gnb 1460的操作的处理器1403。处理器1403也可被称为中央处理单元(cpu)。存储器1405(可包括只读存储器(rom)、随机存取存储器(ram)、这两种存储器的组合或可存储信息的任何类型的设备)将指令1407a和数据1409a提供给处理器1403。存储器1405的一部分还可包括非易失性随机存取存储器(nvram)。指令1407b和数据1409b还可驻留在处理器1403中。加载到处理器1403中的指令1407b和/或数据1409b还可包括来自存储器1405的指令1407a和/或数据1409a,这些指令和/或数据被加载以供处理器1403执行或处理。指令1407b可由处理器1403执行,以实现本文所述的方法。
[0165]
gnb 1460还可包括外壳,该外壳容纳一个或多个发射器1417和一个或多个接收器1478以允许传输和接收数据。发射器1417和接收器1478可合并为一个或多个收发器1476。一个或多个天线1480a-n附接到外壳并且电耦合到收发器1476。
[0166]
gnb 1460的各个部件通过总线系统1411(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦接在一起。然而,为了清楚起见,各种总线在图14中被示出为总线系统1411。gnb 1460还可包括用于处理信号的数字信号处理器(dsp)1413。gnb 1460还可包括为用户提供接入gnb 1460的功能的通信接口1415。图14所示的gnb 1460是功能框图而非具体部件的列表。
[0167]
图15是示出可在其中实施本文所述的系统和方法的ue 1502的一种实施方式的框
图。ue 1502包括发射装置1558、接收装置1520和控制装置1524。发射装置1558、接收装置1520和控制装置1524可被配置为执行结合上图1所述的功能中的一者或多者。图13示出了图15的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,dsp可通过软件实现。
[0168]
图16是示出可在其中实施本文所述的系统和方法的gnb 1660的一种实施方式的框图。gnb 1660包括发射装置1623、接收装置1678和控制装置1682。发射装置1623、接收装置1678和控制装置1682可被配置为执行结合上图1所述的功能中的一者或多者。上图14示出了图16的具体装置结构的一个示例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,dsp可通过软件实现。
[0169]
图17示出了用于在具有不同优先级的信道之间冲突的丢弃行为的示例。在图17中,高优先级信道1702的传输早于低优先级信道1704开始或在与低优先级信道相同的符号开始。在示例17a中,高优先级信道1702在与低优先级信道1704相同的符号开始。在示例17b中,高优先级信道1702早于低优先级信道1704开始。在这些示例中,低优先级信道1704被完全丢弃(由图17中的“x”符号表示)而不进行传输,并且仅传输高优先级信道1702。
[0170]
图18示出了用于在具有不同优先级的信道之间冲突的丢弃行为的其他示例。在图18的示例中,高优先级信道1802的传输在低优先级信道1804之后开始。并且高优先级信道1802从重叠符号中删截低优先级信道1804。在示例18a中,如果在高优先级信道1802的传输之后,低优先级信道1804上存在剩余符号,则恢复低优先级信道传输上的剩余符号并仍然传输。在示例18b中,在删截之后未恢复低优先级信道1804,因此低优先级信道传输上的剩余符号也被丢弃(由图18b中的“x”符号表示)。
[0171]
图19示出了用于在具有不同优先级的信道之间冲突的丢弃行为的另一个示例。在图19的示例中,如果在低优先级信道1904的传输之前已知高优先级信道1902传输,则低优先级信道被完全丢弃。图19示出了当已知高优先级信道1902的传输时的时间1906。在一些示例中,具有不同时间约束的高优先级信道1902的传输的状态可以是已知的(例如,时间1906),这取决于高优先级信道1902上携带的uci或数据。
[0172]
在不同的定时假设下高优先级传输可能是已知的。在一种方法(方法1)中,如果高优先级信道1902配置有子时隙结构,则假设高优先级信道1902在包含高优先级信道1902的子时隙之前是已知的。
[0173]
在第二方法(方法2)中,高优先级信道传输是已知的定时(例如,时间1906)由uci或信道类型确定。用于pdsch传输的harq-ack在包含用于harq-ack报告的pucch的子时隙之前或在调度dci和/或pdsch传输以及n1个符号的处理时间之后是已知的。dg pusch传输在包含pusch传输的子时隙之前或在调度dci和n2个符号的处理时间之后是已知的。cg pusch传输是已知的,这取决于在缓冲区中是否存在用于业务的数据以及新数据的到达时间。sr传输是已知的,这取决于在缓冲区中是否存在用于业务的数据以及新数据的到达时间。
[0174]
图20示出了用于在具有不同优先级的信道之间冲突的丢弃行为的其他示例。在图20中,当已知高优先级信道2002的传输时的时间2006之前低优先级信道2004的传输已经开始。高优先级信道2002应当删截高优先级信道2002和低优先级信道2004之间的至少所有重叠符号。在示例20a中,高优先级信道2002从高优先级信道2002和低优先级信道2004之间的重叠符号中删截低优先级信道,如果在高优先级传输之后低优先级信道上存在剩余符号,
则在一种方法中,低优先级信道传输上的剩余符号也被丢弃。在示例20b中,高优先级信道2002从当在ue处已知高优先级信道2002的传输时的符号(即,时间2006)中删截低优先级信道2004。如示例20b所示,如果在高优先级传输之后存在删截的低优先级信道2004上的剩余符号,则还会丢弃低优先级信道传输上的剩余符号。
[0175]
如结合图19所描述的,在不同的定时假设下高优先级传输可能是已知的。
[0176]
术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。如本文所用,术语“计算机可读介质”可表示非暂态且有形的计算机可读介质和/或处理器可读介质。以举例而非限制的方式,计算机可读介质或处理器可读介质可包括ram、rom、eeprom、cd-rom或其他光盘存储设备、磁盘存储设备或其他磁存储设备,或者可用于携带或存储指令或数据结构形式的所需程序代码并且可由计算机或处理器访问的任何其他介质。如本文所用,磁盘和光盘包括压缩光盘(cd)、激光盘、光学光盘、数字通用光盘(dvd)、软磁盘及光盘,其中磁盘通常以磁性方式复制数据,而光盘则利用激光以光学方式复制数据。
[0177]
应当注意,本文所述方法中的一者或多者可在硬件中实现并且/或者使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(asic)、大规模集成电路(lsi)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(asic)、大规模集成电路(lsi)或集成电路等实现。
[0178]
本文所公开方法中的每一者包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求书的范围的情况下,这些方法步骤和/或动作可彼此互换并且/或者合并为单个步骤。换句话讲,除非所述方法的正确操作需要特定顺序的步骤或动作,否则在不脱离权利要求书的范围的情况下,可对特定步骤和/或动作的顺序和/或用途进行修改。
[0179]
应当理解,权利要求书不限于上文所示的精确配置和部件。在不脱离权利要求书的范围的情况下,可对本文所述系统、方法和装置的布置、操作和细节进行各种修改、改变和变更。
[0180]
根据所述系统和方法在gnb 160或ue 102上运行的程序是以实现根据所述系统和方法的功能的方式控制cpu等的程序(使得计算机操作的程序)。然后,在这些装置中处理的信息在被处理的同时被暂时存储在ram中。随后,该信息被存储在各种rom或hdd中,每当需要时,由cpu读取以便进行修改或写入。作为其上存储有程序的记录介质,半导体(例如,rom、非易失性存储卡等)、光学存储介质(例如,dvd、mo、md、cd、bd等)、磁存储介质(例如,磁带、软磁盘等)等中的任一者都是可能的。此外,在一些情况下,通过运行所加载的程序来实现上述根据所述系统和方法的功能,另外,基于来自程序的指令并结合操作系统或其他应用程序来实现根据所述系统和方法的功能。
[0181]
此外,在程序在市场上有售的情况下,可分发存储在便携式记录介质上的程序,或可将该程序传输到通过网络诸如互联网连接的服务器计算机。在这种情况下,还包括服务器计算机中的存储设备。此外,根据上述系统和方法的gnb 160和ue 102中的一些或全部可实现为作为典型集成电路的lsi。gnb 160和ue 102的每个功能块可单独地内置到芯片中,并且一些或全部功能块可集成到芯片中。此外,集成电路的技术不限于lsi,并且用于功能块的集成电路可利用专用电路或通用处理器实现。此外,如果随着半导体技术不断进步,出现了替代lsi的集成电路技术,则也可使用应用该技术的集成电路。
[0182]
此外,每个上述具体实施中所使用的基站设备和终端设备的每个功能块或各种特
征可通过电路(通常为一个集成电路或多个集成电路)实施或执行。被设计为执行本说明书中所述的功能的电路可以包括通用处理器、数字信号处理器(dsp)、专用或通用集成电路(asic)、现场可编程门阵列(fpga)或其他可编程逻辑设备、分立栅极或晶体管逻辑器或分立硬件部件或它们的组合。通用处理器可以是微处理器,或另选地,该处理器可以是常规处理器、控制器、微控制器或状态机。通用处理器或上述每种电路可由数字电路进行配置,或者可由模拟电路进行配置。此外,当由于半导体技术的进步而出现制成取代当前集成电路的集成电路的技术时,也能够使用通过该技术生产的集成电路。
[0183]
如本文所用,术语“和/或”应解释为表示一个或多个项目。例如,短语“a、b和/或c”应解释为表示以下任何一种:仅a、仅b、仅c、a和b(但不是c)、b和c(但不是a)、a和c(但不是b)或a、b和c全部。如本文所用,短语“至少一个”应当被解释为表示一个或多个项目。例如,短语“a、b和c中的至少一个”或短语“a、b或c中的至少一个”应解释为表示以下任何一种:仅a、仅b、仅c、a和b(但不是c)、b和c(但不是a)、a和c(但不是b)或者a、b和c的全部。如本文所用,短语“一个或多个”应被理解为指一个或多个项目。例如,短语“a、b和c的一个或多个”或短语“a、b或c的一个或多个”应解释为表示以下任何一种:仅a、仅b、仅c、a和b(但不是c)、b和c(但不是a)、a和c(但不是b)或者a、b和c的全部。
[0184]
《发明内容》
[0185]
在一个示例中,一种用户装备(ue),该ue包括:高层处理器,该高层处理器被配置为确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道;该高层处理器被配置为丢弃该低优先级上行链路信道的至少一部分;和传输电路,该传输电路被配置为传输该高优先级信道。
[0186]
在一个示例中,该ue,其中如果该高优先级信道在与该低优先级信道相同的符号开始,或者该高优先级信道早于该低优先级信道开始,则该低优先级信道可被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0187]
在一个示例中,该ue,其中如果低优先级信道的起始符号早于高优先级信道,则该高优先级信道从重叠符号中删截该低优先级信道。
[0188]
在一个示例中,该ue,其中如果低优先级信道的起始符号早于高优先级信道,则该低优先级信道基于定时关系被完全丢弃或被该高优先级信道删截。
[0189]
在一个示例中,该ue,其中如果该高优先级信道的信道状态或传输在该低优先级传输开始之前是已知的,则该低优先级信道被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0190]
在一个示例中,该ue,其中如果该低优先级信道传输已经开始,则该高优先级信道删截该正在进行的低优先级信道。
[0191]
在一个示例中,该ue,其中如果该高优先级信道被配置有子时隙结构,则假设该高优先级信道在包含该高优先级信道的子时隙之前是已知的。
[0192]
在一个示例中,该ue,其中已知该高优先级信道的传输的定时通过上行链路控制信息(uci)或信道类型来确定。
[0193]
在一个示例中,一种基站(gnb),该gnb包括:高层处理器,该高层处理器被配置为确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道;该高层处理器被配置为丢弃该低优先级上行链路信道的至少一部分;和接收电路,该接
收电路被配置为接收该高优先级信道。
[0194]
在一个示例中,该gnb,其中如果该高优先级信道在与该低优先级信道相同的符号开始,或者该高优先级信道早于该低优先级信道开始,则该低优先级信道被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0195]
在一个示例中,该gnb,其中如果低优先级信道的起始符号早于高优先级信道,则该高优先级信道从重叠符号中删截该低优先级信道。
[0196]
在一个示例中,该gnb,其中如果低优先级信道的起始符号早于高优先级信道,则该低优先级信道基于定时关系被完全丢弃或被该高优先级信道删截。
[0197]
在一个示例中,该gnb,其中如果该高优先级信道的信道状态或传输在该低优先级传输开始之前是已知的,则该低优先级信道被完全丢弃而不进行传输,并且仅传输该高优先级信道。
[0198]
在一个示例中,该gnb,其中如果该低优先级信道传输已经开始,则该高优先级信道删截该正在进行的低优先级信道。
[0199]
在一个示例中,该gnb,其中如果该高优先级信道被配置有子时隙结构,则假设在包含该高优先级信道的子时隙之前就已知该高优先级信道。
[0200]
在一个示例中,该gnb,其中已知该高优先级信道的传输的定时通过上行链路控制信息(uci)或信道类型来确定。
[0201]
在一个示例中,一种由用户装备(ue)执行的方法,该方法包括:确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道;丢弃该低优先级上行链路信道的至少一部分;以及传输该高优先级信道。
[0202]
在一个示例中,一种由基站(gnb)执行的方法,该方法包括:确定高优先级信道与低优先级信道冲突,该高优先级信道和该低优先级信道是上行链路信道;丢弃该低优先级上行链路信道的至少一部分;以及接收该高优先级信道。
[0203]
在一个示例中,一种用户装备(ue),该ue包括:高层处理器,该高层处理器被配置为确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;该高层处理器被配置为丢弃具有低优先级的该第二上行链路信道;和传输电路,该传输电路被配置为传输具有高优先级的该第一上行链路信道。
[0204]
在一个示例中,该ue,其中该ue通过在与较大优先级索引的第一pucch/pusch传输重叠的第一符号之前取消较小优先级索引的第二pucch/pusch传输来丢弃具有低优先级的第二上行链路信道。
[0205]
在一个示例中,该ue,其中具有高优先级的第一上行链路信道是用于pdcch接收中由dci格式调度的较大优先级索引的harq-ack的pucch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该ue在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二pucch的传输,并且不早于对应pdcch接收的最后一个符号之后的延迟,其中该延迟由ue能力和处理时间确定。
[0206]
在一个示例中,该ue,其中具有高优先级的第一上行链路信道是pdcch接收中由dci格式调度的较大优先级索引的第一pusch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该ue在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二
pucch的传输,并且不早于对应pdcch接收的最后一个符号之后的延迟,其中该延迟由用于对应ue处理能力和ue能力的pusch准备时间确定。
[0207]
在一个示例中,该ue,其中具有高优先级的第一上行链路信道是具有sr的较大优先级索引的pucch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该ue在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二pucch的传输。
[0208]
在一个示例中,该ue,其中具有高优先级的第一上行链路信道是较大优先级索引的配置的授权pusch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该ue在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二pucch的传输。
[0209]
在一个示例中,一种基站(gnb),该gnb包括:高层处理器,该高层处理器被配置为确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;该高层处理器被配置为丢弃具有低优先级的该第二上行链路信道;和接收电路,该接收电路被配置为接收具有高优先级的该第一上行链路信道。
[0210]
在一个示例中,该gnb,其中该gnb通过在与较大优先级索引的第一pucch/pusch传输重叠的第一符号之前取消较小优先级索引的第二pucch/pusch接收来丢弃具有低优先级的第二上行链路信道。
[0211]
在一个示例中,该gnb,其中具有高优先级的第一上行链路信道是用于pdcch接收中由dci格式调度的较大优先级索引的harq-ack的pucch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该gnb在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二pucch的接收,并且不早于对应pdcch传输的最后一个符号之后的延迟,其中该延迟由ue能力和处理时间确定。
[0212]
在一个示例中,该gnb,其中具有高优先级的第一上行链路信道是pdcch接收中由dci格式调度的较大优先级索引的第一pusch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该gnb在将与第一pucch传输重叠的第一符号之前取消第二pusch或第二pucch的接收,并且不早于对应pdcch传输的最后一个符号之后的延迟,其中该延迟由用于对应ue处理能力和ue能力的pusch准备时间确定。
[0213]
在一个示例中,该gnb,其中具有高优先级的第一上行链路信道是具有sr的较大优先级索引的pucch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该gnb在将与第一pucch接收重叠的第一符号之前取消第二pusch或第二pucch的接收。
[0214]
在一个示例中,该gnb,其中具有高优先级的第一上行链路信道是较大优先级索引的配置的授权pusch,并且第二上行链路信道是较小优先级索引的pusch或pucch,该gnb在将与第一pucch接收重叠的第一符号之前取消第二pusch或第二pucch的接收。
[0215]
在一个示例中,一种由用户装备(ue)执行的方法,该方法包括:确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;丢弃具有低优先级的该第二上行链路信道;以及传输具有高优先级的该第一上行链路信道。
[0216]
在一个示例中,一种由基站(gnb)执行的方法,该方法包括:确定具有高优先级的第一上行链路信道的传输与具有低优先级的第二上行链路信道的传输在时间上重叠,其中上行链路信道能够是pucch或pusch;丢弃具有低优先级的该第二上行链路信道;以及接收
具有高优先级的该第一上行链路信道。
[0217]
《交叉引用》
[0218]
该非临时申请根据美国法典第35卷第119条要求2019年11月7日提交的临时申请62/932,287的优先权,该临时申请的全部内容据此以引用方式并入。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1