无线LAN系统中经由多个RU接收PPDU的方法及装置与流程

文档序号:31219205发布日期:2022-08-20 05:18阅读:393来源:国知局
无线LAN系统中经由多个RU接收PPDU的方法及装置与流程
无线lan系统中经由多个ru接收ppdu的方法及装置
技术领域
1.本公开涉及一种用于在wlan系统中通过多个ru接收ppdu的技术,并且更具体地,涉及一种通过在大ru组合中聚合的多个ru来发送和接收ppdu的方法和装置。


背景技术:

2.以各种方式改进了无线局域网(wlan)。例如,ieee 802.11ax标准提出了一种使用正交频分多址(ofdma)和下行链路多用户多输入多输出(dl mu mimo)技术的改进的通信环境。
3.本说明书提出了可以在新的通信标准中利用的技术特征。例如,新的通信标准可以是当前正在讨论的极高吞吐量(eht)标准。eht标准可以使用新提出的增加的带宽、增强的phy层协议数据单元(ppdu)结构、增强的序列、混合自动重传请求(harq)方案等。eht标准可以被称为ieee 802.11be标准。
4.在新的无线lan标准中,可能会使用增加的数量的空间流。在这种情况下,为了适当地使用增加的数量的空间流,可能需要改进wlan系统中的信令技术。


技术实现要素:

5.技术问题
6.本公开提出了一种用于在wlan系统中通过多个ru接收ppdu的方法和装置。
7.技术方案
8.本说明书的一个示例提出了一种用于通过多个ru接收ppdu的方法。
9.此实施例可以在支持下一代无线lan系统(例如,ieee 802.11be或eht无线lan系统)的网络环境中执行。下一代无线lan系统是从802.11ax系统改进而来的无线lan系统,并且可以满足与802.11ax系统的后向兼容性。
10.此实施例提出了一种用于基于通过大ru之间的组合配置的多个ru发送和接收ppdu的方法和装置。在这种情况下,大ru意指具有大于242个音调的资源单元。特别地,此实施例提出一种配置用于以ofdma方案发送ppdu的多个ru的方法。
11.接收站(sta)通过宽带从发送sta接收物理协议数据单元(ppdu)。
12.接收sta解码ppdu。
13.ppdu包括控制字段和数据字段。
14.宽带是320/160+160mhz频带,包括主160mhz信道和辅160mhz信道,数据字段通过其中聚合996ru和484ru的第一多个资源单元(ru)接收,并且第一多个ru被分配在主160mhz信道或辅160mhz信道内。996ru是由996个音调组成的ru。484ru是由484个音调组成的ru。
15.技术效果
16.根据本说明书中提出的实施例,通过支持ofdma中前导穿孔和各种大小的大ru的聚合,存在增加传输效率和吞吐量的新效果。
附图说明
17.图1示出本说明书的发送装置和/或接收装置的示例。
18.图2是图示无线局域网(wlan)的结构的概念图。
19.图3图示了一般链路设置过程。
20.图4图示了在ieee标准中使用的ppdu的示例。
21.图5图示了在20mhz的频带中使用的资源单元(ru)的布局。
22.图6图示了在40mhz的频带中使用的资源单元(ru)的布局。
23.图7图示了在80mhz的频带中使用的资源单元(ru)的布局。
24.图8图示了he-sig-b字段的结构。
25.图9图示了通过mu-mimo方案,将多个用户sta分配给同一ru的示例。
26.图10图示了基于ul-mu的操作。
27.图11图示了触发帧的示例。
28.图12图示了触发帧的公共信息字段的示例。
29.图13图示了每个用户信息字段中包括的子字段的示例。
30.图14描述了uora方案的技术特征。
31.图15图示了在2.4ghz频带中使用/支持/定义的信道的示例。
32.图16图示了在5ghz频带中使用/支持/定义的信道的示例。
33.图17图示了在6ghz频带中使用/支持/定义的信道的示例。
34.图18图示了本说明书中使用的ppdu的示例。
35.图19图示了本说明书的修改的发送设备和/或接收装置/设备的示例。
36.图20示出了用于he su ppdu的phy传输过程的示例。
37.图21示出了用于生成he ppdu的每个字段的发送设备的框图的示例。
38.图22示出了eht ppdu格式的示例。
39.图23示出了u-sig格式的示例。
40.图24是图示根据本实施例的发送装置的操作的流程图。
41.图25是图示根据本实施例的接收装置的操作的流程图。
42.图26是图示根据本实施例的其中发送sta发送ppdu的过程的流程图。
43.图27是图示根据本实施例的用于接收sta接收ppdu的过程的流程图。
具体实施方式
44.在本说明书中,“a或b”可以意指“仅a”、“仅b”或“a和b这两者”。换句话说,在本说明书中,“a或b”可以解释为“a和/或b”。例如,在本说明书中,“a、b或c”可以意指“仅a”、“仅b”、“仅c”或“a、b、c的任意组合”。
45.本说明书中使用的斜线(/)或逗号可以意指“和/或”。例如,“a/b”可以意指“a和/或b”。因此,“a/b”可以意指“仅a”、“仅b”或“a和b两者”。例如,“a、b、c”可以意指“a、b或c”。
46.在本说明书中,“a和b中的至少一个”可以意指“仅a”、“仅b”或“a和b两者”。另外,在本说明书中,表述“a或b中的至少一个”或“a和/或b中的至少一个”可以被解释为“a和b中的至少一个”。
47.另外,在本说明书中,“a、b和c中的至少一个”可以意指“仅a”、“仅b”、“仅c”或“a、b
和c的任意组合”。另外,“a、b或c中的至少一个”或“a、b和/或c中的至少一个”可以意指“a、b和c中的至少一个”。
48.另外,本说明书中使用的括号可以意指“例如”。具体地,当被指示为“控制信息(eht-信号)”时,其可以表示“eht-信号”被提议作为“控制信息”的示例。换句话说,本说明书的“控制信息”不限于“eht-信号”,并且“eht-信号”可以被提出作为“控制信息”的示例。另外,当指示为“控制信息(即,eht-信号)”时,其也可以意味着“eht-信号”被提议作为“控制信息”的示例。
49.在本说明书的一个附图中单独描述的技术特征可以被单独实现,或者可同时实现。
50.本说明书的以下示例可以应用于各种无线通信系统。例如,本说明书的以下示例可以应用于无线局域网(wlan)系统。例如,本说明书可以应用于ieee 802.11a/g/n/ac标准或ieee 802.11ax标准。另外,本说明书也可以应用于新提出的eht标准或ieee 802.11be标准。此外,本说明书的示例还可以应用于从eht标准或ieee 802.11be标准增强的新wlan标准。另外,本说明书的示例可以应用于移动通信系统。例如,其可以应用于基于取决于第3代合作伙伴计划(3gpp)标准的长期演进(lte)以及基于lte的演进的移动通信系统。另外,本说明书的示例可以应用于基于3gpp标准的5g nr标准的通信系统。
51.在下文中,为了描述本说明书的技术特征,将描述可应用于本说明书的技术特征。
52.图1示出本说明书的发送装置和/或接收装置的示例。
53.在图1的示例中,可以执行以下描述的各种技术特征。图1涉及至少一个站(sta)。例如,本说明书的sta 110和120也可以被称为诸如移动终端、无线设备、无线发送/接收单元(wtru)、用户设备(ue)、移动站(ms)、移动订户单元的各种术语或简称为用户。本说明书的sta 110和120也可以称为诸如网络、基站、节点b、接入点(ap)、转发器、路由器、中继器等的各种术语。本说明书的sta110和120还可以称为诸如接收装置、发送装置、接收sta、发送sta、接收设备、发送设备等的各种名称。
54.例如,sta 110和120可以用作ap或非ap。也就是说,本说明书的sta 110和120可以用作ap和/或非ap。
55.除了ieee 802.11标准之外,本说明书的sta 110和120可以一起支持各种通信标准。例如,可以支持基于3gpp标准的通信标准(例如,lte、lte-a、5g nr标准)等。另外,本说明书的sta可以被实现为诸如移动电话、车辆、个人计算机等的各种设备。另外,本说明书的sta可以支持用于诸如语音呼叫、视频呼叫、数据通信和自驾驶(自主驾驶)等的各种通信服务的通信。
56.本说明书的sta 110和120可以包括符合ieee 802.11标准的媒体访问控制(mac)以及用于无线电介质的物理层接口。
57.下面将参考图1的子图(a)来描述sta 110和120。
58.第一sta 110可以包括处理器111、存储器112和收发器113。所图示的处理器、存储器和收发器可以被单独地实现为单独芯片,或者至少两个块/功能可以通过单个芯片实现。
59.第一sta的收发器113执行信号发送/接收操作。具体地,可以发送/接收ieee 802.11分组(例如,ieee 802.11a/b/g/n/ac/ax/be等)。
60.例如,第一sta 110可以执行ap所预期的操作。例如,ap的处理器111可以通过收发
器113接收信号,处理接收(rx)信号,生成发送(tx)信号,并且对信号传输提供控制。ap的存储器112可以存储通过收发器113接收的信号(例如,rx信号),并且可以存储要通过收发器发送的信号(例如,tx信号)。
61.例如,第二sta 120可以执行非ap sta所预期的操作。例如,非ap的收发器123执行信号发送/接收操作。具体地,可以发送/接收ieee 802.11分组(例如,ieee 802.11a/b/g/n/ac/ax/be分组等)。
62.例如,非ap sta的处理器121可以通过收发器123接收信号,处理rx信号,生成tx信号,并且对信号传输提供控制。非ap sta的存储器122可以存储通过收发器123接收的信号(例如,rx信号),并且可以存储要通过收发器发送的信号(例如,tx信号)。
63.例如,在下面描述的说明书中被指示为ap的设备的操作可以在第一sta 110或第二sta 120中执行。例如,如果第一sta 110是ap,则被指示为ap的设备的操作可以由第一sta 110的处理器111控制,并且相关信号可以通过由第一sta 110的处理器111控制的收发器113发送或接收。另外,与ap的操作有关的控制信息或ap的tx/rx信号可以被存储在第一sta 110的存储器112中。另外,如果第二sta 120是ap,则被指示为ap的设备的操作可以由第二sta 120的处理器121控制,并且相关信号可以通过由第二sta 120的处理器121控制的收发器123发送或接收。另外,与ap的操作有关的控制信息或ap的tx/rx信号可以被存储在第二sta 120的存储器122中。
64.例如,在下面描述的说明书中,被指示为非ap(或用户sta)的设备的操作可以在第一sta 110或第二sta 120中执行。例如,如果第二sta 120是非ap,则被指示为非ap的设备的操作可以由第二sta120的处理器121控制,并且相关信号可以通过由第二sta 120的处理器121控制的收发器123发送或接收。另外,与非ap的操作有关的控制信息或非ap的tx/rx信号可以被存储在第二sta 120的存储器122中。例如,如果第一sta 110是非ap,则被指示为非ap的设备的操作可以由第一sta 110的处理器111控制,并且相关信号可以通过由第一sta 110的处理器111控制的收发器113发送或接收。另外,与非ap的操作有关的控制信息或非ap的tx/rx信号可以被存储在第一sta 110的存储器112中。
65.在下面描述的说明书中,称为(发送/接收)sta、第一sta、第二sta、sta1、sta2、ap、第一ap、第二ap、ap1、ap2、(发送/接收)终端、(发送/接收)设备、(发送/接收)装置、网络等的设备可以暗指图1的sta 110和120。例如,被指示为(但没有具体标号)(发送/接收)sta、第一sta、第二sta、sta1、sta2、ap、第一ap、第二ap、ap1、ap2、(发送/接收)终端、(发送/接收)设备、(发送/接收)装置、网络等的设备可以暗指图1的sta 110和120。例如,在以下示例中,各种sta发送/接收信号(例如,ppdu)的操作可以在图1的收发器113和123中执行。另外,在以下示例中,各种sta生成tx/rx信号或针对tx/rx信号预先执行数据处理和计算的操作可以在图1的处理器111和121中执行。例如,用于生成tx/rx信号或事先执行数据处理和计算的操作的示例可以包括:1)对包括在ppdu中的子字段(sig、stf、ltf、数据)的比特信息进行确定/获得/配置/计算/解码/编码的操作;2)确定/配置/获得用于ppdu中所包括的子字段(sig、stf、ltf、数据)的时间资源或频率资源(例如,子载波资源)等的操作;3)确定/配置/获得用于ppdu中所包括的子字段(sig、stf、ltf、数据)字段的特定序列(例如,导频序列、stf/ltf序列、应用于sig的额外序列)等的操作;4)应用于sta的功率控制操作和/或省电操作;以及5)与ack信号的确定/获得/配置/解码/编码等有关的操作。另外,在以下示例
中,由各种sta用来确定/获得/配置/计算/解码/解码tx/rx信号的各种信息(例如,与字段/子字段/控制字段/参数/功率等有关的信息)可以被存储在图1的存储器112和122中。
66.图1的子图(a)的前述设备/sta可以如图1的子图(b)所示进行修改。在下文中,将基于图1的子图(b)来描述本说明书的sta 110和sta120。
67.例如,图1的子图(b)中所示的收发器113和123可以执行与图1的子图(a)中所示的前述收发器相同的功能。例如,图1的子图(b)中所示的处理芯片114和124可以包括处理器111和121以及存储器112和122。图1的子图(b)中所示的处理器111和121以及存储器112和122可以执行与图1的子图(a)中所示的前述处理器111和121以及存储器112和122相同的功能。
68.下面描述的移动终端、无线设备、无线发送/接收单元(wtru)、用户设备(ue)、移动站(ms)、移动订户单元、用户、用户sta、网络、基站、节点b、接入点(ap)、转发器、路由器、中继器、接收单元、发送单元、接收sta、发送sta、接收设备、发送设备、接收装置和/或发送装置可以意味着图1的子图(a)/(b)中示出的sta110和120,或者可以意味着图1的子图(b)中示出的处理芯片114和124。也就是说,本说明书的技术特征可以在图1的子图(a)/(b)中示出的sta 110和120中执行,或者可以仅在图1的子图(b)中示出的处理芯片114和124中执行图1的子图(a)/(b)中示出的收发器113和123。例如,发送sta发送控制信号的技术特征可以被理解为通过图1的子图(a)/(b)中图示的收发器113发送在图1的子图(a)/(b)中图示的处理器111和121中生成的控制信号的技术特征。可替选地,发送sta发送控制信号的技术特征可以被理解为在图1的子图(b)中示出的处理芯片114和124中生成要被传送到收发器113和123的控制信号的技术特征。
69.例如,接收sta接收控制信号的技术特征可以被理解为通过图1的子图(a)中所示的收发器113和123接收控制信号的技术特征。可替选地,接收sta接收控制信号的技术特征可以被理解为通过图1的子图(a)中所示的处理器111和121获得图1的子图(a)中所示的收发器113和123中接收的控制信号的技术特征。可替选地,接收sta接收控制信号的技术特征可以被理解为通过图1的子图(b)中所示的处理芯片114和124获得图1的子图(b)中所示的收发器113和123中接收的控制信号的技术特征。
70.参考图1的子图(b),软件代码115和125可以被包括在存储器112和122中。软件代码115和125可以包括用于控制处理器111和121的操作的指令。软件代码115和125可以被包括作为各种编程语言。
71.图1的处理器111和121或处理芯片114和124可以包括专用集成电路(asic)、其他芯片组、逻辑电路和/或数据处理设备。处理器可以是应用处理器(ap)。例如,图1的处理器111和121或处理芯片114和124可以包括以下中的至少一个:数字信号处理器(dsp)、中央处理单元(cpu)、图形处理单元(gpu)以及调制器和解调器(调制解调器)。例如,图1的处理器111和121或处理芯片114和124可以是由制造的snapdragontm处理器系列、由制造的exynostm处理器系列、由制造的处理器系列、由制造的heliotm处理器系列、由制造的atomtm处理器系列或从这些处理器增强的处理器。
72.在本说明书中,上行链路可以意味着用于从非ap sta到sp sta的通信的链路,并
且上行链路ppdu/分组/信号等可以通过上行链路被发送。另外,在本说明书中,下行链路可以意味着用于从ap sta到非ap sta的通信的链路,并且下行链路ppdu/分组/信号等可以通过下行链路被发送。
73.图2是图示无线局域网(wlan)的结构的概念图。
74.图2的上部图示电气和电子工程师协会(ieee)802.11的基础设施基本服务集(bss)的结构。
75.参考图2的上部,无线lan系统可以包括一个或更多个基础设施bss 200和205(以下,称为bss)。作为成功同步以彼此通信的ap和sta(例如,接入点(ap)225和站(sta1)200-1)的集合的bss200和205不是指示特定区域的概念。bss 205可以包括可加入一个ap 230的一个或更多个sta 205-1和205-2。
76.bss可以包括至少一个sta、提供分布式服务的ap和连接多个ap的分布式系统(ds)210。
77.分布式系统210可以实现通过将多个bss 200和205连接而扩展的扩展服务集(ess)240。ess 240可用作指示通过经由分布式系统210将一个或更多个ap 225或230连接而配置的一个网络的术语。包括在一个ess 240中的ap可以具有相同的服务集标识(ssid)。
78.门户220可以用作连接无线lan网络(ieee 802.11)和另一网络(例如,802.x)的桥梁。
79.在图2的上部所示的bss中,可以实现ap 225与230之间的网络以及ap 225和230与sta 200-1、205-1和205-2之间的网络。然而,甚至在没有ap 225和230的情况下在sta之间配置网络以执行通信。通过甚至在没有ap 225和230的情况下在sta之间配置网络来执行通信的网络被定义为自组织网络或独立基本服务集(ibss)。
80.图2的下部图示概念图,图示ibss。
81.参考图2的下部,ibss是在自组织模式下操作的bss。由于ibss不包括接入点(ap),所以在中心执行管理功能的集中式管理实体不存在。即,在ibss中,sta 250-1、250-2、250-3、255-4和255-5通过分布式方式管理。在ibss中,所有sta 250-1、250-2、250-3、255-4和255-5可以由可移动sta构成,并且不允许接入ds以构成自包含网络。
82.图3图示一般链路建立过程。
83.在s310中,sta可以执行网络发现操作。网络发现操作可以包括sta的扫描操作。即,为了接入网络,sta需要发现参与网络。sta需要在加入无线网络之前识别可兼容网络,并且识别存在于特定区域中的网络的处理被称为扫描。扫描方法包括主动扫描和被动扫描。
84.图3图示包括主动扫描处理的网络发现操作。在主动扫描中,执行扫描的sta发送探测请求帧并等待对探测请求帧的响应,以便在移动到信道的同时识别周围存在哪一ap。响应者向已发送探测请求帧的sta发送探测响应帧作为对探测请求帧的响应。这里,响应者可以是正在扫描的信道的bss中发送最后信标帧的sta。在bss中,由于ap发送信标帧,所以ap是响应者。在ibss中,由于ibss中的sta轮流发送信标帧,所以响应者不固定。例如,当sta经由信道1发送探测请求帧并且经由信道1接收探测响应帧时,sta可存储包括在所接收的探测响应帧中的bss相关信息,可移动到下一信道(例如,信道2),并且可以通过相同的方法执行扫描(例如,经由信道2发送探测请求和接收探测响应)。
85.尽管图3中未示出,可以通过被动扫描方法执行扫描。在被动扫描中,执行扫描的sta可以在移动到信道的同时等待信标帧。信标帧是ieee 802.11中的管理帧之一,并且周期性地被发送以指示无线网络的存在并且使得执行扫描的sta能够找到无线网络并加入无线网络。在bss中,ap用于周期性地发送信标帧。在ibss中,ibss中的sta轮流发送信标帧。在接收到信标帧时,执行扫描的sta存储关于信标帧中所包括的bss的信息并且记录各个信道中的信标帧信息,同时移动到另一信道。接收到信标帧的sta可存储包括在所接收的信标帧中的bss相关信息,可移动到下一信道,并且可以通过相同的方法在下一信道中执行扫描。
86.在发现网络之后,sta可以在s320中执行认证处理。该认证处理可以被称为第一认证处理以与随后s340中的安全性建立操作清楚地区分。s320中的认证处理可以包括sta向ap发送认证请求帧并且ap作为响应向sta发送认证响应帧的处理。用于认证请求/响应的认证帧是管理帧。
87.认证帧可以包括关于认证算法编号、认证事务序列号、状态代码、挑战文本、稳健安全网络(rsn)和有限循环组的信息。
88.sta可以向ap发送认证请求帧。ap可以基于包括在所接收的认证请求帧中的信息来确定是否允许sta的认证。ap可经由认证响应帧向sta提供认证处理结果。
89.当sta被成功认证时,sta可以在s330中执行关联处理。关联处理包括sta向ap发送关联请求帧并且ap作为响应向sta发送关联响应帧的处理。例如,关联请求帧可以包括关于各种能力的信息、信标侦听间隔、服务集标识符(ssid)、所支持速率、所支持信道、rsn、移动域、所支持操作类别、业务指示图(tim)广播请求和互通服务能力。例如,关联响应帧可以包括关于各种能力的信息、状态代码、关联id(aid)、所支持速率、增强分布式信道接入(edca)参数集、接收信道功率指示符(rcpi)、接收信噪比指示符(rsni)、移动域、超时间隔(关联恢复时间)、交叠bss扫描参数、tim广播响应和qos图。
90.在s340中,sta可以执行安全性建立处理。s340中的安全性建立处理可以包括通过四次握手(例如,通过经由lan的可扩展认证协议(eapol)帧)建立私钥的处理。
91.图4图示ieee标准中使用的ppdu的示例。
92.如所示,在ieee a/g/n/ac标准中使用各种类型的phy协议数据单元(ppdu)。具体地,ltf和stf包括训练信号,sig-a和sig-b包括用于接收sta的控制信息,并且数据字段包括与psdu(mac pdu/聚合mac pdu)对应的用户数据。
93.图4还包括根据ieee 802.11ax的he ppdu的示例。根据图4的he ppdu是用于多个用户的例示性ppdu。he-sig-b可仅包括在用于多个用户的ppdu中,并且在用于单个用户的ppdu中可省略he-sig-b。
94.如图4所图示,用于多个用户(mu)的he-ppdu可以包括传统短训练字段(l-stf)、传统长训练字段(l-ltf)、传统信号(l-sig)、高效率信号a(he-sig a)、高效率信号b(he-sig b)、高效率短训练字段(he-stf)、高效率长训练字段(he-ltf)、数据字段(可替换地,mac有效载荷)和分组扩展(pe)字段。各个字段可以在所示的时间周期(即,4或8μs)内发送。
95.以下,描述用于ppdu的资源单元(ru)。ru可以包括多个子载波(或音调(tone))。ru可以用于根据ofdma向多个sta发送信号。此外,ru也可以被定义为向一个sta发送信号。ru可以用于stf、ltf、数据字段等。
96.图5图示在20mhz的频带中使用的资源单元(ru)的布局。
97.如图5所图示,与不同数量的音调(即,子载波)对应的资源单元(ru)可以用于形成he-ppdu的一些字段。例如,可以在所图示的ru中为he-stf、he-ltf和数据字段分配资源。
98.如图5的最上部所图示,可以布置26单元(即,与26个音调对应的单元)。六个音调可以用于20mhz频带的最左频带中的保护频带,五个音调可以用于20mhz频带的最右频带中的保护频带。此外,可以在中心频带(即,dc频带)中插入七个dc音调,并且可以布置与dc频带的左侧和右侧中的每一侧的13个音调对应的26单元。可以向其他频带分配26单元、52单元和106单元。可为接收sta(即,用户)分配各个单元。
99.图5中的ru的布局可不仅用于多个用户(mu),而且用于单个用户(su),在这种情况下可以使用一个242单元并且可插入三个dc音调,如图5的最下部所示。
100.尽管图5提出了具有各种大小的ru,即,26-ru、52-ru、106-ru和242-ru,但是可扩展或增加特定大小的ru。因此,本实施例不限于特定大小的各个ru(即,相应音调的数量)。
101.图6图示在40mhz的频带中使用的ru的布局。
102.类似于使用具有各种大小的ru的图5,在图6的示例中可以使用26-ru、52-ru、106-ru、242-ru、484-ru等。此外,可以在中心频率中插入五个dc音调,12个音调可以用于40mhz频带的最左频带中的保护频带,11个音调可以用于40mhz频带的最右频带中的保护频带。
103.如图6所示,当ru的布局用于单个用户时,可以使用484-ru。ru的具体数量可类似于图5改变。
104.图7图示在80mhz的频带中使用的ru的布局。
105.类似于使用具有各种大小的ru的图5和图6,在图7的示例中可以使用26-ru、52-ru、106-ru、242-ru、484-ru、996-ru等。此外,可以在中心频率中插入七个dc音调,12个音调可以用于80mhz频带的最左频带中的保护频带,11个音调可以用于80mhz频带的最右频带中的保护频带。另外,可以使用与dc频带的左侧和右侧中的每一侧的13个音调对应的26-ru。
106.如图7所示,当ru的布局用于单个用户时,可以使用996-ru,在这种情况下可插入五个dc音调。
107.本说明书中所描述的ru可以在上行链路(ul)通信和下行链路(dl)通信中使用。例如,当执行通过触发帧请求的ul-mu通信时,发送sta(例如,ap)可以通过触发帧向第一sta分配第一ru(例如,26/52/106/242-ru等),并且可以向第二sta分配第二ru(例如,26/52/106/242-ru等)。此后,第一sta可以基于第一ru发送第一基于触发的ppdu,并且第二sta可以基于第二ru发送第二基于触发的ppdu。第一/第二基于触发的ppdu在相同(或交叠的)时间周期发送给ap。
108.例如,当配置dl mu ppdu时,发送sta(例如,ap)可以向第一sta分配第一ru(例如,26/52/106/242-ru等),并且可以向第二sta分配第二ru(例如,26/52/106/242-ru等)。即,发送sta(例如,ap)可以通过一个mu ppdu中的第一ru发送用于第一sta的he-stf、he-ltf和数据字段,并且可以通过第二ru发送用于第二sta的he-stf,he-ltf和数据字段。
109.与ru的布局有关的信息可以通过he-sig-b用信号通知。
110.图8图示he-sig-b字段的结构。
111.如所示,he-sig-b字段810包括公共字段820和用户特定字段830。公共字段820可以包括共同应用于接收sig-b的所有用户(即,用户sta)的信息。用户特定字段830可以被称为用户特定控制字段。当sig-b被传送给多个用户时,用户特定字段830可仅应用于多个用
户中的任一个。
112.如图8所示,公共字段820和用户特定字段830可以被单独地编码。
113.公共字段820可以包括n*8比特的ru分配信息。例如,ru分配信息可以包括与ru的位置有关的信息。例如,当如图5所示使用20mhz信道时,ru分配信息可以包括与布置有特定ru(26-ru/52-ru/106-ru)的特定频带有关的信息。
114.ru分配信息由8比特组成的情况的示例如下。
115.[表1]
[0116][0117]
如图5的示例所示,可以向20mhz信道分配直至九个26-ru。当如表1所示公共字段820的ru分配信息被设定为“00000000”时,可以向相应信道(即,20mhz)分配九个26-ru。另外,当如表1所示公共字段820的ru分配信息被设定为“00000001”时,在相应信道中布置七个26-ru和一个52-ru。即,在图5的示例中,可以向最右侧分配52-ru,并且可以向其左侧分配七个26-ru。
[0118]
表1的示例仅示出能够显示ru分配信息的一些ru位置。
[0119]
例如,ru分配信息可以包括下表2的示例。
[0120]
[表2]
[0121][0122]“01000y2y1y0”涉及向20mhz信道的最左侧分配106-ru,并且向其右侧分配五个26-ru的示例。在这种情况下,可以基于mu-mimo方案将多个sta(例如,用户sta)分配给106-ru。具体地,直至8个sta(例如,用户sta)可以被分配给106-ru,并且分配给106-ru的sta(例如,用户sta)的数量基于3比特信息(y2y1y0)来确定。例如,当3比特信息(y2y1y0)被设定为n时,基于mu-mimo方案分配给106-ru的sta(例如,用户sta)的数量可为n+1。
[0123]
通常,彼此不同的多个sta(例如,用户sta)可以被分配给多个ru。然而,可以基于mu-mimo方案将多个sta(例如,用户sta)分配给至少具有特定大小(例如,106个子载波)的一个或更多个ru。
[0124]
如图8所示,用户特定字段830可以包括多个用户字段。如上所述,分配给特定信道的sta(例如,用户sta)的数量可以基于公共字段820的ru分配信息来确定。例如,当公共字段820的ru分配信息为“00000000”时,一个用户sta可以被分配给九个26-ru中的每个(例如,可分配九个用户sta)。即,可以通过ofdma方案将直至9个用户sta分配给特定信道。换言之,可以通过非mu-mimo方案将直至9个用户sta分配给特定信道。
[0125]
例如,当ru分配被设定为“01000y2y1y0”时,可以通过mu-mimo方案将多个sta分配给布置在最左侧的106-ru,并且可以通过非mu mimo方案将五个用户sta分配给布置在其右侧的五个26-ru。这种情况通过图9的示例来说明。
[0126]
图9图示通过mu-mimo方案将多个用户sta分配给相同ru的示例。
[0127]
例如,当如图9所示ru分配被设定为“01000010”时,106-ru可以被分配给特定信道的最左侧,并且五个26-ru可以被分配给其右侧。另外,可以通过mu-mimo方案将三个用户sta分配给106-ru。结果,由于分配八个用户sta,所以he-sig-b的用户特定字段830可以包括八个用户字段。
[0128]
八个用户字段可以按图9所示的顺序来表示。另外,如图8所示,两个用户字段可利用一个用户块字段来实现。
[0129]
图8和图9所示的用户字段可以基于两个格式来配置。即,与mu-mimo方案有关的用户字段可以按第一格式被配置,并且与非mimo方案有关的用户字段可以按第二格式被配置。参考图9的示例,用户字段1至用户字段3可以基于第一格式,并且用户字段4至用户字段8可以基于第二格式。第一格式或第二格式可以包括相同长度(例如,21比特)的比特信息。
[0130]
各个用户字段可以具有相同的大小(例如,21比特)。例如,第一格式的用户字段(第一个mu-mimo方案)可以如下配置。
[0131]
例如,用户字段(即,21比特)中的第一比特(即,b0-b10)可以包括分配相应用户字段的用户sta的标识信息(例如,sta-id、部分aid等)。另外,用户字段(即,21比特)中的第二比特(即,b11-b14)可以包括与空间配置有关的信息。具体地,第二比特(即,b11-b14)的示例可如下面的表3和表4所示。
[0132]
[表3]
[0133][0134]
[表4]
[0135][0136]
如表3和/或表4所示,第二比特(例如,b11-b14)可以包括与分配给基于mu-mimo方案分配的多个用户sta的空间流的数量有关的信息。例如,当如图9所示基于mu-mimo方案将三个用户sta分配给106-ru时,n_user被设定为“3”。因此,n_sts[1]、n_sts[2]和n_sts[3]的值可如表3所示确定。例如,当第二比特(b11-b14)的值为“0011”时,其可以被设定为n_sts[1]=4、n_sts[2]=1、n_sts[3]=1。即,在图9的示例中,可以向用户字段1分配四个空间流,可以向用户字段1分配一个空间流,可以向用户字段3分配一个空间流。
[0137]
如表3和/或表4的示例所示,与用于用户sta的空间流的数量有关的信息(即,第二比特,b11-b14)可以由4比特组成。另外,关于用于用户sta的空间流的数量的信息(即,第二比特,b11-b14)可以支持直至八个空间流。另外,关于用于用户sta的空间流的数量的信息(即,第二比特,b11-b14)可以支持用于一个用户sta的直至四个空间流。
[0138]
另外,用户字段(即,21比特)中的第三比特(即,b15-18)可以包括调制和编码方案(mcs)信息。mcs信息可以被应用于包括相应sig-b的ppdu中的数据字段。
[0139]
本说明书中使用的mcs、mcs信息、mcs索引、mcs字段等可以由索引值指示。例如,mcs信息可以由索引0至索引11指示。mcs信息可以包括与星座调制类型(例如,bpsk、qpsk、16-qam、64-qam、256-qam、1024-qam等)有关的信息以及与编译速率(例如,1/2、2/3、3/4、5/6e等)有关的信息。在mcs信息中可以不包括与信道编译类型(例如,lcc或ldpc)有关的信息。
[0140]
另外,用户字段(即,21比特)中的第四比特(即,b19)可以是预留字段。
[0141]
另外,用户字段(即,21比特)中的第五比特(即,b20)可以包括与编译类型(例如,bcc或ldpc)有关的信息。即,第五比特(即,b20)可以包括与应用于包括相应sig-b的ppdu中的数据字段的信道编译的类型(例如,bcc或ldpc)有关的信息。
[0142]
上述示例涉及第一格式(mu-mimo方案的格式)的用户字段。第二格式(非mu-mimo方案的格式)的用户字段的示例如下。
[0143]
第二格式的用户字段中的第一比特(例如,b0-b10)可以包括用户sta的标识信息。另外,第二格式的用户字段中的第二比特(例如,b11-b13)可以包括与应用于相应ru的空间流的数量有关的信息。另外,第二格式的用户字段中的第三比特(例如,b14)可以包括与是否应用波束成形导向矩阵有关的信息。第二格式的用户字段中的第四比特(例如,b15-b18)可以包括调制和编码方案(mcs)信息。另外,第二格式的用户字段中的第五比特(例如,b19)可以包括与是否应用双载波调制(dcm)有关的信息。另外,第二格式的用户字段中的第六比特(即,b20)可以包括与编译类型(例如,bcc或ldpc)有关的信息。
[0144]
图10示出基于ul-mu的操作。如所示,发送sta(例如,ap)可以通过竞争(例如,退避操作)来执行信道接入,并且可以发送触发帧1030。即,发送sta可以发送包括触发帧1030的ppdu。在接收到包括触发帧的ppdu时,在与sifs对应的延迟之后发送基于触发的(tb)ppdu。
[0145]
tb ppdu 1041和1042可以在相同的时间周期发送,并且可以从具有触发帧1030中指示的aid的多个sta(例如,用户sta)发送。用于tb ppdu的ack帧1050可按各种形式实现。
[0146]
参考图11至图13描述触发帧的具体特征。即使使用ul-mu通信,也可以使用正交频分多址(ofdma)方案或mu mimo方案,并且可同时使用ofdma和mu-mimo方案。
[0147]
图11图示触发帧的示例。图11的触发帧为上行链路多用户(mu)传输分配资源,并且可以例如从ap发送。触发帧可以由mac帧配置,并且可以被包括在ppdu中。
[0148]
图11所示的各个字段可以被部分地省略,并且可以添加另一字段。另外,各个字段的长度可改变为与图中所示不同。
[0149]
图11的帧控制字段1110可以包括与mac协议版本有关的信息和额外附加控制信息。持续时间字段1120可以包括nav配置的时间信息或与sta的标识符(例如,aid)有关的信息。
[0150]
另外,ra字段1130可以包括相应触发帧的接收sta的地址信息,并且可选地可以被省略。ta字段1140可以包括发送相应触发帧的sta(例如,ap)的地址信息。公共信息字段1150包括应用于接收相应触发帧的接收sta的公共控制信息。例如,可以包括指示响应于相应触发帧而发送的上行链路ppdu的l-sig字段的长度的字段或者用于控制响应于相应触发帧而发送的上行链路ppdu的sig-a字段(即,he-sig-a字段)的内容的信息。另外,作为公共
控制信息,可以包括与响应于相应触发帧而发送的上行链路ppdu的cp的长度有关的信息或者与ltf字段的长度有关的信息。
[0151]
另外,优选包括与接收图11的触发帧的接收sta的数量对应的每用户信息字段1160#1至1160#n。每用户信息字段也可以被称为“分配字段”。
[0152]
另外,图11的触发帧可以包括填充字段1170和帧校验序列字段1180。
[0153]
图11所示的每用户信息字段1160#1至1160#n中的每个可以包括多个子字段。
[0154]
图12图示触发帧的公共信息字段的示例。图12的子字段可以被部分地省略,并且可添加额外子字段。另外,所示的各个子字段的长度可改变。
[0155]
所示的长度字段1210具有与响应于相应触发帧而发送的上行链路ppdu的l-sig字段的长度字段相同的值,并且上行链路ppdu的l-sig字段的长度字段指示上行链路ppdu的长度。结果,触发帧的长度字段1210可以用于指示相应上行链路ppdu的长度。
[0156]
另外,级联标识符字段1220指示是否执行级联操作。级联操作意指下行链路mu传输和上行链路mu传输在同一txop中一起执行。即,其意指执行下行链路mu传输,此后在预设时间(例如,sifs)之后执行上行链路mu传输。在级联操作期间,仅一个发送设备(例如,ap)可以执行下行链路通信,并且多个发送设备(例如,非ap)可以执行上行链路通信。
[0157]
cs请求字段1230指示在接收到相应触发帧的接收设备发送相应上行链路ppdu的情况下是否必须考虑无线介质状态或nav等。
[0158]
he-sig-a信息字段1240可以包括用于响应于相应触发帧而控制上行链路ppdu的sig-a字段(即,he-sig-a字段)的内容的信息。
[0159]
cp和ltf类型字段1250可以包括与响应于相应触发帧而发送的上行链路ppdu的cp长度和ltf长度有关的信息。触发类型字段1260可以指示使用相应触发帧的目的,例如典型触发、为波束成形触发、请求块ack/nack等。
[0160]
可以假设本说明书中的触发帧的触发类型字段1260指示用于典型触发的基本类型的触发帧。例如,基本类型的触发帧可以被称为基本触发帧。
[0161]
图13图示每用户信息字段中所包括的子字段的示例。图13的用户信息字段1300可以被理解为上面参考图11提及的每用户信息字段1160#1至1160#n中的任一个。包括在图13的用户信息字段1300中的子字段可以被部分地省略,并且可添加额外子字段。另外,所示的各个子字段的长度可以被改变。
[0162]
图13的用户标识符字段1310指示与每用户信息对应的sta(即,接收sta)的标识符。标识符的示例可以是接收sta的关联标识符(aid)值的全部或部分。
[0163]
另外,可以包括ru分配字段1320。即,当通过用户标识符字段1310识别的接收sta响应于触发帧而发送tb ppdu时,通过ru分配字段1320所指示的ru发送tb ppdu。在这种情况下,ru分配字段1320所指示的ru可以是图5、图6和图7所示的ru。
[0164]
图13的子字段可以包括编译类型字段1330。编译类型字段1330可以指示tb ppdu的编译类型。例如,当对tb ppdu应用bcc编译时,编译类型字段1330可以被设定为“1”,当应用ldpc编译时,编译类型字段1330可以被设定为“0”。
[0165]
另外,图13的子字段可以包括mcs字段1340。mcs字段1340可以指示应用于tb ppdu的mcs方案。例如,当对tb ppdu应用bcc编译时,编译类型字段1330可以被设定为“1”,当应用ldpc编译时,编译类型字段1330可以被设定为“0”。
[0166]
以下,将描述基于ul ofdma的随机接入(uora)方案。
[0167]
图14描述uora方案的技术特征。
[0168]
发送sta(例如,ap)可以通过如图14所示的触发帧来分配六个ru资源。具体地,ap可分配第1ru资源(aid 0,ru 1)、第2ru资源(aid 0,ru 2)、第3ru资源(aid 0,ru 3)、第4ru资源(aid 2045,ru 4)、第5ru资源(aid 2045,ru 5)和第6ru资源(aid 3,ru 6)。与aid 0、aid 3或aid 2045有关的信息可以包括在例如图13的用户标识符字段1310中。与ru 1至ru 6有关的信息可以包括在例如图13的ru分配字段1320中。aid=0可意指用于关联的sta的uora资源,aid=2045可意指用于非关联的sta的uora资源。因此,图14的第1至第3ru资源可用作用于关联的sta的uora资源,图14的第4ru资源和第5ru资源可用作用于非关联的sta的uora资源,图14的第6ru资源可用作用于ul mu的典型资源。
[0169]
在图14的示例中,sta1的ofdma随机接入退避(obo)减小至0,并且sta1随机选择第2ru资源(aid 0,ru 2)。另外,由于sta2/3的obo计数器大于0,所以不向sta2/3分配上行链路资源。另外,关于图14中的sta4,由于sta4的aid(例如,aid=3)包括在触发帧中,所以分配ru 6的资源而没有退避。
[0170]
具体地,由于图14的sta1是关联的sta,所以用于sta1的合格ra ru的总数为3(ru 1、ru 2和ru 3),因此sta1将obo计数器减3以使得obo计数器变为0。另外,由于图14的sta2是关联的sta,所以用于sta2的合格ra ru的总数为3(ru 1、ru 2和ru 3),因此sta2将obo计数器减3,但是obo计数器大于0。另外,由于图14的sta3是非关联的sta,所以用于sta3的合格ra ru的总数为2(ru 4、ru 5),因此sta3将obo计数器减2,但是obo计数器大于0。
[0171]
图15图示在2.4ghz频带内使用/支持/定义的信道的示例。
[0172]
2.4ghz频带可以被称为诸如第一频带的其他术语。另外,2.4ghz频带可意指使用/支持/定义中心频率接近2.4ghz的信道(例如,中心频率位于2.4至2.5ghz内的信道)的频域。
[0173]
多个20mhz信道可以被包括在2.4ghz频带中。2.4ghz内的20mhz可以具有多个信道索引(例如,索引1至索引14)。例如,分配有信道索引1的20mhz信道的中心频率可为2.412ghz,分配有信道索引2的20mhz信道的中心频率可为2.417ghz,分配有信道索引n的20mhz信道的中心频率可为(2.407+0.005*n)ghz。信道索引可以被称为诸如信道号等的各种术语。信道索引和中心频率的具体数值可改变。
[0174]
图15例举了2.4ghz频带内的4个信道。本文所示的第1频域1510至第4频域1540中的每个可以包括一个信道。例如,第1频域1510可以包括信道1(具有索引1的20mhz信道)。在这种情况下,信道1的中心频率可以被设定为2412mhz。第2频域1520可以包括信道6。在这种情况下,信道6的中心频率可以被设定为2437mhz。第3频域1530可以包括信道11。在这种情况下,信道11的中心频率可以被设定为2462mhz。第4频域1540可以包括信道14。在这种情况下,信道14的中心频率可以被设定为2484mhz。
[0175]
图16图示在5ghz频带内使用/支持/定义的信道的示例。
[0176]
5ghz频带可以被称为诸如第二频带等的其他术语。5ghz频带可意指使用/支持/定义中心频率大于或等于5ghz且小于6ghz(或小于5.9ghz)的信道的频域。另选地,5ghz频带可以包括4.5ghz和5.5ghz之间的多个信道。图16所示的具体数值可改变。
[0177]
5ghz频带内的多个信道包括免许可国家信息基础设施(unii)-1、unii-2、unii-3
和ism。inii-1可以被称为unii low。unii-2可以包括称为unii mid和unii-2extended的频域。unii-3可以被称为unii-upper。
[0178]
可以在5ghz频带内配置多个信道,并且各个信道的带宽可以被不同地设定为例如20mhz、40mhz、80mhz、160mhz等。例如,unii-1和unii-2内的5170mhz至5330mhz频域/范围可以被分为八个20mhz信道。5170mhz至5330mhz频域/范围可以通过40mhz频域被分为四个信道。5170mhz至5330mhz频域/范围可以通过80mhz频域被分为两个信道。另选地,5170mhz至5330mhz频域/范围可以通过160mhz频域被分为一个信道。
[0179]
图17图示在6ghz频带内使用/支持/定义的信道的示例。
[0180]
6ghz频带可以被称为诸如第三频带等的其他术语。6ghz频带可意指使用/支持/定义中心频率大于或等于5.9ghz的信道的频域。图17所示的具体数值可以被改变。
[0181]
例如,图17的20mhz信道可以从5.940ghz开始定义。具体地,在图17的20mhz信道当中,最左信道可以具有索引1(或信道索引、信道号等),并且5.945ghz可以被指配为中心频率。即,索引n的信道的中心频率可以被确定为(5.940+0.005*n)ghz。
[0182]
因此,图17的2mhz信道的索引(或信道号)可以是1、5、9、13、17、21、25、29、33、37、41、45、49、53、57、61、65、69、73、77、81、85、89、93、97、101、105、109、113、117、121、125、129、133、137、141、145、149、153、157、161、165、169、173、177、181、185、189、193、197、201、205、209、213、217、221、225、229、233。另外,根据上述(5.940+0.005*n)ghz规则,图17的40mhz信道的索引可以是3、11、19、27、35、43、51、59、67、75、83、91、99、107、115、123、131、139、147、155、163、171、179、187、195、203、211、219、227。
[0183]
尽管在图17的示例中图示20、40、80和160mhz信道,但是可以另外添加240mhz信道或320mhz信道。
[0184]
以下,将描述在本说明书的sta中发送/接收的ppdu。
[0185]
图18图示本说明书中使用的ppdu的示例。
[0186]
图18的ppdu可以用诸如eht ppdu、tx ppdu、rx ppdu、第一类型或第n类型ppdu等的各种术语来称呼。例如,在本说明书中,ppdu或eht ppdu可以用诸如tx ppdu、rx ppdu、第一类型或第n类型ppdu等的各种术语称呼。另外,可以在eht系统和/或从eht系统增强的新wlan系统中使用eht ppdu。
[0187]
图18的ppdu可以指示在eht系统中使用的ppdu类型的全部或部分。例如,图18的示例可以用于单用户(su)模式和多用户(mu)模式二者。换句话说,图18的ppdu可以是用于一个接收sta或多个接收sta的ppdu。当图18的ppdu用于基于触发(tb)的模式时,可以省略图18的eht-sig。换句话说,已经接收到针对上行链路mu(ul-mu)的触发帧的sta可以发送在图18的示例中省略eht-sig的ppdu。
[0188]
在图18中,l-stf到eht-ltf可以被称作前导或物理前导,并且可以在物理层中被生成/发送/接收/获得/解码。
[0189]
可以将图18的l-stf、l-ltf、l-sig、rl-sig、u-sig和eht-sig字段的子载波间隔确定为312.5khz,并且可以将eht-stf、eht-ltf和数据字段的子载波间隔确定为78.125khz。也就是说,能够以312.5khz为单位表达l-stf、l-ltf、l-sig、rl-sig、u-sig、eht-sig字段的音调索引(或子载波索引),并且能够以78.125khz为单位表达eht-stf、eht-ltf和数据字段的音调索引(或子载波索引)。
[0190]
在图18的ppdu中,l-ltf和l-stf可以与常规字段中的那些相同。
[0191]
图18的l-sig字段可以包括例如24个比特的比特信息。例如,24比特信息可以包括4个比特的速率字段、1个比特的保留比特、12个比特的长度字段、1个比特的奇偶比特和6个比特的尾部比特。例如,12个比特的长度字段可以包括与ppdu的长度或持续时间相关的信息。例如,可以基于ppdu的类型来确定12个比特的长度字段。例如,当ppdu是非ht、ht、vht ppdu或eht ppdu时,可以将长度字段的值确定为3的倍数。例如,当ppdu是he ppdu时,可以将长度字段确定为“3的倍数”+1或“3的倍数”+2。换句话说,对于非-ht、ht、vht ppdu或eht ppdu,可以将长度字段的值确定为3的倍数,并且对于he ppdu,可以将长度字段的值确定为“3的倍数”+1或“3的倍数”+2。
[0192]
例如,发送sta可以对l-sig字段的24比特信息应用基于1/2编译速率的bcc编码。此后,发送sta可以获得48个比特的bcc编译比特。可以对48比特的编译比特应用bpsk调制,从而生成48个bpsk符号。发送sta可以将48个bpsk符号映射到除了导频子载波{子载波索引-21,-7,+7,+21}和dc子载波{子载波索引0}之外的位置。结果,可以将48个bpsk符号映射到子载波索引-26至-22、-20至-8、-6至-1、+1至+6、+8至+20和+22至+26。发送sta可以附加地将{-1,-1,-1,1}的信号映射到子载波索引{-28,-27,+27,+28}。前述信号可以被用于与{-28,-27,+27,+28}对应的频域上的信道估计。
[0193]
发送sta可以生成以与l-sig相同的方式生成的rl-sig。可以对rl-sig应用bpsk调制。基于rl-sig的存在,接收sta可以知道rx ppdu是he ppdu或eht ppdu。
[0194]
通用sig(u-sig)可以被插入在图18的rl-sig之后。u-sig能够以诸如第一sig字段、第一sig、第一类型sig、控制信号、控制信号字段、第一(类型)控制信号等的各种术语称呼。
[0195]
u-sig可以包括n个比特的信息,并且可以包括用于识别eht ppdu的类型的信息。例如,可以基于两个符号(例如,两个连续的ofdm符号)配置u-sig。用于u-sig的每个符号(例如,ofdm符号)可以具有4μs的持续时间。u-sig的每个符号可以用于发送26比特信息。例如,可以基于52个数据音调和4个导频音调发送/接收u-sig的每个符号。
[0196]
通过u-sig(或u-sig字段),例如,可以发送a比特信息(例如,52个未编译比特)。u-sig的第一符号可以发送a比特信息的前x比特信息(例如,26个未编译比特),并且u-sig的第二符号可以发送a比特信息的剩余y比特信息(例如,26个未编译比特)。例如,发送sta可以获得每个u-sig符号中包括的26个未编译比特。发送sta可以基于r=1/2的速率执行卷积编码(即,bcc编码)以生成52个编译比特,并且可以对52个编译比特执行交织。发送sta可以对交织的52个编译比特执行bpsk调制以生成要分配给每个u-sig符号的52个bpsk符号。除了dc索引0之外,可以基于从子载波索引-28到子载波索引+28的65个音调(子载波)发送一个u-sig符号。可以基于除了导频音调之外的剩余音调(子载波)即音调-21、-7、+7、+21发送由发送sta生成的52个bpsk符号。
[0197]
例如,由u-sig生成的a比特信息(例如,52个未编译比特)可以包括crc字段(例如,长度为4个比特的字段)和尾字段(例如,长度为6个比特的字段)。可以通过u-sig的第二符号来发送crc字段和尾字段。crc字段可以是基于分配给u-sig的第一符号的26个比特和第二符号中除了crc/尾字段之外的剩余16个比特而生成的,并且可以是基于常规crc计算算法而生成的。另外,尾字段可以用于终止卷积解码器的网格(trellis),并且可以被设置为
例如“000000”。
[0198]
可以将由u-sig(或u-sig字段)发送的a比特信息(例如,52个未编译比特)划分成版本无关比特和版本相关比特。例如,版本无关比特可以具有固定或可变大小。例如,可以将版本无关比特仅分配给u-sig的第一符号,或者可以将版本无关比特分配给u-sig的第一符号和第二符号这两者。例如,版本无关比特和版本相关比特能够以诸如第一控制比特、第二控制比特等的各种术语称呼。
[0199]
例如,u-sig的版本无关比特可以包括3个比特的phy版本标识符。例如,3个比特的phy版本标识符可以包括与tx/rx ppdu的phy版本相关的信息。例如,3个比特的phy版本标识符的第一值可以指示tx/rx ppdu是eht ppdu。换句话说,当发送sta发送eht ppdu时,可以将3个比特的phy版本标识符设置为第一值。换句话说,接收sta可以基于phy版本标识符具有第一值来确定rx ppdu是eht ppdu。
[0200]
例如,u-sig的版本无关比特可以包括1个比特的ul/dl标志字段。1个比特的ul/dl标志字段的第一值与ul通信相关,并且ul/dl标志字段的第二值与dl通信相关。
[0201]
例如,u-sig的版本无关比特可以包括与txop长度相关的信息和与bss颜色id相关的信息。
[0202]
例如,当eht ppdu被划分成各种类型(例如,诸如与su模式相关的eht ppdu、与mu模式相关的eht ppdu、与tb模式相关的eht ppdu、与扩展范围传输相关的eht ppdu等的各种类型)时,可以将与eht ppdu的类型相关的信息包括在u-sig的版本相关比特中。
[0203]
例如,u-sig可以包括:1)包括与带宽相关的信息的带宽字段;2)包括与应用于eht-sig的mcs方案相关的信息的字段;3)包括与是否对eht-sig应用双子载波调制(dcm)方案相关的信息的指示字段;4)包括与用于eht-sig的符号的数量相关的信息的字段;5)包括与是否跨全频带生成eht-sig相关的信息的字段;6)包括与eht-ltf/stf的类型相关的信息的字段;以及7)与指示eht-ltf长度和cp长度的字段相关的信息。
[0204]
可以对图18的ppdu应用前导穿孔。前导穿孔意指穿孔被应用于全频带的部分(例如,辅20mhz频带)。例如,当发送80mhz ppdu时,sta可以对80mhz频带中的辅20mhz频带应用穿孔,并且可以仅通过主20mhz频带和辅40mhz频带来发送ppdu。
[0205]
例如,可以预先配置前导穿孔的图案。例如,当应用第一穿孔图案时,可以仅对80mhz频带内的辅20mhz频带应用穿孔。例如,当应用第二穿孔图案时,可以仅对包括在80mhz频带内的辅40mhz频带中的两个辅20mhz频带中的任何一个应用穿孔。例如,当应用第三穿孔图案时,可以仅对包括在160mhz频带(或80+80mhz频带)内的主80mhz频带中的辅20mhz频带应用穿孔。例如,当应用第四穿孔图案时,可以在包括在160mhz频带(或80+80mhz频带)内的80mhz频带中的主40mhz频带存在的情况下对不属于主40mhz频带的至少一个20mhz信道应用穿孔。
[0206]
可以将与应用于ppdu的前导穿孔相关的信息包括在u-sig和/或eht-sig中。例如,u-sig的第一字段可以包括与连续带宽相关的信息,并且u-sig的第二字段可以包括与应用于ppdu的前导穿孔相关的信息。
[0207]
例如,基于以下方法,u-sig和eht-sig可以包括与前导穿孔相关的信息。当ppdu的带宽超过80mhz时,能够以80mhz为单位单独地配置u-sig。例如,当ppdu的带宽是160mhz时,ppdu可以包括用于第一80mhz频带的第一u-sig和用于第二80mhz频带的第二u-sig。在这种
情况下,第一u-sig的第一字段可以包括与160mhz带宽相关的信息,并且第一u-sig的第二字段可以包括与应用于第一80mhz频带的前导穿孔相关的信息(即,与前导穿孔图案相关的信息)。另外,第二u-sig的第一字段可以包括与160mhz带宽相关的信息,并且第二u-sig的第二字段可以包括与应用于第二80mhz频带的前导穿孔相关的信息(即,与前导穿孔图案相关的信息)。同时,与第一u-sig连续的eht-sig可以包括与应用于第二80mhz带的前导穿孔相关的信息(即,与前导穿孔图案相关的信息),并且与第二u-sig连续的eht-sig可以包括与应用于第一80mhz频带的前导穿孔相关的信息(即,与前导穿孔图案相关的信息)。
[0208]
附加地或另选地,基于以下方法,u-sig和eht-sig可以包括与前导穿孔相关的信息。u-sig可以包括与用于所有频带的前导穿孔相关的信息(即,与前导穿孔图案相关的信息)。也就是说,eht-sig可以不包括与前导穿孔相关的信息,而仅u-sig可以包括与前导穿孔相关的信息(即,与前导穿孔图案相关的信息)。
[0209]
可以以20mhz为单位配置u-sig。例如,当配置了80mhz ppdu时,可以复制u-sig。也就是说,可以在80mhz ppdu中包括四个相同的u-sig。超过80mhz带宽的ppdu可以包括不同的u-sig。
[0210]
可以以20mhz为单位配置u-sig。例如,当配置了80mhz ppdu时,可以复制u-sig。也就是说,可以在80mhz ppdu中包括四个相同的u-sig。超过80mhz带宽的ppdu可以包括不同的u-sig。
[0211]
图18中的eht-sig可以包括用于接收sta的控制信息。可以通过至少一个符号来发送eht-sig,并且一个符号可以具有4μs的长度。与用于eht-sig的符号的数量相关的信息可以被包括在u-sig中。
[0212]
eht-sig可以包括参考图8和图9描述的he-sig-b的技术特征。例如,eht-sig可以包括如在图8的示例中的公共字段和用户特定字段。可以省略eht-sig的公共字段,并且可以基于用户的数量来确定用户特定字段的数量。
[0213]
如在图8的示例中,eht-sig的公共字段和eht-sig的用户特定字段可以被单独编码。包括在用户特定字段中的一个用户块字段可以包括用于两个用户的信息,但是包括在用户特定字段中的最后一个用户块字段可以包括用于一个用户的信息。也就是说,eht-sig的一个用户块字段可以包括直至两个用户字段。如在图9的示例中,每个用户字段可以与mu-mimo分配相关,或者可以与非mu-mimo分配相关。
[0214]
如在图8的示例中,eht-sig的公共字段可以包括crc比特和尾部比特(tail bit)。crc比特的长度可以被确定为4比特。尾部比特的长度可以被确定为6比特,并且可以被设置为“000000”。
[0215]
如在图8的示例中,eht-sig的公共字段可以包括ru分配信息。ru分配信息可以意指与多个用户(即,多个接收sta)被分配到的ru的位置相关的信息。ru分配信息可以以8比特(或n比特)为单位配置,如表1中所示。
[0216]
表5至表7的示例是用于各种ru分配的8比特(或n比特)信息的示例。可以修改每个表中所示的索引,并且可以省略表5至表7中的一些条目,并且可以添加条目(未示出)。
[0217]
表5至表7的示例涉及与分配给20mhz频带的ru的位置相关的信息。例如,表5的“索引0”可以在单独分配九个26-ru的情况下(例如,在单独分配图5中所示的九个26-ru的情况下)使用。
[0218]
此外,可以将多个ru分配给eht系统中的一个sta。例如,关于表6的“索引60”,一个26-ru可以被分配给20mhz频带的最左侧的一个用户(即,接收sta),一个26-ru和一个52-ru可以被分配给其右侧,并且五个26-ru可以被单独地分配给其右侧。
[0219]
[表5]
[0220][0221]
[表6]
[0222][0223]
[表7]
[0224][0225]
可以支持省略eht-sig的公共字段的模式。省略eht-sig的公共字段中的模式可以被称为压缩模式。当使用压缩模式时,多个用户(即,多个接收sta)可以基于非ofdma对ppdu(例如,ppdu的数据字段)进行解码。也就是说,eht ppdu的多个用户可以对通过相同频带接收的ppdu(例如,ppdu的数据字段)进行解码。此外,当使用非压缩模式时,eht ppdu的多个用户可以基于ofdma对ppdu(例如,ppdu的数据字段)进行解码。也就是说,eht ppdu的多个用户可以通过不同的频带来接收ppdu(例如,ppdu的数据字段)。
[0226]
可以基于各种mcs方案配置eht-sig。如上所述,可以将与应用于eht-sig的mcs方案相关的信息包括在u-sig中。可以基于dcm方案配置eht-sig。例如,在为eht-sig分配的n个数据音调(例如,52个数据音调)当中,可以对连续音调的一半应用第一调制方案,并且可
以对连续音调的剩余一半应用第二调制方案。也就是说,发送sta可以使用第一调制方案来通过第一符号对特定控制信息进行调制并将其分配给连续音调的一半,并且可以使用第二调制方案来通过使用第二符号来对相同的控制信息进行调制并且将其分配给连续音调的剩余一半。如上所述,可以将有关是否对eht-sig应用dcm方案的信息(例如,1比特字段)包括在u-sig中。图18的he-stf可以被用于在多输入多输出(mimo)环境或ofdma环境中改进自动增益控制估计。图18的he-ltf可以被用于中mimo环境或ofdma环境中估计信道。
[0227]
可以按各种类型设置图18的eht-stf。例如,可以基于其中按16个子载波的间隔布置非零系数的第一类型stf序列来生成第一类型stf(例如,1x stf)。基于第一类型stf序列生成的stf信号可以具有0.8μs的周期,并且可以将0.8μs的周期信号重复5次以变成长度为4μs的第一类型stf。例如,可以基于其中按8个子载波的间隔布置非零系数的第二类型stf序列来生成第二类型stf(例如,2x stf)。基于第二类型stf序列生成的stf信号可以具有1.6μs的周期,并且可以将1.6μs的周期信号重复5次以变成长度为8μs的第二类型stf。在下文中,提出了用于配置eht-stf的序列(即,eht-stf序列)的示例。能够以各种方式修改以下序列。
[0228]
可以基于以下序列m配置eht-stf。
[0229]
《式1》
[0230]
m={

1,

1,

1,1,1,1,

1,1,1,1,

1,1,1,

1,1}
[0231]
可以基于下式来配置用于20mhz ppdu的eht-stf。以下示例可以是第一类型(即,1x stf)序列。例如,第一类型序列可以被包括在不是基于触发的(tb)ppdu而是eht-ppdu中。在下式中,(a:b:c)可以意指被定义为从音调索引(即,子载波索引)

a’到音调索引

c’的b个音调间隔(即,子载波间隔)的持续时间。例如,下式2可以表示被定义为从音调索引-112到音调索引112的16个音调间隔的序列。由于78.125khz的子载波间隔被应用于eht-str,所以16个音调间隔可以意指eht-stf系数(或元素)是按78.125*16=1250khz的间隔而布置的。另外,*意指乘法,并且sqrt()意指平方根。另外,j意指虚数。
[0232]
《式2》
[0233]
eht-stf(-112:16:112)={m}*(1+j)/sqrt(2)
[0234]
eht-stf(0)=0
[0235]
可以基于下式配置用于40mhz ppdu的eht-stf。以下示例可以是第一类型(即,1x stf)序列。
[0236]
《式3》
[0237]
eht-stf(-240:16:240)={m,0,-m}*(1+j)/sqrt(2)
[0238]
可以基于下式配置用于80mhz ppdu的eht-stf。以下示例可以是第一类型(即,1x stf)序列。
[0239]
《式4》
[0240]
eht-stf(-496:16:496)={m,1,

m,0,

m,1,

m}*(1+j)/sqrt(2)
[0241]
可以基于下式配置用于160mhz ppdu的eht-stf。以下示例可以是第一类型(即,1x stf)序列。
[0242]
《式5》
[0243]
eht-stf(-1008:16:1008)={m,1,

m,0,

m,1,

m,0,

m,

1,m,0,

m,1,

m}*(1+j)/
sqrt(2)
[0244]
在用于80+80mhz ppdu的eht-stf中,用于较低80mhz的序列可以与式4相同。在用于80+80mhz ppdu的eht-stf中,可以基于下式配置用于较高80mhz的序列。
[0245]
《式6》
[0246]
eht-stf(-496:16:496)={-m,-1,m,0,

m,1,

m}*(1+j)/sqrt(2)
[0247]
下式7至式11与第二类型(即,2x stf)序列的示例相关。
[0248]
《式7》
[0249]
eht-stf(-120:8:120)={m,0,-m}*(1+j)/sqrt(2)
[0250]
可以基于下式配置用于40mhz ppdu的eht-stf。
[0251]
《式8》
[0252]
eht-stf(-248:8:248)={m,

1,

m,0,m,

1,m}*(1+j)/sqrt(2)
[0253]
eht-stf(-248)=0
[0254]
eht-stf(248)=0
[0255]
可以基于下式配置用于80mhz ppdu的eht-stf。
[0256]
《式9》
[0257]
eht-stf(-504:8:504)={m,

1,m,

1,

m,

1,m,0,

m,1,m,1,

m,1,

m}*(1+j)/sqrt(2)
[0258]
可以基于下式配置用于160mhz ppdu的eht-stf。
[0259]
《式10》
[0260]
eht-stf(-1016:16:1016)={m,

1,m,

1,

m,

1,m,0,

m,1,m,1,

m,1,

m,0,

m,1,

m,1,m,1,

m,0,

m,1,m,1,

m,1,

m}*(1+j)/sqrt(2)
[0261]
eht-stf(-8)=0,eht-stf(8)=0,
[0262]
eht-stf(-1016)=0,eht-stf(1016)=0
[0263]
在用于80+80mhz ppdu的eht-stf中,用于较低80mhz的序列可以与式9相同。在用于80+80mhz ppdu的eht-stf中,可以基于下式配置用于较高80mhz的序列。
[0264]
《式11》
[0265]
eht-stf(-504:8:504)={

m,1,

m,1,m,1,

m,0,

m,1,m,1,

m,1,

m}*(1+j)/sqrt(2)
[0266]
eht-stf(-504)=0,
[0267]
eht-stf(504)=0
[0268]
eht-ltf可以具有第一、第二和第三类型(即,1x、2x、4x ltf)。例如,可以基于其中按4/2/1个子载波的间隔布置非零系数的ltf序列来生成第一/第二/第三类型ltf。第一/第二/第三类型ltf可以具有3.2/6.4/12.8μs的时间长度。另外,可以对第一/第二/第三类型ltf应用具有各种长度的gi(例如,0.8/1/6/3.2μs)。
[0269]
可以将与stf和/或ltf的类型相关的信息(还包括与应用于ltf的gi相关的信息)包括在图18的sig-a字段和/或sig-b字段等中。
[0270]
可以基于图5和图6的示例来配置图18的ppdu(例如,eht-ppdu)。
[0271]
例如,可以基于图5的ru配置在20mhz频带上发送的eht ppdu,即,20mhz eht ppdu。也就是说,可以如图5中所示确定包括在eht ppdu中的eht-stf、eht-ltf和数据字段
的ru的位置。
[0272]
可以基于图6的ru配置在40mhz频带上发送的eht ppdu,即,40mhz eht ppdu。也就是说,可以如图6中所示确定包括在eht ppdu中的eht-stf、eht-ltf和数据字段的ru的位置。
[0273]
由于图6的ru位置对应于40mhz,所以可以在图6的图案重复两次时确定用于80mhz的音调计划(tone-plan)。也就是说,可以基于其中不是图7的ru而是图6的ru重复两次的新音调计划发送80mhz eht ppdu。
[0274]
当图6的图案重复两次时,可以在dc区域中配置23个音调(即,11个保护音调+12个保护音调)。也就是说,用于基于ofdma分配的80mhz eht ppdu的音调计划可以具有23个dc音调。与此不同,基于非ofdma分配的80mhz eht ppdu(即,非ofdma全带宽80mhz ppdu)可以基于996-ru被配置,并且可以包括5个dc音调、12个左保护音调和11个右保护音调。
[0275]
能够以图6的图案重复若干次的这样一种方式配置用于160/240/320mhz的音调计划。
[0276]
可以基于以下方法将图18的ppdu确定(或识别)为eht ppdu。
[0277]
接收sta可以基于以下方面将rx ppdu的类型确定为eht ppdu。例如,1)当在rx ppdu的l-ltf信号之后的第一符号是bpsk符号时;2)当检测到其中rx ppdu的l-sig重复的rl-sig时;以及3)当检测到对rx ppdu的l-sig的长度字段的值应用“模3”的结果为“0”时,可以将rx ppdu确定为eht ppdu。当rx ppdu被确定为eht ppdu时,接收sta可以基于图18的rl-sig之后的符号中包括的比特信息来检测eht ppdu的类型(例如,su/mu/基于触发的/扩展范围类型)。换句话说,接收sta可以基于以下各项将rx ppdu确定为eht ppdu:1)l-ltf信号之后的第一符号,其是bpsk符号;2)与l-sig字段连续并与l-sig相同的rl-sig;3)包括长度字段的l-sig,其中应用“模3”的结果被设置为“0”;以及4)前述u-sig的3比特phy版本标识符(例如,具有第一值的phy版本标识符)。
[0278]
例如,接收sta可以基于以下方面将rx ppdu的类型确定为eht ppdu。例如,1)当l-ltf信号之后的第一符号是bpsk符号时;2)当检测到其中l-sig重复的rl-sig时;以及3)当检测到对l-sig的长度字段的值应用“模3”的结果为“1”或“2”时,可以将rx ppdu确定为he ppdu。
[0279]
例如,接收sta可以基于以下方面将rx ppdu的类型确定为非ht、ht和vht ppdu。例如,1)当l-ltf信号之后的第一符号是bpsk符号时;以及2)当未检测到其中l-sig重复的rl-sig时,可以将rx ppdu确定为非ht、ht和vht ppdu。另外,即使接收sta检测到rl-sig重复,当检测到对l-sig的长度值应用“模3”的结果为“0”时,也可以将rx ppdu确定为非ht、ht和vht ppdu。
[0280]
在以下示例中,被表示为(tx/rx/ul/dl)信号、(tx/rx/ul/dl)帧、(tx/rx/ul/dl)分组、(tx/rx/ul/dl)数据单元、(tx/rx/ul/dl)数据等的信号可以是基于图18的ppdu发送/接收的信号。图18的ppdu可以用于发送/接收各种类型的帧。例如,图18的ppdu可以被用于控制帧。控制帧的示例可以包括请求发送(rts)、清除发送(cts)、节能轮询(ps-poll)、blockackreq、blockack、空数据分组(ndp)通告和触发帧。例如,图18的ppdu可以被用于管理帧。管理帧的示例可以包括信标帧、(重新)关联请求帧、(重新)关联响应帧、探测请求帧和探测响应帧。例如,图18的ppdu可以被用于数据帧。例如,图18的ppdu可以用于同时地发
送控制帧、管理帧和数据帧中的至少两个或更多个。
[0281]
图19图示本说明书的修改的发送设备和/或接收设备的示例。
[0282]
图1的子图(a)/(b)的每个设备/sta可以被修改为如图19所示。图19的收发器630可以与图1的收发器113和123相同。图19的收发器630可以包括接收器和发射器。
[0283]
图19的处理器610可以与图1的处理器111和121相同。可替选地,图19的处理器610可以与图1的处理芯片114和124相同。
[0284]
图19的存储器620可以与图1的存储器112和122相同。可替选地,图19的存储器620可以是与图1的存储器112和122不同的单独的外部存储器。
[0285]
参考图19,电力管理模块611管理用于处理器610和/或收发器630的电力。电池612向电力管理模块611供电。显示器613输出由处理器610处理的结果。键区614接收将由处理器610使用的输入。键区614可以显示在显示器613上。sim卡615可以是用于安全地存储国际移动用户身份(imsi)及其相关密钥的集成电路,其用于识别和认证移动电话设备(例如移动电话和计算机)上的用户。
[0286]
参考图19,扬声器640可以输出与由处理器610处理的声音相关的结果。麦克风641可以接收与处理器610要使用的声音相关的输入。
[0287]
1. 802.11ax wlan系统中的音调计划
[0288]
在本说明书中,音调计划涉及用于确定资源单元(ru)的大小和/或ru的位置的规则。在下文中,将描述基于ieee 802.11ax标准的ppdu,即应用于he ppdu的音调计划。换言之,在下文中,描述应用于he ppdu的ru大小和ru位置,并且描述与应用于he ppdu的ru相关的控制信息。
[0289]
在本说明书中,与ru相关的控制信息(或与音调计划相关的控制信息)可以包括ru的大小和位置、分配给特定ru的用户sta的信息、用于包括ru的ppdu的频率带宽、和/或关于应用于特定ru的调制方案的控制信息。与ru相关的控制信息可以包括在sig字段中。例如,在ieee 802.11ax标准中,与ru相关的控制信息包括在he-sig-b字段中。即,在生成tx ppdu的过程中,发送sta可以允许在ppdu中包括的关于ru的控制信息被包括在he-sig-b字段中。另外,接收sta可以接收包括在rx ppdu中的he-sig-b并获得包括在he-sig-b中的控制信息,使得基于he-sig-b确定是否存在分配给接收sta的ru并解码分配的ru。
[0290]
在ieee 802.11ax标准中,可以以ru为单位配置he-stf、he-ltf和数据字段。也就是说,当配置用于第一接收sta的第一ru时,可以通过第一ru发送/接收用于第一接收sta的stf/ltf/数据字段。
[0291]
在ieee 802.11ax标准中,用于一个接收sta的ppdu(即,su ppdu)和用于多个接收sta的ppdu(即,mu ppdu)被单独定义,并且各自的音调计划被单独定义。下面将描述具体细节。
[0292]
11ax中定义的ru可以包括多个子载波。例如,当ru包括n个子载波时,可以通过n音调ru或n ru来表达。特定ru的位置可以通过子载波索引来表达。子载波索引可以以子载波频率间隔为单位来定义。在11ax标准中,子载波频率间隔为312.5khz或78.125khz,而ru的子载波频率间隔为78.125khz。也就是说,ru的子载波索引+1可能意指比dc音调更多地增加了78.125khz的位置,并且ru的子载波索引-1可能意指比dc音调更减少了78.125khz的位置。例如,当特定ru的位置由[-121:-96]表达时,该ru可以位于从子载波索引-121到子载波
索引-96的区域中。结果,ru可以包括26个子载波。
[0293]
n音调ru可以包括预设的导频音调。
[0294]
2.空子载波和导频子载波
[0295]
将描述802.11ax系统中的子载波和资源分配。
[0296]
一个ofdm符号由子载波组成,并且子载波的数量可以起ppdu的带宽的作用。在wlan 802.11系统中,定义了用于数据传输的数据子载波、用于相位信息和参数跟踪的导频子载波以及不用于数据传输和导频传输的未使用子载波。
[0297]
使用ofdma传输的he mu ppdu可以通过混合26音调ru、52音调ru、106音调ru、242音调ru、484音调ru和996音调ru来发送。
[0298]
这里,26音调ru由24个数据子载波和2个导频子载波组成。52音调ru由48个数据子载波和4个导频子载波组成。106音调ru由102个数据子载波和4个导频子载波组成。242音调ru由234个数据子载波和8个导频子载波组成。484音调ru由468个数据子载波和16个导频子载波组成。996音调ru由980个数据子载波和16个导频子载波组成。
[0299]
1)空子载波
[0300]
如图5至图7中所示,在26音调ru、52音调ru和106音调ru位置之间存在空子载波。空子载波位于dc或边缘音调附近,以免受发送中心频率泄漏、接收器dc偏移和来自相邻ru的干扰。空子载波的能量为零。空子载波的索引如下所列出。
[0301][0302]
80+80mhz he ppdu的每个80mhz频率段的空子载波位置应跟随80mhz he ppdu的位置。
[0303]
2)导频子载波
[0304]
如果导频子载波存在于he su ppdu、he mu ppdu、he er su ppdu或he tb ppdu的he-ltf字段中,则导频序列在he-ltf字段和数据字段中的位置可以与4x he-ltf的位置相同。在1x he-ltf中,he-ltf中导频序列的位置是基于数据字段的导频子载波乘以4来配置的。如果导频子载波存在于2x he-ltf中,则导频子载波的位置应与4x数据符号中导频的位
置相同。所有导频子载波都位于下面列出的偶数编号的索引处。
[0305][0306][0307]
在160mhz或80+80mhz处,对于双侧的80mhz,导频子载波的位置应使用相同的80mhz位置。
[0308]
3.he发送过程和相位旋转
[0309]
在802.11ax无线局域网(wlan)系统中,物理层(phy)中的传输过程(或发送过程)包括he单用户(su)ppdu的过程、he扩展范围(er)su ppdu的传输过程、he多用户(mu)ppdu的传输过程和基于he触发(tb)ppdu的传输过程。phy-txstart.request(txvector)的format字段可以与he_su、he_mu、he_er_su或he_tb相同。传输过程不描述可选特征的操作,诸如双载波调制(dcm)。在多样的传输过程当中,图21仅示出了he su ppdu的phy传输过程。
[0310]
图20示出he su ppdu的phy传输过程的示例。
[0311]
为了发送数据,mac生成phy-txstart.request原语(primitive),这使得phy实体进入发送状态。此外,phy被配置成通过plme经由站管理以适当的频率操作。其他传输参数,诸如he-mcs、编译类型和传输功率,通过phy-sap使用phy-txstart.request(txvector)原语进行配置。在发送传输(或通信)触发帧的ppdu之后,mac子层可以发出phy-trigger.request连同trigvector参数,该参数提供对于解调phy实体预期的he tb ppdu响应所需的信息。
[0312]
phy经由phy-cca.indication指示主信道和另一信道的状态。在接收到phy-txstart.request(txvector)原语后应该由phy开始ppdu的传输。
[0313]
在phy前导传输开始之后,phy实体立即发起数据加扰和数据编码。数据字段的编码方法基于txvector的fec_coding、ch_bandwidth、num_sts、stbc、mcs和num_users参数。
[0314]
在发射器(或发送设备)框图中service字段和psdu被编码,稍后将对其进行描述。数据应通过由mac发布的phy-data.request(data)原语和由phy发布的phy-data.confirm原语在mac和phy之间交换。将phy填充比特应用于psdu以便将编译的psdu的比特数设置为
每个ofdm符号的编译比特数的整数倍。
[0315]
mac通过phy-txend.request原语敏捷地(或迅速地)结束传输。psdu传输在接收到phy-txend.request原语时结束。每个phy-txend.request原语可以连同来自phy的phy-txend.confirm原语一起通知其接收。
[0316]
分组扩展和/或信号扩展可以存在于ppdu中。在最近的ppdu的实际结束时间、分组扩展的结束时间和信号扩展的结束时间生成phy-txend.confirm原语。
[0317]
在phy中,将与在txvector的gi_type参数中的gi持续时间一起指示的保护间隔(gi)插入到所有数据ofdm符号中,作为延迟扩展的解决方案。
[0318]
如果ppdu传输完成,则phy实体进入接收状态。
[0319]
图21示出用于生成he ppdu的每个字段的发送设备的框图的示例。
[0320]
为了生成he ppdu的每个字段,使用以下框图。
[0321]
a)前fec phy填充
[0322]
b)加扰器
[0323]
c)fec(bcc或ldpc)编码器
[0324]
d)fec后phy填充
[0325]
e)流解析器
[0326]
f)段解析器(用于连续160mhz和非连续80+80mhz传输)
[0327]
g)bcc交织器
[0328]
h)星座映射器
[0329]
i)dcm音调映射器
[0330]
j)导频插入
[0331]
k)在多个20mhz上的复制(对于bw》20mhz)
[0332]
l)乘以phe-ltf的第一列
[0333]
m)ldpc音调映射器
[0334]
n)段解析器
[0335]
o)一个空间流的空时块码(stbc)编码器
[0336]
p)每个sts插入的循环移位分集(csd)
[0337]
q)空间映射器
[0338]
r)频率映射
[0339]
s)离散傅里叶逆变换(idft)
[0340]
f)每个链插入的循环移位多样性(csd)
[0341]
u)保护间隔(gi)插入
[0342]
v)加窗
[0343]
图21示出用于生成应用了ldpc编码并以160mhz发送的he单用户(su)ppdu的数据字段的发送设备的框图(或发射器框图)。如果发射器框图用于生成在80+80mhz频带中发送的he su ppdu的数据字段,则不使用段解解析器,如图21所示。即,在使用段解析器将频带划分为80mhz频带和另一个80mhz频带的情况下,每80mhz频带使用发射器(或发送设备)的框图。
[0344]
参考图21,ldpc编码器可以对数据字段(或数据比特流)进行编码。输入到ldpc编
码器的数据比特流可以被加扰器加扰。
[0345]
流解析器将由ldpc编码器编码的数据比特流划分为多个空间流。此时,被划分为每个空间流的编码数据比特流可以被称为空间块。空间块的数量可以由用于发送ppdu的空间流的数量来确定,并且可以被设置为等于空间流的数量。
[0346]
流解析器将每个空间块划分为至少一个或多个数据段。如图21中所示,当在160mhz频带中发送数据字段时,160mhz频带被划分为两个80mhz频带,并且数据字段被划分为用于各自80mhz频带的第一数据段和第二数据段。之后,第一和第二数据段可以被星座映射到各自的80mhz频带并且可以被ldpc映射。
[0347]
在he mu传输中,除了循环移位分集(csd)是基于相应用户的空时流起始索引的信息执行之外,对每个用户甚至对空间映射块的输入,ppdu编码处理器在资源单元(ru)中独立运行。ru的所有用户数据通过耦合到空间映射块的传输链进行映射。
[0348]
在802.11ax中,可以将相位旋转应用于从传统前导到就在he-stf之前的字段的字段,并且可以以20mhz频带为单位定义相位旋转值。换言之,相位旋转可以应用于802.11ax中定义的he ppdu的字段当中的l-stf、l-ltf、l-sig、rl-sig、he-sig-a和he-sig-b。
[0349]
he ppdu的l-stf字段可以如下构造。
[0350]
a)从txvector参数ch_bandwidth确定信道带宽。
[0351]
b)序列生成:在信道带宽上生成l-stf序列,如在27.3.11.3(l-stf)中所描述的。如果发送he er su ppdu,则应用3db功率提升,如在27.3.11.3(l-stf)中所描述的。
[0352]
c)相位旋转:对每个20mhz子信道应用适当的相位旋转,如27.3.10(信号的数学描述)和21.3.7.5(音调旋转的定义)中所描述的。
[0353]
d)每sts的csd:如果txvector参数beam_change为0,则对每个时空流和频率段应用每sts的csd,如在27.3.11.2.2(he调制字段的循环移位)中所述。
[0354]
e)空间映射:如果txvector参数beam_change为0,则应用a矩阵和q矩阵,如在27.3.11.3(l-stf)中所述。
[0355]
f)idft:计算离散傅里叶逆变换。
[0356]
g)每链的csd:如果txvector参数beam_change为1或不存在,则对每个发送链和频率段应用每链的csd,如在27.3.11.2.1(预he调制字段的循环移位)中所述。
[0357]
h)插入gi并应用加窗:前置gi(t
gi,pre-he
)并应用加窗,如在27.3.10(信号的数学描述)中所述。
[0358]
i)模拟和rf:根据所需信道的中心频率将与每个发送链相关联的结果的复基带波形上变频为rf信号并且发送。对于详情,参考27.3.10(信号的数学描述)和27.3.11(he前导)。
[0359]
he ppdu的l-ltf字段可以如下构造。
[0360]
a)从txvector参数ch_bandwidth确定信道带宽。
[0361]
b)序列生成:在信道带宽上生成l-stf序列,如在27.3.11.4(l-stf)中所描述的。如果发送he er su ppdu,则应用3db功率提升,如在27.3.11.4(l-stf)中所描述的。
[0362]
c)相位旋转:对每个20mhz子信道应用适当的相位旋转,如27.3.10(信号的数学描述)和21.3.7.5(音调旋转的定义)中所描述的。
[0363]
d)每sts的csd:如果txvector参数beam_change为0,则在空间映射之前对每个时
空流和频率段应用每sts的csd,如在27.3.11.2.2(he调制字段的循环移位)中所述。
[0364]
e)空间映射:如果txvector参数beam_change为0,则应用a矩阵和q矩阵,如在27.3.11.4(l-stf)中所述。
[0365]
f)idft:计算离散傅里叶逆变换。
[0366]
g)每链的csd:如果txvector参数beam_change为1或不存在,则对每个发送链和频率段应用每链的csd,如在27.3.11.2.1(预he调制字段的循环移位)中所述。
[0367]
h)插入gi并应用加窗:前置gi(t
gi,pre-he
)并应用加窗,如在27.3.10(信号的数学描述)中所述。
[0368]
i)模拟和rf:根据所需信道的中心频率将与每个发送链相关联的结果的复基带波形上变频为rf信号并且发送。对于详情,参考27.3.10(信号的数学描述)和27.3.11(he前导)。
[0369]
he ppdu的l-sig字段可以如下构造。
[0370]
a)将signal字段中的rate子字段设置为6mb/s。如在27.3.11.5(l-sig)中所述,设置在signal字段中的length、parity和tail字段。
[0371]
b)bcc编码器:由卷积编码器以r=1/2的速率对signal字段进行编码,如在27.3.12.5.1(bcc编译和穿孔)中所述。
[0372]
c)bcc交织器:如在17.3.5.7中所述的交织(bcc交织器)。
[0373]
d)星座映射器:如在27.3.12.9(星座映射)中所述的bpsk调制。
[0374]
e)导频插入:如在27.3.11.5(l-sig)中所述的插入导频。
[0375]
f)额外子载波插入:在k∈{-28,-27,27,28}处插入四个额外子载波用于信道估计,并且这四个额外子载波上的值分别为{-1,-1,-1,1}。
[0376]
如果发送he er su ppdu,则对四个额外的子载波应用3db功率提升,如在27.3.11.5(l-sig)中所述。
[0377]
g)复制和相位旋转:在信道带宽的每个占用的20mhz子信道上复制l-sig字段。对每个占用的20mhz子信道应用适当的相位旋转,如在27.3.10(信号的数学描述)和21.3.7.5(音调旋转的定义)中所述。
[0378]
h)每sts的csd:如果txvector参数beam_change为0,则在空间映射之前对每个时空流和频率段应用每sts的csd,如在27.3.11.2.2(he调制字段的循环移位)中所述。
[0379]
i)空间映射:如果txvector参数beam_change为0,应用a矩阵和q矩阵,如在27.3.11.5(l-sig)中所述。
[0380]
j)idft:计算离散傅里叶逆变换。
[0381]
k)每链的csd:如果txvector参数beam_change为1或不存在,则对每个发送链和频率段应用每链的csd,如在27.3.11.2.1(预he调制字段的循环移位)中所述。
[0382]
l)插入gi并应用加窗:前置gi(t
gi,pre-he
)并应用加窗,如在27.3.10(信号的数学描述)中所述。
[0383]
m)模拟和rf:将与每个发送链相关联的结果的复基带波形上变频。对于详情,参考27.3.10(信号的数学描述)和27.3.11(he前导)。
[0384]
he ppdu的rl-sig字段可以如下构造。
[0385]
a)将重复signal字段中的rate子字段设置为6mb/s。如在27.3.11.6(rl-sig)中所
述,设置在重复signal字段中的length parity和tail字段。
[0386]
b)bcc编码器:由卷积编码器以r=1/2的速率对重复signal字段进行编码,如在27.3.12.5.1(bcc编译和穿孔)中所述。
[0387]
c)bcc交织器:如在17.3.5.7中所述的交织(bcc交织器)。
[0388]
d)星座映射器:如在27.3.12.9(星座映射)中所述的bpsk调制。
[0389]
e)导频插入:如在27.3.11.6(rl-sig)中所述的插入导频。
[0390]
f)额外子载波插入:在k∈{-28,-27,27,28}处插入四个额外子载波用于信道估计,并且这四个额外子载波上的值分别为{-1,-1,-1,1}。
[0391]
如果发送he er su ppdu,则对四个额外的子载波应用3db功率提升,如在27.3.11.6(rl-sig)中所述。
[0392]
g)复制和相位旋转:在信道带宽的每个占用的20mhz子信道上复制rl-sig字段。对每个占用的20mhz子信道应用适当的相位旋转,如在27.3.10(信号的数学描述)和21.3.7.5(音调旋转的定义)中所述。
[0393]
h)每sts的csd:如果txvector参数beam_change为0,则在空间映射之前对每个时空流和频率段应用每sts的csd,如在27.3.11.2.2(he调制字段的循环移位)中所述。
[0394]
i)空间映射:如果txvector参数beam_change为0,应用a矩阵和q矩阵,如在27.3.11.6(rl-sig)中所述。
[0395]
j)idft:计算离散傅里叶逆变换。
[0396]
k)每链的csd:如果txvector参数beam_change为1或不存在,则对每个发送链和频率段应用每链的csd,如在27.3.11.2.1(预he调制字段的循环移位)中所述。
[0397]
l)插入gi并应用加窗:前置gi(t
gi,pre-he
)并应用加窗,如在27.3.10(信号的数学描述)中所述。
[0398]
m)模拟和rf:将与每个发送链相关联的结果的复基带波形上变频。对于详情,参考27.3.10(信号的数学描述)和27.3.11(he前导)。
[0399]
4.适用于本公开的实施例
[0400]
在无线lan 802.11系统中,为了增加峰值吞吐量,考虑使用比现有11ax更宽的频带或通过使用更多天线来发送增加的流。此外,本说明书还考虑聚合多个链路或聚合多个ru并将它们分配给一个sta进行传输的方法。
[0401]
在本说明书中,考虑了一种向一个sta分配和发送多个ru的方法,并且在这种情况下,提出了一种在各种带宽中聚合ru的方法。特别地,本说明书关注并提出了一种在ofdma传输中聚合大ru的方法。
[0402]
在现有的802.11ax中,因为每个sta仅分配给一个ru并在ofdma传输期间发送,所以无法考虑具有除了定义的ru之外的大小的ru,因此在效率或信道可用性方面存在劣势。为了克服这个缺点,802.11be考虑了一种向一个sta分配和发送多个ru的方法,并且在此说明书中,提出了ofdma传输期间的ru聚合的数个原则和各种组合。
[0403]
802.11ax中提出的各种大小的ru如下。
[0404]
26/52/106/242/484/996/2x996 ru
[0405]
在本说明书中,假定音调小于242的ru是小ru,而音调大于242的ru是大ru。另外,在效率方面,因为小ru和大ru的组合没有明显的好处,所以在ru聚合期间只能考虑小ru之
间和大ru之间的组合,并且在本说明书中,提出了大ru的组合。此外,还额外考虑了前导穿孔情形。但是,为了最小化在各种带宽的每个80mhz子信道中进行前导穿孔期间的干扰,将相邻20mhz信道的音调计划替换为20mhz音调计划,或者其中仅将20mhz部分从80mhz音调计划部分地移位的音调计划也能够被使用。当然,相邻的20mhz信道的音调计划并没有使用能够有效控制干扰的硬件/滤波器来改变,即,原样使用原来的80mhz的音调计划并且除了前导穿孔的20mhz的其余信道也能够被用于传输。可替选地,按原样使用音调计划,但是当使用前导穿孔的20mhz相邻信道的242音调ru时,编码如802.11ax的242音调ru方法被应用,但是在传输期间,可以通过强制穿孔或减少功率来发送在242音调ru当中的与穿孔的信道相邻的一些音调。这里,相邻20mhz信道意指当将每个80mhz子信道划分为较低40mhz和较高40mhz时,每个40mhz子信道中除了前导穿孔的20mhz信道之外的20mhz信道。此外,484音调ru(在80mhz音调计划中的对应的40mhz中的484音调ru)能够被用于没有被前导穿孔的在较低40mhz或较高40mhz的传输,并且242音调ru(在80mhz音调计划中,相应20mhz中的242音调ru或在要减少干扰的被改变的音调计划中的相应20mhz中的242音调ru)可以被使用。此方法能够直接应用于以下所有的前导穿孔情形。
[0406]
4.1.规则
[0407]
在160/80mhz带宽上的ppdu传输中,存在两个或更多个80mhz子信道,并且当通过组合ru创建特定带宽时,在每个80mhz子信道中,使用能够创建最大带宽的ru组合,并且优先地分配创建大带宽的ru的组合。例如,通过160/80mhz带宽发送时,每个80mhz子信道在不执行前导穿孔时可以使用996音调ru(80mhz),而在前导穿孔的情况下,能够考虑242+484音调ru(60mhz)、484/242+242音调ru(40mhz)、以及242音调ru(20mhz)的各种组合。假定第一80mhz子信道能够使用直至60mhz并且第二80mhz子信道能够使用直至40mhz,80mhz的带宽能够被分配给特定的sta,并且20mhz的带宽能够被分配给另一个sta以发送ofdma ppdu,这种情况下只有第一80mhz子信道中的242+484音调ru和第二80mhz子信道中的242音调ru的组合被考虑用于创建80mhz的带宽的ru的组合。不考虑第一80mhz子信道中的484/242+242音调ru和第二80mhz子信道中的484/242+242音调ru的组合。
[0408]
4.2.组合
[0409]
在以下每个带宽的ppdu传输中提出了各种ru组合。
[0410]
4.2.1.80mhz
[0411]
因为考虑ofdma传输,分配至少两个sta用于ppdu传输,并且因为考虑大ru的组合,最大60mhz带宽能够被分配给一个sta。在这种情况下,可以考虑242+484音调ru的组合。另外,能够分配40mhz带宽,并且这种情况下,能够考虑242+242音调ru的组合。
[0412]
在这种情况下,优选通过484音调的ru进行指配和发送,而不是通过242+242音调ru的组合进行传输。原因可以考虑在40mhz带宽被分配给一个sta的ofdma传输中将至少20mhz分配给另一个sta的情况。在这种情况下,最小60mhz带宽可用(只有20mhz被前导穿孔),它是连续的60mhz或非连续的40+20mhz。在这两种情况下,484音调ru始终可用,因此使用现有的484音调ru更好,而不是考虑242+242音调ru的组合。
[0413]
4.2.2.160/80+80mhz
[0414]
对于160/80+80mhz音调计划,80mhz音调计划重复两次。
[0415]
4.2.1中的ru组合能够被考虑,并且两个80mhz子信道的组合能够被另外考虑如
下。因为考虑ofdma传输,为了ppdu传输分配至少两个sta,并且因为考虑到大ru的组合,最多140mhz的带宽能够被分配给一个sta。对于每个80mhz子信道单元,能够考虑以下带宽组合。
[0416]
140mhz:80+60
[0417]
80+60的含义意味着80mhz被分配在一个80mhz子信道中,并且60mhz被分配在另一个80mhz子信道中,并且这两者的组合形成140mhz。80的ru是996音调ru,并且60的ru是484+242音调ru。这也用于下面的提案中。
[0418]
也能够分配120mhz的带宽,并且以下组合是可能的。
[0419]
120mhz:80+40
[0420]
40的ru是484音调ru,并且也能够考虑242+242音调ru的组合。因此,因为在分配40的80mhz子信道中必然存在484音调ru,所以分配和发送现有的484音调ru是更可取的,而不是通过242+242音调ru组合的传输。如果没有特别提到40,则这在下面的提案中使用。120mhz处的60+60的组合不被考虑,因为它违反了4.1的原则。原因是ofdma传输,所以存在用于另一个sta的20mhz,并且在这种情况下,能够充分使用一个80mhz的子信道。即,根据原则,在分配120mhz时,必须分配全部80mhz子信道。
[0421]
还能够分配100mhz的带宽,并且可以进行以下组合。
[0422]
100mhz:80+20,60+40
[0423]
20的ru是242音调ru,其也用于以下提议。40的ru是484音调ru,并且也可以考虑242+242音调ru的组合,但是这可以被避免。能够分配60的原因是在80mhz子信道中发生20mhz前导穿孔,并且仅使用最大60mhz带宽。在这种情况下,分配了40的80mhz子信道也是其中由于前导穿孔而不能使用超过60mhz的带宽的情况。在下面的提议中,除了分配最小带宽的80mhz子信道外,前导穿孔被应用于其他子信道当中的分配了60或40的80mhz子信道,意味着最大可分配带宽为60mhz或40mhz。在这种情况下,前导穿孔也应用于分配了最小带宽的80mhz子信道,使得最大可分配带宽不能超过60mhz或40mhz。
[0424]
也能够分配80mhz的带宽,并且可以进行以下组合。
[0425]
80mhz:60+20
[0426]
在这种情况下,40+40根据4.1.原则不被考虑。
[0427]
还能够分配60mhz的带宽,并且可以进行以下组合。
[0428]
60mhz:40+20
[0429]
能够分配40的原因是40mhz前导穿孔发生在如上面的100mhz组合中所述的80mhz子信道内,并且仅使用最大40mhz带宽的情况。在这种情况下,分配了20的80mhz子信道也是其中由于前导穿孔而不能使用超过40mhz的带宽的情况。40以上的ru是484/242+242音调ru。242+242音调ru是可能的原因是,通过前导穿孔而分配了40的80mhz子信道中仅40mhz能够被使用,并且根据穿孔图案只能使用484音调ru或者242+242音调ru。
[0430]
40mhz组合的20+20不被视为违反原则。不考虑40mhz以下的其他组合。
[0431]
4.2.3.240/160+80mhz
[0432]
对于240/160+80mhz音调计划,80mhz音调计划被重复3次。
[0433]
4.2.1和4.2.2的ru组合可以被考虑,并且三个80mhz子信道的组合能够被另外考虑如下。因为考虑ofdma传输,为了ppdu传输分配至少两个sta,并且因为考虑到大ru的组
合,能够对一个sta分配最多220mhz带宽。对于每个80mhz子信道单元,能够考虑以下带宽组合。
[0434]
220mhz:80+80+60
[0435]
80+80可以是2x996音调ru或只是每个996音调ru,并且这同样应用于下面的提议。
[0436]
也能够分配200mhz的带宽,并且可以进行以下组合。
[0437]
200mhz:80+80+40
[0438]
80+60+60违反原则并且不予考虑。
[0439]
还能够分配180mhz的带宽,并且可以进行以下组合。
[0440]
180mhz:80+80+20、80+60+40
[0441]
60+60+60违反原则并且不予考虑。
[0442]
还能够分配160mhz的带宽,并且可以进行以下组合。
[0443]
160mhz:80+60+20,60+60+40
[0444]
80+40+40违反原则并且不予考虑。
[0445]
也能够分配140mhz的带宽,并且可以进行以下组合。
[0446]
140mhz:80+40+20,60+60+20
[0447]
40以上的ru是484/242+242音调ru。242+242音调ru是可能的原因是,能够使用通过前导穿孔而分配了40的80mhz子信道中的仅40mhz,并且根据穿孔图案只能使用484音调ru或者242+242音调ru。60+40+40违反原则并且不予考虑。
[0448]
还能够分配120mhz的带宽,并且可以进行以下组合。
[0449]
120mhz:60+40+20
[0450]
40以上的ru为484/242+242音调ru。80+20+20/40+40+40违反原则并且不予考虑。
[0451]
也能够分配100mhz的带宽,并且以下组合是可能的。
[0452]
100mhz:40+40+20
[0453]
40以上的ru是484/242+242音调ru。60+20+20违反原则并且不予考虑。
[0454]
80mhz的组合的40+20+20不被考虑,因为它违反了原则。不考虑80mhz以下的附加组合。
[0455]
4.2.4.320/160+160mhz
[0456]
对于320/160+160mhz音调计划,80mhz音调计划被重复四次。
[0457]
4.2.1、4.2.2和4.2.3的ru组合能够被考虑,并且4个80mhz子信道的组合可以另外考虑如下。因为考虑ofdma传输,为了ppdu传输分配至少两个sta,并且因为考虑到大ru的组合,能够对一个sta分配最多300mhz的带宽。对于每个80mhz子信道单元,能够考虑以下带宽组合。
[0458]
300mhz:80+80+80+60
[0459]
80+80+80可以是3x996音调ru,可以简单地分别是996音调ru,或者可以是2x996音调ru和996音调ru的组合。这同样应用于以下提议。
[0460]
也能够分配280mhz的带宽,并且以下组合是可能的。
[0461]
280mhz:80+80+80+40
[0462]
80+80+60+60违反原则并且不予考虑。
[0463]
也能够分配260mhz的带宽,并且以下组合是可能的。
[0464]
260mhz:80+80+80+20,80+80+60+40
[0465]
80+60+60+60违反原则并且不予考虑。
[0466]
也能够分配240mhz的带宽,并且以下组合是可能的。
[0467]
240mhz:80+80+60+20,80+60+60+40
[0468]
80+80+40+40/60+60+60+60不被考虑,因为它违反了原则。
[0469]
也能够分配220mhz的带宽,并且以下组合是可能的。
[0470]
220mhz:80+80+40+20,80+60+60+20,60+60+60+40
[0471]
上述第一种组合中40的ru是484/242+242音调ru。80+60+40+40违反原则并且不予考虑。
[0472]
也能够分配200mhz的带宽,并且以下组合是可能的。
[0473]
200mhz:80+60+40+20,60+60+60+20
[0474]
上述第一种组合中40的ru是484/242+242音调ru。80+80+20+20/80+40+40+40/60+60+40+40不被考虑,因为它违反了原则。
[0475]
也能够分配180mhz的带宽,并且以下组合是可能的。
[0476]
180mhz:80+40+40+20,60+60+40+20
[0477]
上述两种组合中的40的ru是484/242+242音调ru。80+60+20+20/60+40+40+40违反原则并且不予考虑。
[0478]
也能够分配160mhz的带宽,并且可以进行以下组合。
[0479]
160mhz:60+40+40+20
[0480]
40以上的ru为484/242+242音调ru。80+40+20+20/60+60+20+20/40+40+40+40违反原则并且不予考虑。
[0481]
也能够分配140mhz的带宽,并且可以进行以下组合。
[0482]
140mhz:40+40+40+20
[0483]
40以上的ru为484/242+242音调ru。60+40+20+20违反原则并且不予考虑。
[0484]
用于120mhz的组合的60+20+20+20/40+40+20+20不被考虑,因为它违反了原则。不考虑120mhz以下的附加组合。
[0485]
4.3.限制
[0486]
在大于80mhz的带宽中,ru组合能够被限制如下。限制的原因是减少调度复杂性和信令开销。
[0487]
在160/80+80mhz带宽中,考虑到非连续结构,能够以80mhz为单位限制多个ru聚合的组合。即,能够被划分为通过在主80mhz内的ru组合分配的sta和通过在辅80mhz内的ru组合分配的sta。对于80mhz内的每个ru组合,可以考虑4.2.1中的组合,并且分配996音调ru也是可能的。此外,可以考虑242音调ru,并且可以使用242+242音调ru的组合。总之,在每个80mhz内能够如下使用。
[0488]
用于20mhz的242音调ru
[0489]
用于40mhz的484/242+242音调ru
[0490]
用于60mhz的484+242音调ru
[0491]
用于80mhz的996音调ru
[0492]
在240/160+80mhz带宽中,考虑到非连续结构,能够以160mhz和80mhz为单位限制
多ru聚合的组合。这里,在非连续情况下,160mhz和80mhz是连续的160mhz和连续的80mhz部分。在连续的240mhz中,可以考虑主160mhz和其他80mhz,或者可以被划分为主80mhz和其他160mhz。然而,因为存在160mhz部分不连续的情况,前一种形式可能是优选的。可替选地,在连续的240mhz中,能够划分为将主80mhz和特定的相邻的80mhz组合的160mhz部分,以及除此之外的80mhz部分。这在没有辅80mhz的情形下可能是有利的。即,能够被划分为通过在160mhz内的ru组合分配的sta和通过在80mhz内的其他ru组合分配的sta。可替选地,在连续的240mhz中,能够设计两个相邻的80mhz信道,使得始终能够进行160mhz组合,并且在这种情况下,中央80mhz始终能够与两个80mhz部分组合。80mhz内的ru组合与以80mhz为单位限制多个ru聚合组合的情况下所提出的组合相同。160mhz内的ru组合可以包括通过与在上述160/80+80mhz带宽中以80mhz为单位限制多个ru聚合组合的情况下建议的组合再一次进行组合作出的下述组合。在表达中,音调ru被省略,并且()的含义意指160mhz内每个80mhz段内的ru。
[0493]
(242)+(242),(242)+(484),(242)+(242+242),(242)+(484+242),(242)+(996),(484)+(484),(484)+(242+242),(484)+(484+242),(484)+(996),(242+242)+(242+242),(242+242)+(484)+242),(242+242)+(996),(484+242)+(484+242),(484+242)+(996),(996)+(996)或2x996
[0494]
上述组合并不总是可能的,但是当由于前导穿孔或其他sta的分配而在每个80mhz信道中没有可用的额外ru时,建议与相邻80mhz信道中的ru组合。例如,(242)+(242)是由两个80mhz信道的组合创建的,是其中通过两个信道的前导穿孔能够仅使用242音调的ru的情况。如果在一个信道中能够使用484音调ru,则能够仅使用242/484音调ru或(484)+(242)。但是,在两个80mhz信道(指配给另一个sta)当中的其中使用小ru的80mhz信道中可能有剩余的ru,包括此的可用带宽可能与使用了大ru的信道的可用带宽相同或小于该信道的可用带宽。例如,如果因为前导穿孔应用于两个信道而60mhz是可用的,则(484+242)+(484)的组合是可能的,并且可以将一个242ru分配给其他sta。
[0495]
在320/160+160mhz带宽中,考虑到非连续结构,能够以160mhz为单位限制多个ru聚合的组合。即,能够被划分为通过主160mhz中的ru组合分配的sta和通过辅160mhz中的ru组合分配的sta。在以160mhz为单位限制多个ru聚合组合的情况下,它与提议的组合相同。
[0496]
此外,提议即使在240/160+80mhz带宽和320/160+160mhz带宽中,也以80mhz为单位限制多个ru聚合的组合。每个80mhz可以是主80mhz、辅80mhz和辅160mhz内的较低/较高80mhz,或对应主/辅80mhz的80mhz。
[0497]
4.4.信令方法
[0498]
图22示出eht ppdu格式的示例。
[0499]
图23示出u-sig格式的示例。
[0500]
上述关于ru聚合的指示符可以在图22的eht ppdu的eht-sig或图23的u-sig内发送。
[0501]
图23的版本无关字段可以包括指示802.11be和802.11be之后的wi-fi版本的3比特的版本标识符、1比特的dl/ul字段、bss颜色和txop持续时间等,图23的版本相关字段可以包括诸如ppdu类型和带宽的信息。
[0502]
在u-sig中,两个符号被联合编码,并且每个20mhz由52个数据音调和4个导频音调
组成。此外,u-sig与he-sig-a以相同的方式进行调制。即,u-sig以bpsk 1/2码率调制。
[0503]
eht-sig能够被划分为公共字段和用户特定字段,能够用变量mcs编码,并且能够在公共字段中指示关于用于传输的准确的穿孔图案和ru聚合的信息。此外,为了在应用前导穿孔时,它指示是否在相邻的20mhz信道中应用移位的音调计划,或更改为20mhz的音调计划,或者是否照原样使用音调计划,但穿孔一些音调或以低功率发送一些音调,可以在u-sig的版本相关字段或eht-sig的公共字段中发送一比特的信息。
[0504]
图24是图示根据本实施例的传输装置的操作的过程流程图。
[0505]
图24的示例可以由发送设备(ap和/或非ap sta)执行。例如,图24的示例可以由发送eht su ppdu、eht er su ppdu或eht mu ppdu的ap来执行。图24的示例可以由发送eht su ppdu、eht er su ppdu和eht mu ppdu的非ap来执行。
[0506]
图24的示例的每个步骤(或稍后将描述的详细子步骤)中的一些步骤可以被省略或改变。
[0507]
在步骤s2410中,发送设备(即,发送sta)配置带宽(bw)和ru分配,并通过上述说明中的段落4.2的多ru聚合组合将多个ru分配给特定用户或sta。此外,发送设备可以执行信道接入操作。
[0508]
在步骤s2420中,发送sta可以配置ppdu。例如,ppdu可以是eht su ppdu、eht er su ppdu或eht mu ppdu。ppdu可以包括如图18中所示的eht-sig。
[0509]
发送sta可以基于在步骤s2410中确定的bw、ru分配和多ru聚合来执行步骤s2420。
[0510]
也就是说,如上所述,特定(ru分配)n比特(例如,8比特)的信息可以被包括在eht-sig的公共字段中,并且关于多ru聚合的信息可以包括在用户特定字段中。
[0511]
在步骤s2430中,发送设备可以基于步骤s2430将在步骤s2420中配置的ppdu发送到接收设备。
[0512]
在执行步骤s2430时,发送设备可以执行csd、空间映射、idft/ifft操作、gi插入等中的至少一种。
[0513]
根据本说明书构造的信号/字段/序列可以以图18的形式发送。
[0514]
例如,上述eht-sig可以基于数个ofdm符号来发送。例如,一个ofdm符号可以包括26比特的信息。26比特的信息可以包括上述4比特的bw信息。可以使用任何m比特的信息来代替26比特的信息。
[0515]
对于26比特的信息,可以应用具有1/2低效率的bcc编码。通过交织器的交织可以被应用于bcc编译的比特(即,52个比特)。可以对交织的52比特执行通过星座映射器的映射。具体而言,bpsk模块可以被应用以生成52个bpsk符号。52个bspk符号可以匹配到除了dc音调和导频音调(-21,-7,+7,+21)音调之外的其余的频域(-28到+28)。此后,可以通过相位旋转、csd、空间映射、idft/ifft操作等将其发送到接收sta。
[0516]
上述ppdu可以基于图1的装置来发送。
[0517]
图1的示例涉及发送装置(ap和/或非ap sta)的示例。
[0518]
如图1中所示,发送装置(或发射器)可以包括存储器112、处理器111和收发器113。
[0519]
存储器112可以存储关于在本说明书中描述的多个音调计划/ru的信息。
[0520]
处理器111可以基于存储在存储器112中的信息生成各种ru并且配置ppdu。处理器111生成的ppdu的示例可以如图18中所示。
[0521]
处理器111可以执行图24所示的所有/部分操作。
[0522]
所图示的收发器113包括天线并且可以执行模拟信号处理。具体地,处理器111可以控制收发器113以发送由处理器111生成的ppdu。
[0523]
可替选地,处理器111可以生成传输ppdu并将关于传输ppdu的信息存储在存储器112中。
[0524]
图25是图示根据本实施例的接收装置的操作的过程流程图。
[0525]
图25的示例可以在接收装置(ap和/或非ap sta)中执行。
[0526]
图25的示例可以由接收装置(ap和/或非ap sta)来执行。例如,图25的示例可以由接收eht su ppdu、eht er su ppdu或eht mu ppdu的非ap来执行。图25的示例可以由发送eht su ppdu、eht er su ppdu的ap执行。
[0527]
图25的示例的每个步骤(或将在后面描述的详细子步骤)中的一些步骤可以被省略。
[0528]
在步骤s2510中,接收设备(接收sta)可以通过步骤s2510接收全部或部分ppdu。接收到的信号可以是以图18的形式。
[0529]
步骤s2510的子步骤可以基于图24的步骤s2430来确定。即,在步骤s2510中,可以执行用于恢复在步骤s2430中应用的csd、空间映射、idft/ifft操作和gi插入操作的结果的操作。
[0530]
在步骤s2520中,接收sta可以通过解码包括在u-sig或eht-sig中的信息来获得关于eht ppdu的bw、ru分配和多ru聚合的信息。
[0531]
通过这样,接收sta能够完成对接收到的ppdu的其他字段/符号的解码。
[0532]
结果,接收sta可以通过步骤s2520对包括在ppdu中的数据字段进行解码。此后,接收sta可以执行将从数据字段解码的数据传送到更高层(例如,mac层)的处理操作。此外,当响应于传送到上层的数据而从上层向phy层指示信号的生成时,可以执行后续操作。
[0533]
上述ppdu可以基于图1的装置来发送。
[0534]
如图1中所示,接收装置可以包括存储器112、处理器111和收发器113。
[0535]
收发器123可以基于处理器121的控制来接收ppdu。例如,收发器123可以包括多个子单元(未示出)。例如,收发器123可以包括至少一个接收天线和用于相应接收天线的滤波器。
[0536]
通过收发器123接收到的ppdu可以存储在存储器122中。处理器121可以处理通过存储器122接收的ppdu的解码。处理器121可以获得关于被包括在ppdu中的音调计划/ru的控制信息(例如,eht-sig),并将获得的控制信息存储在存储器122中。
[0537]
处理器121可以对接收到的ppdu执行解码。具体地,可以执行用于恢复应用于ppdu的csd、空间映射、idft/ifft操作和gi插入的结果的操作。csd、空间映射、idft/ifft操作和恢复gi插入结果的操作可以通过在处理器121中单独实现的多个处理单元(未示出)来执行。
[0538]
此外,处理器121可以对通过收发器123接收到的ppdu的数据字段进行解码。
[0539]
此外,处理器121可以处理解码的数据。例如,处理器121可以执行将关于解码的数据字段的信息传送到上层(例如,mac层)的处理操作。此外,当响应于传送到上层的数据而从上层向phy层指示信号的生成时,可以执行后续操作。
[0540]
在下文中,将参考图1至图25描述前述的实施例。
[0541]
图26是图示根据本实施例的发送sta发送ppdu的过程的流程图。
[0542]
图26的示例可以在支持下一代无线lan系统(例如,ieee802.11be或eht无线lan系统)的网络环境中执行。下一代无线lan系统是从802.11ax系统改进而来的无线lan系统,并且可以满足与802.11ax系统的后向兼容性。
[0543]
图26的示例由发送sta执行,并且发送sta可以对应于接入点(ap)。图26的接收sta可以对应于支持极高吞吐量(eht)wlan系统的sta。
[0544]
本实施例提出了一种用于基于多个ru发送和接收ppdu的方法和装置,该多个ru由大ru之间的组合配置。在这种情况下,大ru意指具有大于242个音调的资源单元。特别地,此实施例提出一种配置用于以ofdma方案发送ppdu的多个ru的方法。
[0545]
在步骤s2610中,发送站(sta)生成物理协议数据单元(ppdu)。
[0546]
在步骤s2620中,发送sta通过宽带向接收sta发送ppdu。
[0547]
ppdu包括控制字段和数据字段。
[0548]
宽带是320/160+160mhz频带,包括主160mhz信道和辅160mhz信道,通过其中聚合996ru和484ru的第一多个资源单元(ru)接收数据字段,并且第一多个ru被分配在主160mhz信道或辅160mhz信道内。996ru是由996个音调组成的ru。484ru是由484个音调组成的ru。
[0549]
可以基于正交频分多址(ofdma)方案来发送ppdu。因此,可以将第一多个ru分配给多个接收sta当中的特定接收sta。本实施例提出在ofdma ppdu传输期间将第一多个ru分配在主160mhz信道或辅160mhz信道中。也就是说,996ru和484ru的组合可以分配在主160mhz信道或辅160mhz信道中(主160mhz信道和辅160mhz信道两者也是可能的)。
[0550]
在320/160+160mhz频带中的其他ru或除了第一多个ru之外的多个ru被穿孔或分配用于除了接收sta之外的接收sta。因为ppdu是基于ofdma方案发送的,所以并不总是需要考虑穿孔,并且可以通过关于第一多个ru的分配信息(ru分配信息)来调度或分配第一多个ru,这将在后面进行描述。
[0551]
控制字段包括关于第一多个ru的分配信息。接收sta能够对第一多个ru的分配信息进行解码,来确认第一多个ru是分配给自己的ru。
[0552]
此外,当在320/160+160mhz频带的ofdma ppdu传输方案中考虑穿孔时,必须始终发送主20mhz信道(不穿孔),并且在辅160mhz信道当中的至少一个20mhz信道始终必须被发送(不穿孔)。例如,当320/160+160mhz频带中的第一信道被穿孔时,除了第一信道之外的第二信道可以是主20mhz和辅160mhz信道当中的至少一个20mhz信道。
[0553]
作为另一示例,当宽带是包括第一到第四80mhz子信道的320/160+160mhz频带时,可以通过聚合484ru和242ru的第二多个ru来接收数据字段。第二多个ru可以被分配在第一、第二、第三或第四80mhz子信道内。484ru是由484个音调组成的ru,242ru是由242个音调组成的ru。
[0554]
类似地,可以基于ofdma方案来发送ppdu。因此,可以将第二多个ru指配给多个接收sta当中的特定的接收sta。此实施例提出在ofdma ppdu传输期间将第二多个ru分配在第一80mhz信道、第二80mhz信道、第三80mhz信道或第四80mhz信道中。也就是说,484ru和242ru的组合可以分配在第一80mhz信道、第二80mhz信道、第三80mhz信道、或者第四80mhz信道中(也可分配给所有的第一至第四80mhz信道)。
[0555]
控制字段可以包括用于第二多个ru的分配信息。接收sta可以解码关于第二多个ru的分配信息并且确认第二多个ru是分配给其自己的ru。
[0556]
第一至第四80mhz子信道中的一个可以是主80mhz信道,并且除了主80mhz信道之外的其余三个子信道可以是辅80mhz信道(具体地,辅80mhz信道、辅160mhz低80mhz信道,以及辅160mhz高80mhz信道)。无论频率大小如何,都可以配置主80mhz信道和辅80mhz信道。
[0557]
在本实施例中,因为发送sta以ofdma方案发送ppdu,所以ppdu可以被发送到多个接收sta,并且因此,上述多个ru可以分别被分配给多个接收sta。
[0558]
例如,当接收sta包括第一和第二sta,并且第二多个ru仅分配在第一和第三80mhz信道内时(当多个ru在320/160+160mhz频带中以80mhz子信道为单位被分配时),第一sta可以通过分配在第一80mhz信道中的第二多个ru接收数据字段,第二sta可以通过分配在第三80mhz信道中的第二多个ru接收数据字段。
[0559]
作为另一示例,当接收sta包括第一和第二sta,并且第一多个ru被分配在主160mhz信道和辅160mhz信道内时(当多个ru在320/160+160mhz频带中以160mhz子信道为单位被分配时),第一sta可以通过在主160mhz信道中分配的第一多个ru接收数据字段,第二sta可以通过在辅160mhz信道中分配的第一多个ru接收数据字段。
[0560]
此实施例提出一种配置用于以ofdma方案在320/160+160mhz频带中发送ppdu的多个ru(大ru组合)的方法。此外,此实施例可以提出一种配置用于以ofdma方案在160/80+80mhz频带中发送ppdu的多个ru(大ru组合)的方法。
[0561]
类似地,在160/80+80mhz频带中,可以以160mhz子信道为单位分配多个ru,或者可以以80mhz子信道为单位分配多个ru。因此,可以通过为每个160mhz子信道分配的996+484个ru或为每个80mhz子信道分配的484+242个ru来接收数据字段。
[0562]
控制字段包括支持传统无线lan系统的第一控制字段和支持802.11be无线lan系统的第二控制字段。第二控制字段可以包括通用信号(u-sig)或极高吞吐量信号(eht-sig)。第二控制字段可以包括关于数据字段将被发送到的ru的分配信息。此实施例描述了数据字段被发送到的ru是多个ru彼此聚合的多ru的情况。ru意指在其中发送数据字段的资源单元。
[0563]
eht-sig可以包括eht-sig-a和eht-sig-b(或eht-sig-c字段)。eht-sig-b可以包括资源单元(ru)信息。发送sta可以通过eht-sig-b通知关于宽带的音调计划的信息。此外,eht-stf、eht-ltf和包括在第二控制字段中的数据字段可以由包括在宽带的音调计划中的多个ru发送/接收。
[0564]
图27是图示根据本实施例的用于接收sta接收ppdu的过程的流程图。
[0565]
图27的示例可以在支持下一代无线lan系统(例如,ieee802.11be或eht无线lan系统)的网络环境中执行。下一代无线lan系统是从802.11ax系统改进而来的无线lan系统,并且可以满足与802.11ax系统的后向兼容性。
[0566]
图27的示例由发送sta执行,并且发送sta可以对应于接入点(ap)。图27的接收sta可以对应于支持极高吞吐量(eht)wlan系统的sta。
[0567]
此实施例提出了一种用于基于多个ru发送和接收ppdu的方法和装置,该多个ru由大ru之间的组合配置。在这种情况下,大ru意指具有大于242个音调的资源单元。特别地,此实施例提出了一种配置用于以ofdma方案发送ppdu的多个ru的方法。
[0568]
在步骤s2710中,接收站(sta)通过宽带从发送sta接收物理协议数据单元(ppdu)。
[0569]
在步骤s2720中,接收sta对ppdu进行解码。
[0570]
ppdu包括控制字段和数据字段。
[0571]
宽带是320/160+160mhz频带,包括主160mhz信道和辅160mhz信道,通过其中聚合996ru和484ru的第一多个资源单元(ru)接收数据字段,并且第一多个ru被分配在主160mhz信道或辅160mhz信道内。996ru是由996个音调组成的ru。484ru是由484个音调组成的ru。
[0572]
可以基于正交频分多址(ofdma)方案来发送ppdu。因此,可以将第一多个ru分配给多个接收sta当中的特定的接收sta。此实施例提出在ofdma ppdu传输期间将第一多个ru分配在主160mhz信道或辅160mhz信道中。也就是说,996ru和484ru的组合可以分配在主160mhz信道或辅160mhz信道中(主160mhz信道和辅160mhz信道两者也是可能的)。
[0573]
在320/160+160mhz频带中的其他ru或除了第一多个ru之外的多个ru被穿孔或分配用于除了接收sta之外的接收sta。因为ppdu是基于ofdma方案发送的,所以并不总是需要考虑穿孔,并且可以通过关于第一多个ru的分配信息(ru分配信息)来调度或分配第一多个ru,这将在后面进行描述。
[0574]
控制字段包括关于第一多个ru的分配信息。接收sta能够对第一多个ru的分配信息进行解码,来确认第一多个ru是分配给自己的ru。
[0575]
此外,当在320/160+160mhz频带的ofdma ppdu传输方案中考虑穿孔时,必须始终发送主20mhz信道(不穿孔),并且在辅160mhz信道当中的至少一个20mhz信道始终必须被发送(不穿孔)。例如,当320/160+160mhz频带中的第一信道被穿孔时,除了第一信道之外的第二信道可以是主20mhz和辅160mhz信道当中的至少一个20mhz信道。
[0576]
作为另一示例,当宽带是包括第一到第四80mhz子信道的320/160+160mhz频带时,可以通过聚合484ru和242ru的第二多个ru来接收数据字段。第二多个ru可以被分配在第一、第二、第三或第四80mhz子信道内。484ru是由484个音调组成的ru,并且242ru是由242个音调组成的ru。
[0577]
类似地,可以基于ofdma方案来发送ppdu。因此,可以将第二多个ru指配给多个接收sta当中的特定的接收sta。此实施例提出在ofdma ppdu传输期间将第二多个ru分配在第一80mhz信道、第二80mhz信道、第三80mhz信道或第四80mhz信道中。也就是说,484ru和242ru的组合可以分配在第一80mhz信道、第二80mhz信道、第三80mhz信道、或者第四80mhz信道中(也可分配给所有的第一至第四80mhz信道)。
[0578]
控制字段可以包括用于第二多个ru的分配信息。接收sta可以解码关于第二多个ru的分配信息并且确认第二多个ru是分配给其自己的ru。
[0579]
第一到第四80mhz子信道之一可以是主80mhz信道,并且除了主80mhz信道之外的其余三个子信道可以是辅80mhz信道(具体来说,辅80mhz信道、辅160mhz低80mhz信道、以及辅160mhz高80mhz信道)。无论频率大小如何,都可以配置主80mhz信道和辅80mhz信道。
[0580]
在此实施例中,因为发送sta以ofdma方案发送ppdu,所以ppdu可以被发送到多个接收sta,并且因此,上述多个ru可以被分别分配给多个接收sta。
[0581]
例如,当接收sta包括第一和第二sta,并且第二多个ru仅在第一和第三80mhz信道内分配时(当多个ru在320/160+160mhz频带中以80mhz子信道为单位被分配时),第一sta可以通过分配在第一80mhz信道中的第二多个ru接收数据字段,第二sta可以通过分配在第三
80mhz信道中的第二多个ru接收数据字段。
[0582]
作为另一示例,当接收sta包括第一和第二sta,并且第一多个ru被分配在主160mhz信道和辅160mhz信道内时(当多个ru在320/160+160mhz频带中以160mhz子信道为单位被分配时),第一sta可以通过在主160mhz信道中分配的第一多个ru接收数据字段,第二sta可以通过在辅160mhz信道中分配的第一多个ru接收数据字段。
[0583]
此实施例提出一种配置用于以ofdma方案在320/160+160mhz频带中发送ppdu的多个ru(大ru组合)的方法。此外,此实施例可以提出一种配置用于以ofdma方案在160/80+80mhz频带中发送ppdu的多个ru(大ru组合)的方法。
[0584]
类似地,在160/80+80mhz频带中,可以以160mhz子信道为单位分配多个ru,或者可以以80mhz子信道为单位分配多个ru。因此,可以通过为每个160mhz子信道分配的996+484个ru或为每个80mhz子信道分配的484+242个ru来接收数据字段。
[0585]
控制字段包括支持传统无线lan系统的第一控制字段和支持802.11be无线lan系统的第二控制字段。第二控制字段可以包括通用信号(u-sig)或极高吞吐量信号(eht-sig)。第二控制字段可以包括关于数据字段将被发送到的ru的分配信息。此实施例描述了数据字段被发送到的ru是多个ru彼此聚合的多ru的情况。ru意指在其中发送数据字段的资源单元。
[0586]
eht-sig可以包括eht-sig-a和eht-sig-b(或eht-sig-c字段)。eht-sig-b可以包括资源单元(ru)信息。发送sta可以通过eht-sig-b通知关于宽带的音调计划的信息。此外,eht-stf、eht-ltf和包括在第二控制字段中的数据字段可以由包括在宽带的音调计划中的多个ru发送/接收。
[0587]
5.装置/设备配置
[0588]
上述本说明书的技术特征可以应用于各种设备和方法。例如,本说明书的上述技术特征可以通过图1和/或图19的装置来执行/支持。例如,上述本说明书的技术特征可以仅应用于图1和/或图19的一部分。例如,本说明书的上述技术特征是基于图1的处理芯片114和124来实现,或者基于图1的处理器111和121以及存储器112和122实现,或者可以基于图19的处理器610和存储器620来实现。例如,本说明书的装置可以通过宽带从发送sta接收物理协议数据单元(ppdu);并对该ppdu进行解码。
[0589]
本说明书的技术特征可以基于计算机可读介质(crm)来实现。例如,本说明书提出的crm是至少一种计算机可读介质,包括至少一种计算机可读介质,该计算机可读介质包括基于由至少一个处理器执行的指令。
[0590]
crm可以存储执行操作的指令,包括:通过宽带从发送sta接收物理协议数据单元(ppdu);并对该ppdu进行解码。存储在本说明书的crm中的指令可以由至少一个处理器执行。本说明书中与crm相关的至少一个处理器可以是图1的处理器111和121或处理芯片114和124,或图19的处理器610。同时,本说明书的crm可以是图1的存储器112和122、图19的存储器620、或单独的外部存储器/存储介质/磁盘。
[0591]
本说明书的前述技术特征适用于各种应用或商业模型。例如,前述技术特征可以应用于支持人工智能(ai)的设备的无线通信。
[0592]
人工智能是指有关人工智能或用于创建人工智能的方法的研究领域,而机器学习是指有关定义和解决人工智能领域中的各种问题的方法的研究领域。机器学习也被定义为
一种通过稳定的操作体验来提高操作性能的算法。
[0593]
人工神经网络(ann)是机器学习中使用的模型,并且可以是指总体解决问题的模型,包括通过组合突触形成网络的人工神经元(节点)。人工神经网络可以通过不同层的神经元之间的连接模式、更新模型参数的学习过程以及生成输出值的激活函数来定义。
[0594]
人工神经网络可以包括输入层、输出层以及可选地一个或多个隐藏层。每一层包括一个或多个神经元,并且人工神经网络可以包括连接神经元的突触。在人工神经网络中,每个神经元可以输出通过突触、权重和偏差输入的输入信号的激活函数的函数值。
[0595]
模型参数是指通过学习确定的参数,并且包括突触连接的权重和神经元的偏差。超参数是指在机器学习算法中学习之前要设置的参数,并且包括学习速率、迭代次数、最小批量大小和初始化函数。
[0596]
学习人工神经网络可能旨在确定用于最小化损失函数的模型参数。损失函数可以被用作在学习人工神经网络的过程中确定最佳模型参数的指标。
[0597]
机器学习可以分为监督学习、无监督学习和强化学习。
[0598]
监督学习是指利用对训练数据给出的标签来训练人工神经网络的方法,其中,当训练数据被输入到人工神经网络时,标签可以指示人工神经网络需要推断出的正确答案(或结果值)。无监督学习可以是指在没有对训练数据给出的标签的情况下训练人工神经网络的方法。强化学习可以是指一种训练方法,用于训练在环境中定义的代理以选择动作或动作序列来最大化每个状态下的累积奖励。
[0599]
人工神经网络当中利用包括多个隐藏层的深度神经网络(dnn)实现的机器学习被称为深度学习,并且深度学习是机器学习的一部分。在下文中,机器学习被解释为包括深度学习。
[0600]
前述技术特征可以应用于机器人的无线通信。
[0601]
机器人可以是指利用其自身能力自动地处理或操作给定任务的机器。特别地,具有识别环境并自主地做出判断以执行操作的功能的机器人可以被称为智能机器人。
[0602]
根据用途或领域,机器人可以被分为工业、医疗、家用、军事机器人等。机器人可以包括致动器或包括马达的驱动器,以执行各种物理操作,诸如移动机器人关节。另外,可移动机器人可以在驱动器中包括轮子、制动器、螺旋桨等,以通过驱动器在地面上行驶或在空中飞行。
[0603]
前述技术特征可以应用于支持扩展现实的设备。
[0604]
扩展现实统称为虚拟现实(vr)、增强现实(ar)和混合现实(mr)。vr技术是仅在cg图像中提供现实世界对象和背景的计算机图形技术,ar技术是在真实对象图像上提供虚拟cg图像的计算机图形技术,而mr技术是提供与现实世界混合和组合的虚拟对象的计算机图形技术。
[0605]
mr技术类似于ar技术之处在于可以一起显示真实对象和虚拟对象。然而,在ar技术中,虚拟对象被用作对真实对象的补充,而在mr技术中,虚拟对象和真实对象被用作同等的状态。
[0606]
xr技术可以被应用于头戴式显示器(hmd)、平视显示器(hud)、移动电话、平板电脑、膝上型计算机、台式计算机、电视、数字标牌等。应用了xr技术的设备可以被称为xr设备。
[0607]
本说明书中公开的权利要求可以以各种方式组合。例如,本说明书的方法权利要求中的技术特征可以被组合以作为设备实现,并且本说明书的设备权利要求中的技术特征可以被组合以通过方法实现。此外,本说明书的方法权利要求和设备权利要求中的技术特征可以被组合以作为设备实现,并且本说明书的方法权利要求和设备权利要求中的技术特征可以被组合以通过方法实现。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1