用户装备进行冲突自检测的方法和装置与流程

文档序号:34364881发布日期:2023-06-04 19:33阅读:35来源:国知局
用户装备进行冲突自检测的方法和装置与流程
用户装备进行冲突自检测的方法和装置


背景技术:

1.3gpp标准主体发布了c-v2x标准,以支持v2x(即,车联万物)通信。nr v2x包括两种操作模式,称为模式1和模式2。模式1处理gnb(例如,基站)调度,而模式2处理自主选择。模式2不需要蜂窝基础结构的支持,并且车辆可自主地选择用于其v2v传输的子信道。
附图说明
2.下文将仅以举例的方式描述电路、装置和/或方法的一些示例。在此上下文中,将参考附图。
3.图1是示出用于v2x自主选择的两步感测和选择的时间-频率图。
4.图2是示出用于周期性传输方案的v2x自主选择中的潜在冲突问题的图。
5.图3a是示出根据一个方面的利用具有v2x自主选择过程的周期性传输方案来解决冲突问题的非连续周期性传输方案的图。
6.图3b是示出根据一个方面的图3a的非连续周期性传输方案的流程图。
7.图4是示出根据一个方面的当竞争ue的资源预留周期(rrp)为评估ue的整数倍时与v2x自主选择的唯一冲突状况的图。
8.图5是示出根据一个方面的当评估ue的rrp为竞争ue的整数倍时与v2x自主选择的唯一冲突状况的图。
9.图6是示出根据一个方面的在使用非连续周期性传输方案的v2x自主选择过程中取决于评估ue和竞争ue的相对rrp的不同纠正行动的流程图。
10.图7a至图7b是示出根据各个方面的在每个传输周期中调度多个非连续资源块的实例中的非连续周期性传输方案的图。
11.图8a至图8b是示出根据各个方面的在每个传输周期中调度多个非连续资源块的实例中的非连续周期性传输方案的图。
12.图9是示出被执行以“跳过”传输周期以实现非连续周期性传输的信令的图。
13.图10是示出使用harq反馈信息执行自冲突检测方案的评估ue的一个或多个处理器的功能的流程图。
14.图11是示出根据一个方面的ue及其各种部件的框图。
具体实施方式
15.本公开参考附图进行描述。附图未按比例绘制,并且提供这些附图仅用于示出本公开。下文参考用于例示的示例应用来描述本公开的若干方面。阐述了许多具体细节、关系和方法以提供对本公开的理解。本公开不受所例示的动作或事件的顺序的限制,因为一些动作可以不同的顺序发生和/或与其他动作或事件同时发生。此外,并非所有例示的动作或事件都是实现根据所选择的本公开的方法所必需的。
16.如上面所强调的,nr v2x中的模式1涉及车辆之间的直接通信,然而,这些通信由蜂窝基础结构管理,该蜂窝基础结构选择用于每个v2v传输的子信道和时隙或无线电资源。
相比之下,nr v2x中的模式2不需要蜂窝基础结构的支持,并且车辆自主地选择用于其v2v传输的子信道和时隙或无线电资源。在该框架中,3gpp标准定义了所有车辆必须实施的分布式半持久调度方案。
17.c-v2x支持10mhz信道和20mhz信道。信道在时间上被划分为1ms子帧,并且每个子帧被划分为180khz的资源块(rb)。该标准将子信道定义为同一子帧中的一组rb。该子信道用于传输数据和控制信息。此类数据在传输块(tb)中通过物理侧链路共享信道(pssch)传输,并且控制信息在侧链路控制信息(sci)消息中通过物理侧链路控制信道(pscch)传输。tb包含完整分组并且可占用一个或若干子信道。每个tb具有与其相关联的sci,并且这两者都在同一子帧中传输。sci占用可配置数量的rb和可配置数量的ofdm符号,并且包括诸如用于传输tb的调制和编码方案(mcs)、tb占用的rb以及用于半持久调度方案的资源预留周期(rrp)的信息。该资源预留周期是指车辆传输其分组所使用的周期性,并且周期或间隔是以100ms的倍数(例如,100ms、200ms、
……
1000ms)指定的。sci上的信息很有价值,因此必须正确接收sci才能接收和解码tb。
18.在模式2中,车辆使用基于感测的半持久调度(sps)方案自主地选择其子信道和时隙,其中车辆为由重新选择计数器值决定的多个连续分组传输预留所选择的子信道和时隙。在这种次数的传输之后,必须选择并预留新的资源或子信道。车辆选择和预留资源的过程为多步骤过程,其可参考图1来理解。需注意,图1在技术上示出了lte两步程序,但出于理解本质的目的,其足以用于解释的目的。在高层级处,在感测步骤(或图1所示的感测窗口)中,ue侦听信道,即侦听信道信息(其他车辆的sci),以便查看已预留了哪些资源。在选择步骤中,识别并随后选择或预留候选资源。
19.更具体地,每当要选择新资源时,车辆可在被称为选择窗口的时间周期内预留资源,如图1所示。在该时间周期内,车辆识别要预留的候选单子帧资源(csr)。csr是分组或sci和tb所在的同一子帧内的一组相邻子信道。如果“t”是必须进行新资源选择的时间窗口(即,选择窗口)的开始时间,则车辆感测包括t之前的1000个子帧的前一感测窗口中的所有分组。车辆创建包括感测窗口中的所有csr(即,候选csr)的列表,但是满足两个标准的csr除外:(1)在从另一车辆所接收的sci中指示资源(指示另一车辆将同时利用该资源),以及(2)用于传输与另一车辆的sci相关联的tb的rb上测量的平均参考信号接收功率(rsrp)大于rsrp阈值。如果这两个条件都满足,则车辆将排除该特定csr作为候选csr。然后,车辆可在选择窗口中为来自所识别的候选资源(csr)的传输执行资源选择。
20.如上文所讨论的,在进行周期性资源预留的那些情况下,当车辆ue在所选择的资源上发起传输时,其由于半双工系统约束而不监测侧链路信道,并且因此如果另一车辆ue为其自己的侧链路传输选择相同的周期性资源,则此类竞争侧链路传输可能连续地彼此冲突。图2中示出这种不期望的冲突状况,其中ue 1和ue 2对应于两个不同的车辆,该两个不同的车辆在相同的所选择的时间-频率资源(即,在同一时间的同一子信道)上进行传输。
21.如图2所示,第一ue 202(例如,对应于第一车辆的ue 1)在时间t1具有第一周期性资源预留204,而第二ue 206(例如,对应于第二车辆的ue 2)具有占用与第一预留204相同的时间-频率资源的第二周期性资源预留208。此外,在图2的示例中,这两个资源预留204、208具有相同的周期性210,并且因此不仅在时间t1存在冲突,而且在时间t2、t3、t4等数据冲突继续。鉴于以上强调的认识到的问题,本公开提供了解决该问题的用于非连续周期性传
输的电路、方法和非暂态计算机可读介质。
22.在一个方面,ue(称为评估ue)有意地不在调度的、预留的时间周期中的一个时间周期(其可称为调度的非连续时间周期)中进行传输,而是对周期性预留的资源执行信道监测。如果在监测功能期间,检测到另一ue(称为竞争ue)的sci,则选择性地执行某种形式的纠正行动,其中纠正行动的形式基于资源预留周期(rpp),并且在某些情况下基于竞争ue的数据优先级。例如,在数据优先级并非因素或考虑因素的一个方面,基于rrp的纠正行动的形式可能取决于:(1)评估ue和竞争ue的rrp是否相同;(2)竞争ue的rrp是否是评估ue的rrp的整数倍;或(3)评估ue的rrp是否是竞争ue的rrp的整数倍。图3a至图5示出了上面强调的三个条件,以帮助理解纠正行动如何基于相对rrp而不同。
23.图3a示出了上面的条件(1),其中评估ue 302(例如,ue 1)和竞争ue 304(例如,ue 2)已预留相同的时间-频率资源(例如,资源306和308相同)。此外,在该示例中,预留资源306、308具有相同的周期性310,这意味着资源306、308的rrp相同。因此,如果无任何纠正行动,则将发生数据冲突,并且ue 302、ue 304都不会检测到该数据冲突。在该示例中,ue 302是评估ue,并选择不在一时间周期(即,t3)传输,而是在该时间周期执行信道的监测操作312。通过不在另外调度的时间周期(例如,调度的非连续时间周期)进行传输,评估ue 302正在执行非连续周期性传输。如果在监测时间周期t3检测到竞争ue的sci并对其进行解码,该sci指示具有相同rrp的相同时间-频率资源,则评估ue 302停止在冲突资源上进行传输,而是发起重新选择程序,其中ue 302执行上文关于图1所讨论的两部分感测和选择程序,以调度其他资源。这在图3a的314处可见,其中不执行时间t4的传输,而是发起重新选择程序。
24.上面的示例性讨论忽略了数据优先级的问题。也就是说,在图3a的示例中,评估ue 302在t4中断传输,而不管评估ue 302的数据传输的优先级是高于还是低于竞争ue 304的数据传输的优先级。在一个方面,评估ue 302在t3执行监测操作312,并对sci进行解码,该sci指示与具有相同rrp的竞争ue的冲突传输。然后,评估ue 302还评估竞争ue 304的数据传输优先级,例如通过评估竞争ue 304的解码sci,并且如果评估ue 302的数据传输优先级高于竞争ue 304数据传输的优先级,则评估ue 302不中断传输。在这种情况下,尽管有冲突,但由于较高的数据优先级,评估ue 302不停止传输,而是继续传输。
25.在一个方面,如果每个ue根据本公开进行操作,则竞争ue 304有时作为评估ue进行操作,并且在这种情况下将检测到其他竞争ue的冲突和更高的数据优先级,并且作为响应,将中断传输并发起重新选择程序。
26.因此,如上面结合图3a所强调的,本公开设想了ue或ue中的一个或多个处理器,在执行指令时,该一个或多个处理器被配置为执行与另一ue的非连续周期性通信350,如图3b所示。过程350可以是包括评估ue中的一个或多个处理器的功能的装置的功能,可以是方法,和/或可以是包含指令的非暂态计算机可读介质,当由一个或更多个处理器执行时,该指令产生本文所述的功能。在352处,一个或多个评估ue处理器被配置为调度用于非连续周期性传输的资源。如上面所强调的,这种调度看起来与ue1302的调度类似,ue1 302在调度的非连续时间周期(例如,图3a的t3)调度原本用于数据传输的监测操作。这种调度包括周期性时间-频率资源的预留。下文将讨论这种调度的进一步细节。此类调度细节在sci中被列出,并且可包括周期性、数据优先级以及表征非连续周期性通信的其他参数。
27.仍参考图3b,一个或多个ue处理器根据各种方法中的一种方法来执行监测操作。
在一个选项中,根据具有概率(a)的随机选择来调度监测操作,该概率可以是预先配置的或者可以是诸如数据优先级的其他标准的函数。在另一方面,监测过程定时的选择可遵循预定义模式,使得非连续传输本身的性质具有周期性。下文将更详细地讨论如何以及何时执行这种监测的另外的细节。
28.在354处的监测操作期间,一个或多个ue处理器在356处监测用于其他传输ue(即,竞争ue)的sci的信道。如果没有检测到其他传输,或者如果检测到sci,但在解码时不包括将与评估ue冲突的预留资源(在356处为否),则在358处继续非连续周期性传输,直到下一个调度的监测事件。然而,如果检测到竞争ue的sci确实与评估ue的预留资源冲突(在356处为是),则一个或多个ue处理器(即,评估ue)在360处执行纠正行动。
29.在一个方面,在360处采取的纠正行动包括中断评估ue的周期性传输,并且然后发起重新选择过程,其中ue执行上面结合图1讨论的两步感测和选择程序。在另一方面,纠正行动可以是选择性的,其中数据传输的中断取决于相对数据优先级级别或一些其他标准。例如,在解码竞争ue的sci时,如果调度的资源冲突,但评估ue和竞争ue的相对数据优先级满足某种预定关系,则尽管检测到冲突,评估ue将不会中断传输。例如,如果评估ue的数据优先级大于竞争ue的数据优先级,则传输可以继续。另选地,可采用其他标准来选择性地进行360处的纠正行动。
30.如上所述,评估ue所采取的纠正行动的类型可基于评估ue和竞争ue的rrp而不同。选项(2)对应于竞争ue的rrp是评估ue的整数倍的情况(例如,如果评估ue的周期为100ms,则竞争ue的周期为100ms
ד
n”,其中n为整数),并且在图4中示出。如图4所示,竞争ue 404执行周期性传输,该周期性传输表现出评估ue 402的周期传输的整数倍的周期。在该示例中,整数是2,因此评估ue 402传输数据的频率是竞争ue 404的两倍。如图4中可见,在这种情况下,对于每个评估ue传输将不会发生冲突,但对于每个竞争ue传输将发生冲突。在该示例中,冲突发生在t1,但不发生在t2。当评估ue 402在t3中断传输并替代地执行监测操作410时,评估ue 402对竞争ue 404的sci进行解码,并发现其具有的rrp是评估ue rrp的整数倍(例如,100ms与200ms相比)。此时,评估ue可为其纠正行动选择几个不同的选项。在一个方面,评估ue仅在冲突时间周期(例如,412和414)中断那些传输,而在其他非冲突时间周期继续传输。在这种情况下,评估ue 402不发起重新选择程序,而是仅跳过冲突资源上的传输。另选地,评估ue 402可选择发起重新选择程序。在又一替代方面,在识别该条件后,评估ue 402可采用其他标准来决定是跳过冲突资源时间周期412、414还是发起重新选择。例如,如果评估ue 402的数据传输优先级为“高”(例如,高于预定义阈值),则可发起重新选择。另选地,如果根据某些预定标准或阈值优先级为“低”,则可发起重新选择。可采用任何其他实质性标准,并且本公开可考虑到这些标准。
31.如上面所强调的,如果条件(3)存在,并且评估ue的rrp为竞争ue的rrp的整数倍,则情况看起来像图5。如图5所示,评估ue 502和竞争ue 504都在执行周期性传输,并且这样的调度将由于占用一些相同的时频资源而导致冲突。在这种情况下,评估ue 502将在每次传输时经历冲突,而竞争ue 504的一些部分传输将经历冲突(基于rrp的整数倍)。当评估ue 502在t3执行监测操作508而不是数据传输并且经由竞争ue的sci发现该问题时,评估ue 502可选择中断传输并且替代地发起重新选择过程。另选地,在检测到该条件时,ue可选择向竞争ue 504发送消息,请求竞争ue 504在存在冲突的特定周期中跳过冲突资源。在又一
另选方案中,评估ue 502可在决定在此类情况下采取哪些纠正行动时考虑其数据优先级和/或竞争ue 504的数据优先级。例如,如果竞争ue的数据传输优先级为“高”,则评估ue 502可选择中断传输并发起重新选择程序,而不是请求竞争ue 504在冲突时间周期中跳过传输。
32.概括地说,图6中示出基于评估ue的rrp和竞争ue的rrp之间的三种不同关系的纠正行动中的变化。图6示出了由评估ue的一个或多个处理器执行的功能。如图3所示,当在356处对在评估ue的预留资源中是否检测到sci的查询作出肯定回答时(在356处为是),执行纠正行动360。图6提供了关于根据评估ue和竞争ue之间的rrp关系,可能需要采取的纠正行动的更多细节。
33.最初,评估ue的一个或多个处理器经由其解码的sci将其rrp与竞争ue的rrp进行比较。如果rrp相同(在662处为是),则每个ue的每次传输都将发生冲突,如图3a所示。在一个方面,在664处,评估ue检查其数据优先级是否低于竞争ue的数据优先级。如果rrp不相同(在664处为否),则在666处,评估ue可选择不采取进一步的纠正行动。这可能反映了评估ue具有比竞争ue高得多的优先级数据的情况,并且如果竞争ue也在执行非连续周期性传输,则它将检测冲突、停止传输并执行重新选择。如果确定评估ue的数据优先级低于竞争ue的数据优先级(在664处为“是”),则评估ue停止传输并在668处执行重新选择程序。需注意,在664处关于数据优先级的分析是任选的(如虚线所示),并且任选地,如果662处的结论是肯定的(是),则评估ue可直接进行到668,中断传输,并执行重新选择。
34.仍参考图6,如果评估ue和竞争ue的rrp不相同(在662处为否),则在670处确定竞争ue的rlp是否为评估ue的整数倍。如果rrp相同(在670处为是),则存在图4所示的情况,并且评估ue在672处查询其数据优先级是否高于竞争ue的数据优先级。如果评估ue数据优先级更大(在672处为是),则在674处不采取纠正行动。也就是说,虽然在412和414处存在明显的数据冲突,如图4所示,但由于根据某个预定标准,评估ue的数据优先级足够高,因此评估ue可继续传输。如果竞争ue也在执行非连续周期性传输,则该竞争ue可检测该状况,并且由于该竞争ue具有较低数据优先级,因此竞争ue可停止传输并执行重新选择。如果在672处的查询为否定的(在672处为否),则评估ue可选择两个不同选项中的一个选项。在一种情况下,如图4所示,评估ue可在676处停止仅关于冲突资源的传输,其中资源412和414被取消,但针对其他评估ue资源继续传输。在另一方面,如果根据某些预定义标准,评估ue数据优先级为不“高”,则评估ue中断所有数据传输并在678处发起重新选择过程。同样,672处的数据优先级分析可以是任选的,如虚线所示。
35.仍参考图6,如果在670处的查询结果为否定的(在670处为否),则在680处进行另一查询,以确定评估ue的rrp是否为竞争ue的整数倍。如果是(在680处为是),则情况如图5所示。在这些条件下,评估ue具有两个可用选项,其中在682处,评估ue停止传输并执行重新选择,或者在684处评估ue向竞争ue发送跳过与冲突资源相关联的那些传输的消息。然而,如果在680处的查询得到否定回答(在680处为否),则存在评估ue和竞争ue的rrp互素的情况。例如,如果评估ue的rrp为30ms,而竞争ue的rrp为100ms,则存在这种情况。在另一另选方案中,如果竞争ue的rrp为0,这意味着竞争ue仅使用资源一次,并且不执行周期性传输。在这种情况下,在674处不采取纠正行动。
36.在图3至图5中提供的示例中,在每个传输周期内仅调度单个资源集或资源块。在
另选方面,可调度多个非连续资源集或资源块以供ue进行周期性传输。该示例在图7a中示出,其中第一ue 1 702和第二ue 2 704正在执行周期性传输,其中在每个传输周期内,调度用于传输的多个非连续时间-频率资源集或资源块。例如,第一ue1 702具有第一资源块706和第二资源块708,而第二ue2具有在每个传输周期内调度的第一资源块710和第二资源块712。如图7a所示,根据调度,ue 702、ue 704的第一资源块706、710不冲突,但第二资源块708、712冲突。
37.在一个方面,在第三时间周期714期间,第一ue1 702不进行传输,而是执行监测操作716,在该监测操作中,该第一ue侦听其他竞争ue的sci的信道。在这种情况下,ue1 702检测ue2 704的sci,对其进行解码,并确定第二资源块708、712冲突,并且因此必须进行纠正行动。在一个方面,如图7a所示,第一ue1 702(即,评估ue)停止所有预留资源上的所有进一步传输,在这种情况下,这些预留资源对应于这两个资源块706、708,并执行重新选择程序。在另选方面,如图7b所示,在其中调度资源的仅一部分发生冲突(即,资源块708、712发生冲突,但资源块706、710不发生冲突)的类似情况下,评估ue 702在后续传输周期中仅中断在冲突资源上的传输,并且任选地仅针对冲突资源执行重新选择程序。
38.在图7a至图7b的示例中,评估ue 702在同一传输周期714内对每个资源块706、708执行其监测操作。另选地,评估ue可在不同的传输周期中针对资源块中的每个资源块进行调度并由此执行监测操作。例如,如图8a所示,第一ue1 802根据调度的资源块806、808在每个传输周期中进行传输,而第二ue2 804根据调度的资源块810、812在每个传输周期中进行传输。如图8a所示,ue 802、ue 804的第一资源块806、810不冲突,而ue 802、ue 804的第二资源块808、812确实经历冲突。与其中评估ue 702在同一传输周期714中对两个块706、708执行监测操作的图7a相反,在图8a的这方面,评估ue 802在第二传输周期814中监测815第一块806,并且在第三传输周期816中监测817第二块808。如图所示,评估ue 802在第二传输周期814中没有检测到关于块806的冲突资源,但在第三传输周期816中检测到关于块808的冲突。在一个方面,如图8a所示,评估ue 802所采取的纠正行动是中断所有资源的传输并对所有资源执行重新选择程序。
39.在图8b所示的另选方面,检测到类似的冲突状况,即检测到部分冲突。更具体地,检测到一些资源(即,资源808)而不是所有资源(即,资源806和808)的冲突。在该方面,评估ue 802所采取的纠正行动是中断仅冲突资源(即,资源808)的传输,同时继续其他非冲突资源的传输,如图8b所示。在又一另选方案中,纠正行动可以其他标准为条件。例如,可考虑与预留资源块相关联的数据的优先级。如果与冲突资源块相关联的数据的优先级为“高”(例如,其超过预定阈值),则重新调度冲突资源,并且如果该优先级不为“高”优先级,则评估ue 802简单地中断该冲突资源上的传输,并保持非冲突资源上的传输。
40.在一个方面,本文所强调的这种非连续周期性传输方案可被选择性地启用或禁用,而在另一方面,该非连续周期性传输方案可为固定解决方案,或者可按资源池来配置或预配置。本公开设想了任一另选方案。
41.如上面所讨论的,与周期性传输中的冲突相关联的问题通过评估ue中断其周期性传输并在其原本会进行传输的时间周期期间执行监测操作来解决,以便确定是否存在具有预留资源的竞争ue,该预留资源将以本文所讨论并在图3a、图4至图5、图7a至图7b和图8a至图8b中示出的方式与评估ue的资源冲突。下面描述调度监测功能以形成非连续周期性传输
的一种或多种方式。
42.在本公开的一个方面,在给定周期中在资源上的每次传输之前,ue确定是否在下一传输周期上进行传输,并且如果确定进行传输,则ue相应地填充其sci字段。在一个方面,确定是否在下一周期上进行传输(或监测)是基于是否在下一传输周期中进行监测的随机选择的,其中该随机选择具有可配置或预配置的概率(a),或者基于诸如数据优先级的标准。例如,如果概率(a)被配置或预配置为10%,则评估ue将选择不进行传输,而是在下一传输周期期间进行监测的机会将为10%。
43.根据另选方面,概率(a)可取决于各种标准,例如,在一个方面,概率(a)可取决于数据优先级。例如,在一个方面,对于高优先级数据可增加概率(a)以确保可靠的数据传输,而对于低优先级数据可降低概率。另选地,对于高优先级数据可降低概率(a)以实现更连续的数据传输,而对于低优先级数据可增加概率(b)以避免与竞争ue中的高优先级数据冲突。
44.根据另一另选方面,概率(a)可取决于冲突历史。如果在最近的预定义时间周期内检测到相对高数量的冲突(根据某个预定阈值或标准),则可增加概率(a)以更频繁地进行监测,并且如果最近的历史没有显示出冲突或显示出不频繁的冲突,则可降低概率(a)。在其他方面,在形成或以其他方式配置概率(a)时可共同考虑多个因素或标准。
45.此外,对于在每个传输周期中预留的非连续的多个资源,诸如图8a所示,概率可独立地应用于时间周期中的各个调度资源中的每个调度资源。
46.在另一方面,评估ue的监测可遵循预定模式或周期性。例如,在一个方面,由于每隔“b”个时间周期进行监测,因此周期性传输是非连续的。值b可以是(预先)配置的,或者可从一组预先配置的周期中随机选择。例如,该集可为互素数,诸如{2,3,5,7,11},这可避免来自不同ue的连续相同的非连续资源。在另一方面,值b的选择可取决于数据优先级。例如,对于高优先级数据,值b可被选择为较低值,以便更频繁地进行监测,以确保更可靠的传输,而对于低优先级数据,b可被设置为较大值。在另一方面,对于高优先级数据,b可更高,以确保此类数据的更连续传输。此外,在一个方面,一旦选择了周期性b,则也需要确定起始点。在一个方面,非连续资源时间周期的起始周期可在0和b-1之间随机地选择。另选地,起始点可以是配置的或预配置的,或基于其他标准的。
47.上述讨论公开了通过调度监测操作来确定使原本周期性传输非连续的频率。可以多种不同方式执行发信号通知这种非连续传输的方式。在一个方面,如果评估ue确定下一时间周期中的非连续传输,则评估ue改变sci的rrp(即,资源预留周期)字段以跳过下一传输时间周期。在一个方面,如果当前rrp被设置为100ms,则评估ue将与非连续传输之前的一个周期的pssch相关联的sci中的rrp设置为200ms(两倍于周期性)。在另一示例中,如果rrp被设置为400ms,则在非连续传输之前一个周期的sci的rrp被设置为800ms,以使周期性加倍并有效地“跳过”该特定传输周期,从而可利用它来监测信道。在图9中示出该特征的一个示例,其中sci字段指示用于正常周期性传输的一个周期,并且然后在监测操作914之前的周期上指示“2
×
周期”,以指示调度资源上的传输跳到非连续(监测)时间周期之后的“下一”传输周期。
48.在另一方面,可在sci字段中采用附加位来指示下一传输周期中的非连续传输。例如,如果附加位被设置为“0”,则下一传输周期中的资源被预留,并且周期性传输继续。例如,如果附加位被设置为“1”,则下一传输周期中的资源不被预留,并且可执行监测,并且该
资源将被预留用于在监测周期之后的周期中的传输。
49.在上面讨论的各个方面,公开了一种非连续周期性传输方案,其中评估ue在非连续时间周期期间停止传输,以监测信道的潜在冲突。在另一方面,不中断周期性传输,而是传输ue作为评估ue操作,并且当启用了harq反馈时,通过评估来自一个或多个接收ue的反馈来执行冲突操作的自检测。另选地,传输ue通过在对应于由其他传输ue进行的pscch和pssch传输的边线反馈信道(psfch)资源上寻找harq反馈来作为评估ue操作,以当禁用了harq反馈时,推断性地确定冲突。
50.在一个方面,冲突的自检测可由执行周期性传输的传输ue来执行。例如,在其中启用了harq反馈的侧链路单播或组播传输中,传输ue可通过多个评估的反馈消息来评估所接收的反馈,并计算此类消息中否定确认(nack)的百分比。如果此类nack的百分比超过预定阈值,则确定关于调度的资源与竞争ue存在冲突。
51.众所周知,单播传输为一对一通信,其中传输ue正在将周期性传输传输到单个特定的接收ue。响应于单播传输,当启用了harq反馈时,传输ue从接收ue接收对侧链路数据分组的响应。一般来讲,harq-ack是指示是否成功接收到侧链路数据分组的响应。可用的harq-ack响应尤其包括肯定确认(ack)、否定确认(nack)和dtx。由于仅ack指示成功接收到所传输的数据,因此出于本公开的目的,nack或dtx被视为“nack”,并且因此表示可能由于冲突而导致的不成功传输。因此,在周期性传输中,对于数据的连续传输,nnack或dtx的接收被视为“失败”,而ack被视为“成功”。如果“失败”的百分比大于阈值,则传输ue得出关于调度的周期性资源存在冲突的结论。在此类情况下,执行纠正行动,例如,中断周期性传输并发起重新选择程序。
52.在一方面,用于得出冲突已发生的结论的阈值是预先配置的或配置的。在另一方面,阈值可基于数据服务质量(qos)参数或数据优先级级别。例如,如果qos或数据优先级为高,则如果存在冲突的可能性很小,则阈值可更低以触发重新选择操作。
53.参考图10,提供了一种用于在采用例如自主选择的周期性通信环境中自检测冲突的ue 1000。此类的ue是传输ue,其也作为评估ue操作以检测与竞争ue的冲突。图10还可对应于一种使用一个或多个处理器在上述环境中执行冲突的自检测的方法,并且还可能需要包含当由一个或多个处理器执行时执行本文描述的方法的指令的非暂态计算机可读介质。
54.在一个方面,功能1000开始于1002,其中查询是否在ue中启用了harq反馈。由于该标准允许选择性地启用harq反馈,因此功能1000提供了两个不同选项。如果启用harq反馈(在1002处为是),则传输ue将接收响应于周期性传输的ack/nack类型反馈。
55.在得知harq反馈被启用后,在1004处,传输ue接收用于周期性通信的资源,并利用一个或多个基于反馈的冲突检测参数来调度此类资源。此类基于反馈的冲突检测参数的非限制性示例可如下所示。一个参数可以是周期性传输中的传输总次数1006。例如,如果传输ue与车辆相关联,则该传输ue可能周期性地传输车辆速度总共100次或500次,然后才需要重新调度。该信息还可包括决定此类数据的传输频率的周期。另一反馈冲突检测参数可以是用于收集nack统计信息的数据收集传输1008的次数。在一个示例中,如果周期性传输的总次数为100,则为收集nack统计信息而要使用或评估的传输次数可为10。因此,ue将评估关于100次传输的前10个harq反馈,并基于10条harq反馈数据做出其决定。
56.仍参考图10,另一反馈冲突检测参数可包括数据收集格式1010。例如,在已提供的
示例中,潜在冲突的分析可基于10/100次传输。在一种数据格式1010中,仅考虑前10条harq反馈数据。在另一方面,在整个传输中评估10条harq反馈信息的每个后续集,使得评估传输1-10,然后评估11-20,然后评估21-30,依此类推。在另一方面,数据收集格式可以是滑动窗口,其中评估多条harq反馈信息段1-10,然后评估5-15,然后评估10-20,然后评估15-25,依此类推。数据收集格式1010允许灵活定制将进行自冲突数据分析的方式。
57.另一反馈冲突检测参数是阈值1012。例如,当收集nack统计信息时,可将所接收的nack的百分比与阈值进行比较,并且如果nack百分比超过阈值,则得出调度资源上存在冲突的结论。例如,如果100次传输中有10次传输关于其harq反馈响应进行评估,并且10个harq反馈响应中有2个harq反馈响应是nack,则nack百分比为20%。如果阈值1012为30%,则得出不存在冲突的结论,而如果阈值为10%,则得出与预留资源上的竞争ue发生冲突的结论。
58.返回参考图10,一旦在1004处利用基于反馈的冲突检测参数调度了预留资源,则在1014处由传输ue发起并发生周期性传输。当在1014处发生周期性传输时,在1016处经由harq反馈在传输ue处收集nack统计信息,并根据基于反馈的冲突检测参数中一个或多个基于反馈的冲突检测参数来收集此类nack统计信息。过程1000继续到1018,其中nack统计信息被转换为例如百分比,并与阈值1012进行比较。如果没有超过阈值(在1018处为“否”),则可得出关于预留资源当前不存在冲突的结论,并且如果周期性传输仍在继续(在1020处为“否”),则可根据数据收集格式1010收集附加的nack统计信息。如果周期性传输已完成(在1020处为“是”),则不需要纠正行动,因为未检测到资源冲突。
59.返回参考图10的动作1018,如果所计算的nack百分比确实超过阈值(在1018处为“是”),则得出冲突已发生的结论,并且在1024处选择性地执行纠正行动。在一个方面,纠正行动是中断周期性传输并发起重新选择过程。在一个方面,纠正行动可基于各种其他标准而被选择。
60.返回图10中的查询1002,如果未启用harq反馈(在1002处为“否”),则传输ue将不接收harq反馈信息。然而,如果其他竞争ue正在传输和采用harq反馈,则在1030处,评估ue可在反馈信道(例如,物理侧链路反馈信道(psfch))上检测到此类信息。如果在监测psfch期间检测到harq反馈(在1032处为“是”),则可推断出评估ue进行的周期性传输与竞争ue的传输冲突,并在1024处执行纠正行动。在一个示例中,纠正行动是中断周期性传输并发起重新选择过程。例如,如果在psfch上没有检测到harq反馈(在1032处为否),则得出不存在冲突的结论,并且在1034处不采取纠正行动。例如,评估ue的周期性传输继续。
61.在以上描述中,结合概述示例性方法的若干流程图进行描述。在本说明书和所附权利要求书中,在描述方法步骤或功能时参考一些实体(例如,参数、变量等)使用术语“确定”被广义地解释。例如,“确定”被解释为涵盖例如接收和解析编码实体或实体的值的通信。“确定”应被解释为涵盖访问和读取存储实体或用于实体的值的存储器(例如,查找表、寄存器、设备存储器、远程存储器等)。“确定”应被解释为涵盖基于其他量或实体来计算或导出实体或实体的值。“确定”应被解释为涵盖推断或识别实体或实体的值的任何方式。
62.如本文所用,当参考实体的某个实体或值使用时,术语“识别”将被广义地解释为涵盖确定实体或实体的值的任何方式。例如,术语“识别”被解释为涵盖例如接收和解析编码实体或实体的值的通信。术语“识别”应被解释为涵盖访问和读取存储实体或用于实体的
值的存储器(例如,设备队列、查找表、寄存器、设备存储器、远程存储器等)。
63.如本文所用,当参考实体的某个实体或值使用时,术语“选择”将被广义地解释为涵盖从多个或一系列可能的选择中确定实体或实体的值的任何方式。例如,术语“选择”被解释为涵盖访问和读取存储实体或用于实体的值的存储器(例如,查找表、寄存器、设备存储器、远程存储器等)并从所存储的那些中返回一个实体或实体值。术语“选择”被解释为将一个或多个约束或规则应用于输入参数集以确定适当的实体或实体值。术语“选择”被解释为广义地涵盖基于一个或多个参数或条件来选择实体的任何方式。
64.如本文所用,当参考某个实体或实体的值使用时,该术语“导出”被广义地解释。“导出”应被解释为涵盖访问和读取存储一些初始值或基础值的存储器(例如,查找表、寄存器、设备存储器、远程存储器等),并且对一个或多个值执行处理和/或逻辑/数学运算以生成导出的实体或用于实体的值。“导出”应被解释为涵盖基于其他量或实体来计算或测算实体或实体的值。“导出”应被解释为涵盖推断或识别实体或实体的值的任何方式。
65.如本文所述,为了讨论的目的,将采用v2x通信原理的每个车辆描述为ue(即,用户装备)。图11示出了根据可构成组成ue的电路的各个方面的平台1100(或“设备1100”)的非限制性示例。在各方面,计算机平台1100可适于用作ue和/或本文所讨论的任何其他元件/设备。平台1100可包括示例中所示的部件的任何组合。平台1100的部件可被实现为集成电路(ic)、ic的部分、分立电子设备或适配在计算机平台1100中的其他模块、逻辑、硬件、软件、固件或它们的组合,或者被实现为以其他方式结合在较大系统的底盘内的部件。图11的框图旨在示出计算机平台1100的部件的高级视图。然而,可省略所示的部件中的一些,可存在附加部件,并且所示部件的不同布置可在其他具体实施中发生。
66.应用电路1105包括电路,诸如但不限于一个或多个处理器(或处理器内核)、高速缓存存储器,以及ldo、中断控制器、串行接口(诸如spi)、i2c或通用可编程串行接口模块、rtc、计时器(包括间隔计时器和看门狗计时器)、通用i/o、存储卡控制器(诸如sd mmc或类似控制器)、usb接口、mipi接口和jtag测试接入端口中的一者或多者。应用电路1105的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储装置中的指令,以使各种应用程序或操作系统能够在系统1100上运行。在一些具体实施中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如dram、sram、eprom、eeprom、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
67.例如,应用电路1105的处理器可包括通用或专用处理器,诸如购自inc.,cupertino,ca的a系列处理器(例如,a13 bionic)或任何其他此类处理器。应用电路905的处理器还可以是以下中的一者或多者:advanced micro devices(amd)处理器或加速处理单元(apu);来自inc.的内核处理器、来自technologies,inc.的snapdragon
tm
处理器、texas instruments,open multimedia applications platform(omap)
tm
处理器;来自mips technologies,inc.的基于mips的设计,诸如mips warrior m级、warrior i级和warrior p级处理器;获得arm holdings,ltd.许可的基于arm的设计,诸如arm cortex-a、cortex-r和cortex-m系列处理器;等。在一些具体实施中,应用电路1105可以是片上系统(soc)的一部分,其中应用电路1105和其他部件形成为单个集成
电路或单个封装。
68.基带电路1110可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。
69.平台1100还可包括用于将外部设备与平台1100连接的接口电路(未示出)。经由该接口电路连接到平台1100的外部设备包括传感器电路1121和机电式部件(emc)1122,以及耦接到可移动存储器电路1123的可移动存储器设备。
70.电池1130可为平台1100供电,并且可具有耦接到电网的电源。电池1130可以是锂离子电池、金属-空气电池诸如锌-空气电池、铝-空气电池、锂-空气电池等。在一些具体实施中,诸如在v2x应用中,电池1130可以是典型的铅酸汽车电池。
71.虽然方法在上文中被示出并且被描述为一系列动作或事件,但应当理解,所示出的此类动作或事件的顺序不应被解释为具有限制意义。例如,一些动作可以不同顺序并且/或者与除本文所示和/或所述的那些动作或事件之外的其他动作或事件同时发生。此外,可能并不需要所有所示出的动作来实现本文公开的一个或多个方面或实施例。另外,本文所示的动作中的一个或多个动作可在一个或多个单独的动作和/或阶段中进行。在一些实施例中,上文所示的方法可使用存储在存储器中的指令在计算机可读介质中实现。在受权利要求书保护的本公开的范围内,许多其他实施例和变型是可能的。
72.实施例
73.实施例1是一种评估用户装备(ue),该评估ue包括:存储器;和一个或多个处理器,该一个或多个处理器通信地耦接到该存储器。该一个或多个处理器被配置为:利用一个或多个所配置的基于反馈的冲突检测参数来调度周期性资源;以及向一个或多个接收ue执行周期性传输。该一个或多个处理器被进一步配置为:根据所配置的基于反馈的冲突检测参数收集用于该周期性传输的否定确收(nack)统计信息;以及基于所收集的nack统计信息和所配置的基于反馈的冲突检测参数中的至少一个基于反馈的冲突检测参数选择性地执行纠正行动。
74.实施例2包括根据实施例1所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括该周期性传输中的传输总次数。
75.实施例3包括根据实施例2所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括用于收集该nack统计信息的数据收集传输的次数,该数据收集传输的次数是该周期性传输中的该传输总次数的子集。
76.实施例4包括根据实施例3所述的主题,其中该nack统计信息包括包含nack反馈数据的数据收集传输的次数的百分比。
77.实施例5包括根据实施例4所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括与该包含nack反馈数据的数据收集传输的次数的百分比有关的阈值。
78.实施例6包括根据实施例5所述的主题,其中该一个或多个处理器在收集nack统计信息时被配置为计算具有与数据收集传输相关联的nack反馈数据的该数据收集传输的百分比,并将所计算的百分比与该阈值进行比较。
79.实施例7包括根据实施例6所述的主题,其中该一个或多个处理器被配置为当所计算的百分比超过该阈值时,通过中断该周期性传输并发起重新选择程序以调度用于周期性
传输的资源来选择性地执行纠正行动。
80.实施例8包括根据实施例6所述的主题,其中该一个或多个处理器被配置为通过在所计算的百分比不超过该阈值时不采取纠正行动并允许该周期性传输继续来选择性地执行纠正行动。
81.实施例9包括根据实施例5所述的主题,其中该阈值是配置的或预配置的。
82.实施例10包括根据实施例5所述的主题,其中该阈值基于与该周期性传输相关联的服务质量(qos)或数据优先级。
83.实施例11包括根据实施例1所述的主题,其中该反馈收集检测参数包括用于harq反馈数据的数据收集格式。
84.实施例12是一种评估用户装备(ue),该评估ue包括:存储器;和一个或多个处理器,该一个或多个处理器通信地耦接到该存储器。该一个或多个处理器被配置为:当执行周期性传输时,监测与另一ue相关联的反馈信道以获得混合自动重传请求(harq)反馈信息;以及基于在该反馈信道上是否检测到harq反馈信息来选择性地对该周期性传输执行纠正行动。
85.实施例13包括根据实施例12所述的主题,其中该反馈信道包括物理侧链路反馈信道(psfch)。
86.实施例14包括根据实施例12所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上未检测到harq反馈信息时不采取纠正行动并继续该周期性传输来执行选择性校正。
87.实施例15包括根据实施例12所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到harq反馈信息时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
88.实施例16包括根据实施例12所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到的harq反馈信息的量超过预定量或预定阈值时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
89.实施例17包括根据实施例12所述的主题,其中该一个或多个处理器被配置为通过在harq反馈信息不超过预定量或预定阈值时不采取纠正行动并继续该周期性传输来执行选择性校正。
90.实施例18是一种在车联万物(v2x)通信环境内的评估用户装备(ue)中执行ue自主选择的方法。该方法包括:使用一个或多个处理器利用一个或多个所配置的基于反馈的冲突检测参数来调度周期性资源;以及使用该一个或多个处理器向一个或多个接收ue执行周期性传输。该方法还包括:使用该一个或多个处理器根据所配置的基于反馈的冲突检测参数收集用于该周期性传输的否定确定(nack)统计信息;以及使用该一个或多个处理器基于所收集的nack统计信息和所配置的基于反馈的冲突检测参数中的至少一个基于反馈的冲突检测参数选择性地执行纠正行动。
91.实施例19包括根据实施例18所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括该周期性传输中的传输总次数。
92.实施例20包括根据实施例19所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括用于收集该nack统计信息的数据收集传输的次数,该数据
收集传输的次数是该周期性传输中的该传输总次数的子集。
93.实施例21包括根据实施例20所述的主题,其中该nack统计信息包括包含nack harq反馈数据的数据收集传输的次数的百分比。
94.实施例22包括根据实施例21所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括与该包含nack反馈数据的数据收集传输的次数的百分比有关的阈值。
95.实施例23包括根据实施例22所述的主题,其中该一个或多个处理器在收集nack统计信息时被配置为计算具有与数据收集传输相关联的nack反馈数据的该数据收集传输的百分比,并将所计算的百分比与该阈值进行比较。
96.实施例24包括根据实施例23所述的主题,其中该一个或多个处理器被配置为当所计算的百分比超过该阈值时,通过中断该周期性传输并发起重新选择程序以调度用于周期性传输的资源来选择性地执行纠正行动。
97.实施例25包括根据实施例23所述的主题,其中该一个或多个处理器被配置为通过在所计算的百分比不超过该阈值时不采取纠正行动并允许该周期性传输继续来选择性地执行纠正行动。
98.实施例26包括根据实施例22所述的主题,其中该阈值是配置的或预配置的。
99.实施例27包括根据实施例22所述的主题,其中该阈值基于与该周期性传输相关联的服务质量(qos)或数据优先级。
100.实施例28包括根据实施例18所述的主题,其中该基于反馈的冲突检测参数包括用于harq反馈数据的数据收集格式。
101.实施例29是一种在车联万物(v2x)通信环境内的评估用户装备(ue)中执行ue自主选择的方法。该方法包括:当执行周期性传输时,监测与另一ue相关联的反馈信道以获得混合自动重传请求(harq)反馈信息;以及基于在该反馈信道上是否检测到harq反馈信息来选择性地对该周期性传输执行纠正行动。
102.实施例30包括根据实施例29所述的主题,其中该反馈信道包括物理侧链路反馈信道(psfch)。
103.实施例31包括根据实施例29所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上未检测到harq反馈信息时不采取纠正行动并继续该周期性传输来执行选择性校正。
104.实施例32包括根据实施例29所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到harq反馈信息时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
105.实施例33包括根据实施例29所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到的harq反馈信息的量超过预定量或预定阈值时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
106.实施例34包括根据实施例29所述的主题,其中该一个或多个处理器被配置为通过在harq反馈信息不超过预定量或预定阈值时不采取纠正行动并继续该周期性传输来执行选择性校正。
107.实施例35是一种包含指令的非暂态计算机可读介质,其中此类指令在由一个或多
个处理器执行时被配置为执行在评估用户装备(ue)中执行ue自主选择的方法。该方法包括:使用该一个或多个处理器利用一个或多个所配置的基于反馈的冲突检测参数来调度周期性资源;以及使用该一个或多个处理器向一个或多个接收ue执行周期性传输。该方法还包括:使用该一个或多个处理器根据所配置的基于反馈的冲突检测参数收集用于该周期性传输的否定确定(nack)统计信息;以及使用该一个或多个处理器基于所收集的nack统计信息和所配置的基于反馈的冲突检测参数中的至少一个基于反馈的冲突检测参数选择性地执行纠正行动。
108.实施例36包括根据实施例35所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括该周期性传输中的传输总次数。
109.实施例37包括根据实施例36所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括用于收集该nack统计信息的数据收集传输的次数,该数据收集传输的次数是该周期性传输中的该传输总次数的子集。
110.实施例38包括根据实施例37所述的主题,其中该nack统计信息包括包含nack反馈数据的数据收集传输的次数的百分比。
111.实施例39包括根据实施例38所述的主题,其中该基于反馈的冲突检测参数中的一个基于反馈的冲突检测参数包括与该包含nack反馈数据的数据收集传输的次数的百分比有关的阈值。
112.实施例40包括根据实施例39所述的主题,其中该一个或多个处理器在收集nack统计信息时被配置为计算具有与数据收集传输相关联的nack反馈数据的该数据收集传输的百分比,并将所计算的百分比与该阈值进行比较。
113.实施例41包括根据实施例40所述的主题,其中该一个或多个处理器被配置为当所计算的百分比超过该阈值时,中断该周期性传输并发起重新选择程序以调度用于周期性传输的资源来选择性地执行纠正行动。
114.实施例42包括根据实施例40所述的主题,其中该一个或多个处理器被配置为通过在所计算的百分比不超过该阈值时不采取纠正行动并允许该周期性传输继续来选择性地执行纠正行动。
115.实施例43包括根据实施例39所述的主题,其中该阈值是配置的或预配置的。
116.实施例44包括根据实施例39所述的主题,其中该阈值基于与该周期性传输相关联的服务质量(qos)或数据优先级。
117.实施例45包括根据实施例35所述的主题,其中该基于反馈的冲突检测参数包括用于harq反馈数据的数据收集格式。
118.实施例46是一种包含指令的非暂态计算机可读介质,其中此类指令在由一个或多个处理器执行时被配置为执行在评估用户装备(ue)中执行ue自主选择的方法。该方法包括:当执行周期性传输时,监测与另一ue相关联的反馈信道以获得混合自动重传请求(harq)反馈信息;以及基于在该反馈信道上是否检测到harq反馈信息来选择性地对该周期性传输执行纠正行动。
119.实施例47包括根据实施例46所述的主题,其中该反馈信道包括物理侧链路反馈信道(psfch)。
120.实施例48包括根据实施例46所述的主题,其中该一个或多个处理器被配置为通过
在该反馈信道上未检测到harq反馈信息时不采取纠正行动并继续该周期性传输来执行选择性校正。
121.实施例49包括根据实施例46所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到harq反馈信息时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
122.实施例50包括根据实施例46所述的主题,其中该一个或多个处理器被配置为通过在该反馈信道上检测到的harq反馈信息的量超过预定量或预定阈值时中断周期性传输并发起重新选择过程以调度资源来执行选择性校正。
123.实施例51包括根据实施例46所述的主题,其中该一个或多个处理器被配置为通过在harq反馈信息不超过预定量或预定阈值时不采取纠正行动并继续该周期性传输来执行选择性校正。
124.在整个说明书中使用术语“耦接”。该术语可覆盖能够实现与本公开的描述一致的函数关系的连接、通信或信号路径。例如,如果设备a生成信号来控制设备b执行动作,则在第一示例中,设备a耦接到设备b,或者在第二示例中,如果中间部件c基本上不改变设备a和设备b之间的函数关系使得设备b经由设备所生成的控制信号由设备a控制,则设备a通过中间部件c耦接到设备b。
125.众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1