基于时空网络STN的虚拟网络链路流量预测方法

文档序号:29309181发布日期:2022-03-19 19:34阅读:262来源:国知局
基于时空网络STN的虚拟网络链路流量预测方法
基于时空网络stn的虚拟网络链路流量预测方法
技术领域
1.本发明属于通信技术领域,具体涉及一种虚拟网络链路流量的预测方法,可用于数据中心网络的资源分配。


背景技术:

2.在数据中心网络中,对于每一个实际布署的业务,都对应一个虚拟网络:最小业务部署单元pod映射为虚拟网络的节点,pod之间的通信链路映射为虚拟网络中的链路。学习虚拟网络中各链路上的流量分布,可以帮助控制器对网络资源进行有效的分配,因此虚拟网络链路流量预测已成为数据中心网络中的研究热点。
3.所述虚拟网络链路流量预测,是指在给定网络拓扑结构以及各条链路上历史流量数据的情况下,学习各节点之间的关联关系,预测各条链路上未来一段时间内流量大小的过程。对于一个确定的业务,网络中每条链路上的流量分布都有一定规律,并受到相邻链路上流量的影响。目前,国内外的网络流量预测方法可总结为两种:基于线性模型的方法、基于非线性模型的方法,其中:
4.基于线性模型的方法,需要人工凭借经验设置多种参数,线性地拟合数据,仅适用于短期流量预测。而实际网络流量具有非常多的特性,如周期性、自相似性、突发性等,仅用线性模型预测的结果误差较大。
5.基于非线性模型的方法,其最先进的模型是时间序列预测模型,对于大量时间序列数据,使用长短期记忆网络lstm学习每个节点上流量的时序规律。这种方法不能有效地探索和利用通信网络中流量传输的空间特征,没有考虑节点之间的关联关系,因此不能实现高识别准确率。
6.以上网络流量预测方法虽说都对虚拟网络链路流量预测的研究有重要的启发意义,但由于都没充分考虑网络中各个节点并不相互独立的空间特征,因而在运用到数据中心网络中的虚拟网络时,对流量预测的准确率低,难以推断出网络中各条链路上未来一段时间的流量传输情况和pod部署状态,不能为动态的网络资源分配奠定必要的基础,从而无法提升网络资源的利用率。


技术实现要素:

7.本发明目的在于针对上述现有技术的不足,提出一种基于时空网络stn的虚拟网络链路流量预测方法,以提高流量预测的准确率,快速推断出每条链路的占用情况和pod的部署状态,进而有效提升网络资源的利用率。
8.为实现发明目的,本发明采取的技术方案包括如下:
9.(1)构建虚拟网络的图g:
10.(1a)将虚拟网络的每条链路li转化成每个顶点vi,i∈[1,n],n是顶点个数;
[0011]
(1b)将第i个顶点vi与第j个顶点vj相连得到的边e
i,j
和顶点vi,形成虚拟网络图g,j∈[1,n];
[0012]
(1c)用w
i,j
表示g中第i个顶点vi与第j个顶点vj的连接关系,w
i,j
=0表示不相连,w
i,j
=1表示相连即图中存在边e
i,j

[0013]
(2)根据图g的顶点连接关系w
i,j
,获得维度为n
×
n的邻接矩阵w:
[0014][0015]
(3)构建特征矩阵序列x:
[0016]
(3a)在时刻t,使用网络流量解析软件wireshark统计每条链路li上传输的数据包数量即t时刻虚拟网络中链路li上的流量值;
[0017]
(3b)统计虚拟网络在当前时刻t之前m个时刻的所有链路上的流量值,得到流量特征矩阵序列:其中是维度为1
×
n的矩阵,p∈[0,m];
[0018]
(4)设置图卷积网络gcn的参数,并将m个互不相连的图卷积网络gcn分别与长短期记忆网络lstm中的m个神经元对应连接,构成时空网络stn,m》1;
[0019]
(5)将特征矩阵序列x和邻接矩阵w输入到时空网络stn,预测t+1时刻虚拟网络中每条链路上的流量值:
[0020]
(5a)定义损失函数为t时刻的链路li上的实际流量值,y
ti
为t时刻的链路li上的预测流量值;
[0021]
(5b)以最小化loss值为目标训练stn网络直至收敛,输出的流量特征矩阵即为最终预测的t+1时刻虚拟网络中每条链路上的流量值。
[0022]
与现有技术相比,本发明的优点在于:
[0023]
1.本发明采用图卷积网络gcn和长短期记忆网络lstm构成的时空网络stn,不仅可以通过图卷积网络gcn学习到每条链路上流量的空间特性,而且可通过长短期记忆网络lstm学到流量的时间特性,与现有技术相比,挖掘到的流量的随机特性更加全面,有助于预测准确率的提高。
[0024]
2.本发明由于以虚拟网络的拓扑结构来构建图,可以通过图获取到虚拟网络的空间特征,建立邻接矩阵,便于对所有链路上流量的关联关系的计算,与现有技术只计算时间特征的方式相比,增加了计算空间特征的方式,通过这两种特征的结合计算网络链路流量特征,进一步提高了流量预测的准确率,
[0025]
3.本发明由于准确率高,故可快速推断出每条链路的占用情况和pod的部署状态,进而有效提升网络资源的利用率。
附图说明
[0026]
图1是本发明的实现流程图;
[0027]
图2是本发明中使用虚拟网络构建图g的示意图;
[0028]
图3是本发明中设计的时空网络stn结构图。
具体实施方式
[0029]
以下结合附图和具体实施例,对本发明作进一步详细描述。
[0030]
参照图1,本发明的实现步骤如下:
[0031]
步骤1,构建虚拟网络的图g。
[0032]
参照图2,本步骤的具体实现如下
[0033]
所述虚拟网络由业务最小部署单元pod组成,每个pod都是一个网络节点,pod之间由通信链路相连。
[0034]
(1.1)将虚拟网络的每条链路li转化成每个顶点vi,i∈[1,n],n是顶点个数;
[0035]
本实施例中,虚拟网络由四个节点组成,如图2(a)所示,节点a、b、c、d之间有五条链路l1、l2、l3、l4、l5,分别转化成图的五个顶点v1,v2,v3,v4,v5;
[0036]
(1.2)将第i个顶点vi与第j个顶点vj相连得到的边e
i,j
,该e
i,j
和顶点vi,形成虚拟网络图g,j∈[1,n];
[0037]
本实施例中,第1个顶点v1分别与第2个顶点v2、第3个顶点v3、第4个顶点v4相连,得到三条边e
1,2
、e
1,3
、e
1,4
,第2个顶点v2分别与第3个顶点v3、第4个顶点v4、第5个顶点v5相连,得到三条边e
2,3
、e
2,4
、e
2,5
,第3个顶点v3与第5个顶点v5相连,得到边e
3,5
,第4个顶点v4与第5个顶点v5相连得到边e
4,5
,所有这八条边{e
1,2
,e
1,3
,e
1,4
,e
2,3
,e
2,4
,e
2,5
,e
3,5
,e
4,5
}和所有这五个点{v1,v2,v3,v4,v5}形成虚拟网络图g,如图2(b)所示。
[0038]
(1.3)用w
i,j
表示g中第i个顶点vi与第j个顶点vj的连接关系,w
i,j
=0表示不相连,w
i,j
=1表示相连即图中存在边e
i,j

[0039]
步骤2,根据图g的顶点连接关系w
i,j
,获得维度为n
×
n的邻接矩阵w。
[0040]
用w
i,j
表示g中第i个顶点vi与第j个顶点vj的连接关系,令w
i,j
=0表示不相连,w
i,j
=1表示这两个顶点相连,即图中存在边e
i,j
,由此得到维度为n
×
n的邻接矩阵w:
[0041][0042]
本实施例的图2(b)中,图g中只有两对顶点不连接用0表示,其他顶点对之间都互相连接用1表示,即第1个顶点v1与第5个顶点v5未连接,第3个顶点v3和第4个顶点v4未连接,表示为w
1,5
=0,w
5,1
=0,w
3,4
=0,w
4,3
=0,由此得到邻接矩阵w:
[0043][0044]
步骤3,构建特征矩阵序列x。
[0045]
(2.1)在时刻t,使用网络流量解析软件wireshark统计每条链路li上传输的数据包数量即t时刻虚拟网络中链路li上的流量值;
[0046]
(2.2)统计虚拟网络在当前时刻t之前m个时刻的所有链路上的流量值,构建流量特征矩阵序列:其中是维度为1
×
n的矩阵,p∈[0,m]。
[0047]
本实施例中,的维度为1
×
5。
[0048]
步骤4,设计时空网络stn。
[0049]
本步骤设计的时空网络stn由m个并列的图卷积网络gcn分别与长短期记忆网络lstm的m个神经元对应连接组成,m》1。
[0050]
本实例设计图卷积网络gcn的个数为流量特征矩阵序列x中特征矩阵的数量,长短期记忆网络lstm的神经元个数为图卷积网络gcn的个数。假设m取值为3,则神经元个数也为3,将这3个图卷积网络gcn的输出端与长短期记忆网络lstm中3个神经元的输入端连接,即构成时空网络stn。参照图3。
[0051]
步骤5,将特征矩阵序列x和邻接矩阵w输入到时空网络stn,预测t+1时刻虚拟网络中每条链路上的流量值。
[0052]
(5.1)定义损失函数(5.1)定义损失函数为t时刻链路li上的实际流量值,y
ti
为t时刻链路li上的预测流量值;
[0053]
(5.2)以最小化loss值为目标训练stn网络直至收敛,得到t+1时刻虚拟网络中每条链路上的流量值;
[0054]
(5.21)设置学习率为α,网络收敛的阈值为γ,随机初始化图卷积网络gcn中的卷积核参数和长短期记忆网络lstm中的神经元参数;
[0055]
(5.22)将m个时刻的特征矩阵序列x和邻接矩阵w分别输入m个图卷积网络gcn并行计算;
[0056]
(5.23)将每个图卷积网络gcn的输出值作为长短期记忆网络lstm的每个神经元的输入,该长短期记忆网络lstm的输出即为每条链路上的预测流量值y
ti

[0057]
(5.24)利用真实流量值和预测流量值y
ti
,计算损失函数根据损失函数判断时空网络stn是否收敛:
[0058]
若损失函数loss小于阈值γ,则网络收敛,停止训练并输出最终预测结果;
[0059]
否则,返回(5.22)。
[0060]
以上描述仅是本发明的一个具体实例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1