用于控制在未经许可频谱中运行的空对地网络中的接入的系统和方法与流程

文档序号:32400665发布日期:2022-12-02 18:54阅读:60来源:国知局
用于控制在未经许可频谱中运行的空对地网络中的接入的系统和方法与流程
用于控制在未经许可频谱中运行的空对地网络中的接入的系统和方法
1.相关申请的交叉引用
2.本技术要求于2020年4月8日提交的标题为“用于控制在未经许可频谱中运行的空对地网络中的接入的系统和方法(systems and methods to control access in air-to-ground networks operating in unlicensed spectrum)”的第63/006,913号美国临时专利申请的申请日的优先权和权益,所述专利申请的全部公开内容以引用的方式并入本文中。
技术领域
3.本公开涉及将空对地网络用于飞行中连接的飞行中飞机,并且具体来说,涉及管理连接和/或控制飞行中飞机对在未经许可频谱中运行的空对地网络的接入。


背景技术:

4.对于飞行中连接,飞行中飞机可以连接到在未经许可频谱中运行的空对地(atg)网络,例如在2.4ghz和/或未经许可频谱的其它频率中运行的那些网络。通常,基站和/或飞行中飞机检测、传送和响应于干扰条件(和/或其效应),如同此类干扰条件在射频(rf)上行链路(例如,在基站的方向上)和下行链路(例如,在飞行中飞机或用户设备(ue)的方向上)方向上具有类似效应。然而,在干扰影响未经许可频谱中的无线通信的空中跨度或空中空间中,上行链路可能经历与下行链路不同的干扰强度,从而使得射频(rf)路径相对于干扰效应不对称。也就是说,空中跨度或空中空间内的上行链路干扰水平可能与下行链路干扰水平不相关或不对应。
5.由于不同类型的用户可以接入未经许可频谱,因此未经许可频谱的非飞机用户(例如,wi-fi或位于地面的其它类型的未经许可频谱用户)可能是使用未经许可频谱的atg飞行中连接网络中潜在强的外部干扰源。因此,为了确定最佳可能的服务小区,ue或飞机测量所有可能服务器(例如,所有可能基站或小区)的相应信号,并且选择具有最高sinr(信号与干扰和噪声比)或其它合适的测量的一者。然而,尽管此方法保证所选择的服务小区将在候选服务小区中的下行链路方向(例如,朝向ue的方向)上提供最佳信号,但是考虑到非对称rf路径,这种方法不能保证上行链路方向(例如,朝向小区或基站的方向)上的信号将具有良好的质量或甚至具有足够的质量以维持与所选择基站的连接。
6.3gpp nr规范不提供在ue连接到基站之前向ue和/或基站用信号发送不同方向特定条件的机制(例如当小区/基站从ue所处的方向观察到的干扰水平太高而无法维持足够质量的连接时),因为本规范旨在用于经许可频谱中,其中两个方向上的干扰水平有些相关和/或其中可以利用载波侦听多址访问/冲突避免来减轻干扰效应。例如,3gpp nr规范确实在mib(主信息块)和sib(系统信息块)消息中提供指示cellbarred、cellreservedforoperatoruse和cellreservedforotheruse,以防止对禁止、保留给操作员使用以及保留给某些其它用途的某些小区的接入。然而,3gpp nr规范中定义的这些和其它
类似指示仅提供传送小区根本不可用或仅对一些用户可用的方式。更显著地,这些和其它类似指示在小区或基站粒度级别上区分,并且不考虑小区或基站处的空间性差异。不利的是,本说明书没有提供一种机制来在由于高反向链路干扰而不应接入小区和/或空间方向时发信号通知ue并且指示移动台应寻找其它候选小区。
7.此外,对于支持远程空对地通信的实施方案,本说明书没有提供一种机制来防止远处或位于远处的ue接入特定小区,同时允许位于较近位置的ue接入特定小区,例如使得特定小区可以最佳地被配置成服务于更接近特定小区的大量ue。因此,试图接入被配置成覆盖许多近程或中程ue的小区的位于远处的ue(例如,用于服务近程/中程ue的高容量小区)将损害小区的容量。本说明书没有一种机制来向ue指示小区是高容量小区,使得位于远处的ue不会尝试接入高容量小区,而替代地尝试连接到其它可能的候选小区。


技术实现要素:

8.本文所描述的本发明的实施例描述管理在2.4ghz和/或未经许可频谱的其它频率上运行的空对地(atg)网络中,例如在含有潜在强的外部干扰源的空中跨度或空中空间中的飞行中飞机连接的技术、系统和方法。例如,本文所描述的技术、系统和方法可通过在上行链路(ul)或下行链路(dl)方向上发信号通知特定条件的出现来管理对小区的ue或飞机接入,其中条件可以在上行链路方向与下行链路方向之间不同。
9.一般来说,本文中所描述的技术提供一种用于在出现3gpp标准未预期的条件时控制对小区或基站ue接入的机制。例如,所述技术可以利用广播信号的保留位(在3gppnr标准内未使用、定义或指定),以用于向ue传送指示可能影响ue对小区的相应上行链路接入的各种条件或约束的信息。另外或替代地,例如由于ue与小区站点的相对距离,与可以接入小区站点的大多数ue相比,这些技术可以限制具有冲突无线电要求的一些ue的接入。仍然另外或替代地,所述技术可以发信号通知ue检测到的外部干扰,并且在一些实施例中,可以指示在空中空间的不同方向上的相应外部干扰水平(例如,不同水平的上行链路和/或下行链路干扰)。
10.在实施例中,由本发明的实施例利用的技术定义广播位的使用,所述广播位在3gppnr规范中未使用(例如,保留或未指定),以用于发信号通知ue特定的定向信道或网络条件或约束,并通过这样做来控制ue(例如,飞机)对小区的接入。通过发信号通知ue特定条件或接入约束,例如高ul(上行链路)外部干扰,可以实施响应于发信号通知的条件的不同ue行为。例如,ue可以搜索不同小区或服务器,或者ue可以在重新尝试接入此小区之前等待预定义时间。类似地,通过发信号通知ue小区旨在服务于某种类型的许多连接(例如,小区被配置成最佳地服务于某种类型的连接的高容量小区)和/或被配置成最佳地服务于在小区的特定距离内的ue,远离小区定位的ue可以寻找不同小区或服务器。另外,如果采用窄波束来广播所指示的接入条件或约束,则由小区发信号通知的指示可以特定于在波束的空间方向上的条件或约束,并且因此可以指示单个小区站点的不同波束的不同上行链路接入条件或约束。
11.在实施例中,一种用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的方法包含在ue处经由未经许可频谱接收由无线网络的第一小区生成的信号。所述信号包含对第一小区的一个或多个上行链路接入约束的相应存在或不存在的指示,其中一个或多个
上行链路接入约束包含以下中的至少一个:ue与第一小区的阈值距离,或由第一小区在ue的空间方向上检测到的上行链路干扰。所述方法进一步包含由ue基于所指示的一个或多个上行链路接入约束而选择无线网络的服务小区,以及由ue连接到所选择服务小区。
12.在实施例中,一种用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的方法包含在未经许可频谱内且由无线网络的小区传输参考信号,所述参考信号具有第一部分,所述第一部分由ue用于确定下行链路干扰;以及第二部分,所述第二部分包含具有未指定用于参考信号的相应用途的一组保留位,其中所述一组保留位具有指示特定于小区的一个或多个上行链路接入约束的相应存在或不存在的值。ue基于参考信号确定是否通信地连接到小区。
附图说明
13.图1描绘其中利用用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的方法、系统和技术的实施例的实例情形。
14.图2说明可以在用于管理用户设备(ue)经由本文所公开的未经许可频谱对无线网络的接入的方法、系统和技术的实施例中的实例下行链路传输。
15.图3描绘其中利用用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的方法、系统和技术的实施例的情形。
16.图4描绘用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的实例方法的流程图。
17.图5描绘用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的实例方法的流程图。
18.图6是可以结合本文所描述的技术的实施例使用的实例计算系统的框图。
具体实施方式
19.尽管下文公开了实例方法、设备和/或制品的具体实施方式,但是应理解,产权的法律范围由本专利结尾处阐述的权利要求的文字来限定。因此,下文的具体实施方式应被解释为仅是实例而非描述每个可能的实例,因为描述每个可能的实例即使不是不可能的也是不切实际的。可以使用当前技术或在本专利的申请日之后开发的技术来实施许多替代实例。预见此类替代实施例将仍然落在权利要求的范围内。
20.图1描绘其中利用用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的方法、系统和技术的实施例的实例情形100。图1的情形100描绘无线网络的两个基站或小区站点102、105,其中小区站点102、105在未经许可频谱中传输和接收无线电信号。例如,基站102、105中的至少一个可以是利用未经许可频谱中的nr(新无线电)技术的5g无线网络的gnb(下一代node b),和/或基站102、105中的至少一个可以是利用未经许可频谱中的对应无线电技术的另一代无线网络(例如,6g无线网络)的另一类型的逻辑无线电节点。每个基站102、105分别包含六个扇区(由标签0、1、2、3、4、5表示)。在其扇区0中,小区站点102在不同空间方向(例如,不同三维方向)上广播四个不同参考信号108a-108d,以供ue接收和处理,以便ue确定ue可以连接到无线网络以进行飞行中连接的合适小区站点。如本文所使用,术语“空间方向”通常指代与定向波束,例如分别经由其传输参考信号108a-108d的定向波
束的波束宽度相对应的角度范围(例如,三维角度范围)。另外,在情形100中,两个用户设备(ue)110、112(在情形100中描绘为两个飞机110、112)位于小区站点102的服务空中跨度或空中空间内。每个ue 110、112辐射相应波束115、118以检测候选服务小区站点的参考信号,例如参考信号108a-108d。
21.如图1中另外描绘,在ue 112与小区站点102之间的视线或点对点方向内(由虚线120表示),不存在外部干扰或存在可忽略的外部干扰。另一方面,在ue 110与小区站点102之间的视线方向或点对点方向内(由虚线122表示),服务于陆地移动装置的陆地或地面基站125辐射在由小区站点102使用的相同未经许可频谱内的能量(例如,由此允许陆地基站125经由未经许可频谱向陆地移动装置提供无线连接)。因此,在情形100中,陆地基站125是相对于ue 110和小区站点102的外部干扰源。小区站点102检测和测量由陆地基站125在ue110的视线方向122上(如通过箭头128表示)产生的干扰。也就是说,小区站点102检测和测量在ue 110的视线方向122的上行链路(ul)方向128上的外部干扰。
22.在检测和确定上行链路干扰128的水平大于干扰阈值后,小区站点102经由参考信号108c向ue 110(以及能够接收在对应于ue 110的空间方向上辐射的参考信号108c的任何其它ue)通知检测到的不可忽略的上行链路干扰。因此,至少由于在视线方向122上在小区站点102与ue 110之间检测到显著水平的上行链路外部干扰128,通知ue 110它可能需要考虑其它候选小区(例如,通过处理由其它候选小区广播的参考信号)以发现ue 110可以经由其连接到无线网络的合适小区。实际上,如图1中所示,响应于接收到在小区站点102的方向上检测到的上行链路干扰128的通知,ue 110引导其天线辐射图115以搜索经由其接入无线网络的其它合适的小区,例如小区站点105。
23.另一方面,小区站点102在小区站点102与ue 112之间的视线方向118的上行链路方向上没有检测到任何上行链路干扰。例如,小区站点102在小区站点102和ue 112的上行链路视线方向118上检测到可忽略的上行链路干扰或小于干扰阈值的上行链路干扰水平。因此,小区站点102经由参考信号108a通知ue 112(以及能够接收在对应于ue 112的空间方向中辐射的参考信号108a的任何其它ue)小区102在相应空间方向上没有检测到上行链路干扰或检测到可忽略的上行链路干扰。因此,ue 112可以选择小区102作为服务小区,例如假设ue 112还基于参考信号108a确定在视线方向118的下行链路方向上的下行链路(dl)干扰也可忽略或可接受并且满足其它接入条件/约束。
24.应注意,在情形100中,基站102以定向方式,例如在不同空间方向上辐射扇区0的其参考信号108a-108n(以及其它扇区的其它参考信号),所述不同空间方向可以对应于由基站辐射的窄波束的不同空间方向。因此,对于不同空间方向,外部源的干扰可以不同(例如,空间方向108c具有高于干扰阈值水平的来自源125的干扰,并且空间方向108a不具有高于干扰阈值水平的来自源125的干扰)。此外,至少由于不同波束的不同空间方向,与对应下行链路空间方向相比,一些外部信号可能更强烈地干扰在ue与小区之间的特定上行链路空间方向上的传输。例如,在对应于ue 110与基站102之间的视线122的空间方向108c上,由于源125引起的上行链路干扰128水平大于由于源125引起的下行链路干扰水平。因此,虽然ue 110可以测量或其它方式确定(例如,基于参考信号108c)ue 110与小区102之间的下行链路干扰处于可接受水平,但是当参考信号108c指示存在显著上行链路干扰128时,ue110可能不会选择小区102作为服务小区。
25.在实施例中,由小区站点102广播的每个参考信号(例如,信号108a、108b、108c、108d)可以是同步信号,ue可以处理所述同步信号以确定候选服务小区和/或连接到所选择服务小区。例如,3gppnr规范定义由基站广播的同步信号,例如主同步信道(pss)、从同步信道(sss)和物理广播信道(pbch),它们通常统称为同步信号/pbch块或ssb。ue可以处理ssb(例如,可以对ssb进行解码)以确定广播小区的标识,与广播小区同步,和/或确定相对于广播小区的下行链路功率和/或下行链路干扰,以便在一组候选服务小区中选择最合适的服务小区。例如,ue可以通过确定由小区广播的ssb的sinr或其它合适的测量来确定对应于广播小区的下行链路干扰。
26.图2中说明ssb 200的部分的实例位布局。ssb 200的部分描绘pbch有效载荷的最后八个位3gpp nr规范将其定义或指定为传送各种物理层信息。对于6ghz以下频谱,ssb波束的最大数目是八或四,因此ssb的最后两个位,例如位和不使用并且由规范定义为保留、未使用或未指定位。本文中所描述的本发明技术的实施例可以利用这些未指定位,以向ue发信号通知一个或多个上行链路接入约束或条件的存在或不存在的指示,并且由此控制ue对小区的接入。例如,在实例实施方案:
27.(i)位可以用于指示存在或不存在高于干扰阈值的ul干扰,如通过广播小区观察或确定。例如,位值0可以表示可接受ul干扰,并且位值1可以表示较高或不可接受的ul干扰,以及
28.(ii)位可以用于指示存在或不存在ue与广播小区的阈值距离,其中广播小区最佳地被配置成服务于位于小区的阈值距离内的ue。例如,位值0可以表示小区服务于所有ue,而不管ue与小区的距离如何,并且位值1可以表示小区特别地被配置成最佳地且优选地服务于位于阈值距离内的ue。
29.也就是说,小区可以利用ssb 200的位来指示存在或不存在对应于ul干扰的上行链路接入约束,并且小区可以利用位来指示存在或不存在对应于ue与小区的阈值距离的接入约束。在本公开内的其它地方更详细地论述ue与小区站点的阈值距离的使用的额外细节。
30.有利地,并且如图2中所示,ssb块200具有空间特征,例如,如由向量或空间符号指示。因此,在此实例实施方案中,位的相应值可以针对由小区在不同空间方向上传输的相应ssb不同,由此反映在相对于小区的不同空间方向上的相应信道条件和/或其它上行链路接入约束(例如,基于每个波束)。例如,在ul干扰的情况下,地面上的外部干扰源可能仅在特定方向上造成较高干扰水平,并且因此的值跨越不同ssb波束可能不同。例如,为了说明参考图1,在空间方向108c上传输的ssb可以具有设定成“1”的对应位的值,以指示由小区102在空间方向108c上检测到不可接受的ul干扰水平(例如,由于外部干扰源125),并且分别在空间方向108a、108b和l08d上传输的ssb可以具有设定成“0”的位的值,以指示小区102在相应空间方向108a、108b、108d上没有检测到或检测到可接受的ul干扰水平。
31.因此,在此实施例中,当小区102将ssb 200的位的值设定成“1”(例如,在空间方向108c上传输的ssb,如图1中所示)时,小区102由此通知ue 110相应扇区(例如,小区102的扇区0,如图1中所示)在对应ssb波束108c的方向122上处于高ul干扰下,并且因此,ue 110应搜索用于连接到无线网络的其它候选小区。例如,如图1中所说明,陆地干扰源125具
有到小区102的直接视线,并且对由108c表示的ssb区域提供强干扰。ue110处于由108c表示的ssb区域的覆盖范围内,并且因此接收具有设定成“1”的位的广播ssb。因此,ue 110继续搜索其它候选服务小区,例如小区105的扇区5,如通过由ue1 10生成的波束115的空间方向表示。然而,ue 112处于由108a表示的ssb区域的覆盖范围内,并且因此接收具有设定成“0”的位的ssb,且因此继续尝试接入小区102的扇区0,如通过由ue112生成的波束118的空间方向表示。
32.另外或替代地,在此实例实施方案中,通过将ssb 200的位的值设定成“1”,小区可以向ue指示相对于小区处于大于预定义阈值(例如,250km,或将要求基于物理层结构拆分的时分双工(tdd)的一些其它距离)的相应空间距离处的ue应搜索要连接的其它候选小区。也就是说,小区可以基于ue与小区的相应空间距离而限制或约束ue对小区的上行链路接入。
33.为了说明,图3描绘其中发生这种情况的实例情形300。在图3中,小区302特别地被配置成在相对近的范围内服务于大量ue 310。也就是说,小区302是最佳地配置成服务于大量近程或中程ue 310的高容量小区,例如,当小区302被配置成在高空中交通走廊中的机场处或附近提供用于飞行中连接的覆盖范围时。例如,小区302可以被配置成利用针对位于与小区302的预定义阈值距离内的ue 310优化的tdd帧配置。因此,小区302基于其与小区302的相应距离限制ue的接入,例如以避免需要重新配置tdd帧配置,和/或实现小区302将在无线网络内的相应位置或环境处提供的高容量服务。
34.在情形300中,远处或位于远处的ue 312可以接收具有足够sinr(例如,基于sinr阈值)的小区302的广播传输(例如ssb)以用于连接。然而,由于小区302已经特别地被配置为高容量小区以服务于低或中程ue 310,因此小区302将广播ssb中的位的值设定成“1”。基于ssb的位的值设定成“1”并且基于ue 312与小区302的空间距离大于阈值距离,尽管sinr足够,ue 312也不尝试接入小区302,并且替代地搜索其它候选服务小区,例如小区305,如通过由ue 312生成的波束315的空间方向在图3中表示。
35.因此,图3中所说明的技术可以防止或避免使用不能够满足位于远处的ue 312的数据需求的tdd帧配置,而不会显著地损害其它位于较近位置的ue 310的需求。另外或替代地,图3中所说明的技术可以防止或避免使用tdd帧配置重新配置整个小区302,所述tdd帧配置可能适用于位于远处的ue 312,但也会浪费小区302的容量,并且影响由小区302服务的其它位于较近位置的ue 310的吞吐量。因此,在小区302是配置成服务于近程或中程ue的高容量小区的实施例中,无线电配置可以在整个小区302中一致或相同,并且因此位的值将在由小区302广播的所有ssb中设定成值“1”。
36.图4描绘根据本文所公开的至少一些原理和技术的用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的实例方法400的流程图。方法400可以结合图1和3中所说明的情形和/或环境,和/或在ue尝试经由小区接入无线网络或经由未经许可频谱接入基站的其它环境中操作。在实施例中,ue(例如,ue 110、ue 112或ue 312)可以执行方法400的至少一部分。例如,ue的一个或多个处理器可以执行存储在ue的一个或多个有形存储器上的指令,以执行方法400的至少一部分。在实施例中,方法400可以包含额外或替代步骤。
37.在框402处,方法400可以包含在ue处经由未经许可频谱接收由无线网络的第一小区生成和传输的信号。例如,信号可以是参考信号、同步信号或由第一小区广播的另一类型
的信号。信号可以包含第一小区的一个或多个上行链路接入约束的相应存在或不存在的指示。用于经由上行链路接入第一小区的一个或多个约束可以包含ue与第一小区的阈值距离(例如,阈值空间距离)、第一小区在对应于ue的上行链路空间方向上检测到的上行链路干扰,和/或对ue和/或对ue与第一小区之间的用于对第一小区进行上行链路接入的空中空间的其它类型的条件或约束。在实施例中,一个或多个上行链路接入约束的相应存在或不存在可以由包含在由第一小区传输的信号中的位值指示。例如,各种上行链路接入条件的相应存在或不存在可以例如以相对于图2描述的方式在由第一小区广播的ssb的一组保留或未指定位的值中指示。
38.在框405处,方法400可以另外包含由ue基于第一小区的一个或多个上行链路接入约束的相应存在或不存在的指示而选择无线网络的服务小区。一般来说,当ue和/或在ue与第一小区之间的上行链路方向满足指示为存在于第一小区的所有上行链路接入约束时,ue可以继续评估接收到的信号(例如,接收到的ssb)以用于作为服务小区的进一步适用性。例如,ue可以基于包含在接收到的信号中的其它信息而确定ue与第一小区之间的下行链路干扰水平。当下行链路干扰水平确定或测量为可接受时,ue可以包含一组候选小区中的第一小区,ue在所述一组候选小区中选择405服务小区。实际上,如果第一小区是所述一组候选小区中的最合适小区,则ue可以选择405第一小区作为服务小区。
39.另一方面,当ue和/或在ue与第一小区之间的上行链路方向不满足指示为存在的所有上行链路接入约束时,ue可以从一组候选小区中排除第一小区,ue从所述一组候选小区中选择405合适的服务小区。也就是说,当ue和/或在ue与第一小区之间的上行链路方向不满足由第一小区指示为存在的所有上行链路接入约束时,ue可以避免选择405第一小区作为服务小区。替代地,当ue和/或在ue与第一小区之间的上行链路方向不满足指示为存在的所有上行链路接入约束时,ue可以等待经过预定的时间量,且随后评估由第一小区(例如,第二接收到的ssb)传输的另一参考信号,所述参考信号可以包含与一个或多个上行链路接入约束的存在或不存在相对应的更新的一组指示。ue可以根据更新的指示在一组候选服务小区中包含或排除第一小区。
40.在一些情况下,接收到的信号可以指示在对应于阈值距离的第一小区处存在上行链路接入约束,由此表示第一小区被配置成高容量小区和/或被配置成最佳地服务于位于阈值距离内的ue。当ue位于距第一小区的小于或等于的空间距离处时,ue可以满足阈值距离约束,并且当ue位于距第一小区的大于阈值距离的空间距离处时,ue可能不满足阈值距离约束。在实施例中,阈值距离可以预定义并且存储在ue的存储器中。
41.在一些情况下,接收到的信号可以指示存在由第一小区在对应于ue的空间方向上检测到的不期望的上行链路干扰水平。也就是说,接收到的信号可以指示由第一小区在对应于ue的空间方向上检测到的大于干扰阈值的上行链路干扰水平。例如,ue与第一小区之间的在空间方向上的上行链路干扰水平可以不同于ue与第一小区之间的在空间方向上的下行链路干扰水平。在这些情况下,ue可以从所述一组候选小区中排除第一小区,ue在所述一组候选小区中选择405服务小区,或者ue可以等待预定时间,在所述预定时间之后,ue处理潜在地包含对存在或不存在不期望的上行链路干扰水平的更新的指示的另一接收信号,并且相应地作出响应。
42.在框408处,方法400可以包含例如在选择服务小区后,由ue连接到所选择服务小
区。
43.图5描绘根据本文所公开的至少一些原理和技术的用于管理用户设备(ue)经由未经许可频谱对无线网络的接入的实例方法500的流程图。方法500可以结合图1和3中所说明的情形和/或环境,和/或在ue尝试经由小区接入无线网络或经由未经许可频谱接入基站的其它环境中操作。在实施例中,基站或小区站点(例如,基站102、105、302、305)可以执行方法500的至少一部分。例如,基站的一个或多个处理器可以执行存储在ue的一个或多个有形存储器上的指令,以执行方法500的至少一部分。在实施例中,方法500结合方法300例如在无线网络空中跨度或空中空间内执行。在实施例中,方法500可以包含额外或替代步骤。
44.在框502处,方法500可以包含由无线网络的小区在未经许可频谱内传输参考信号。例如,参考信号可以是同步信号或由小区广播的另一类型的信号。参考信号可以包含小区的一个或多个上行链路接入约束的相应存在或不存在的指示,其中用于经由上行链路接入小区的一个或多个约束包含ue与第一小区的阈值距离(例如,阈值空间距离)、由第一小区(例如,在对应于ue的上行链路空间方向上)检测到的上行链路干扰,和/或对ue和/或对ue与小区之间的用于对小区进行上行链路接入的空中空间的其它类型的条件或约束。在实施例中,参考信号可以具有第一部分,所述第一部分可以由ue用于确定下行链路干扰;以及第二部分,所述第二部分包含具有未指定用于参考信号的相应使用的一组保留位。例如以相对于图2描述的方式,所述一组保留位可以具有指示小区特定的一个或多个上行链路接入条件或约束的相应存在或不存在的值。一般来说,例如,以例如本公开内的其它地方描述的方式,当ue和/或在ue与小区之间的空中空间中的上行链路方向满足所有所指示的上行链路接入约束时,ue可以将小区视为候选小区,并且当ue和/或在ue与小区之间的空中空间中的上行链路方向不满足至少一个所指示的上行链路接入约束时,ue可以避免或延迟将小区视为候选小区。
45.由于上行链路接入约束中的一个可以对应于在ue与小区之间的空间方向上的上行链路干扰(其水平可能与相同空间方向上的任何下行链路干扰不同),因此在一些实施例(未示出)中,方法500包含由小区检测或确定未经许可频谱内的上行链路干扰水平,并且确定上行链路干扰水平是否超过干扰阈值。例如,可以在不考虑或独立于任何下行链路干扰水平的情况下进行上行链路干扰水平的确定。方法500可以进一步包含例如通过相应地设定或不设定参考信号的所述一组保留位的值,在参考信号中指示检测到的或所确定的过多上行链路干扰的存在或不存在。在一些实施例(未示出)中,方法500包含对于与由小区辐射的多个波束相对应的多个空间方向中的每个空间方向,确定未经许可频谱内的相应上行链路干扰水平。在这些实施例中,方法500可以包含确定每个相应的上行链路干扰水平是否超过干扰阈值,并且例如通过相应地设定或不设定相应参考信号内的所述一组保留位的值,在对应空间方向上辐射的相应参考信号中指示每个空间方向上的过多上行链路干扰的存在或不存在。
46.在一些情况下,例如当小区被配置成利用针对位于与小区的阈值距离(例如,250km或一些其它合适的阈值距离)内的ue优化的时分双工(tdd)帧配置,和/或小区被配置成无线网络内的高容量小区时,传输502参考信号可以包含传输参考信号的至少一个保留位,所述至少一个保留位具有指示存在对应于与小区的阈值距离的上行链路接入约束的值。在这些情况下,当ue与小区的空间距离小于或等于阈值距离时,ue通信地连接到小区,
并且当ue与小区的空间距离超过阈值距离时,ue避免或延迟将小区视为候选服务小区。
47.在任选框505处,方法500可以包含基于参考信号连接到ue。例如,基站可以与ue连接,所述ue至少部分地基于由基站传输的参考信号而确定基站是一组候选小区中的最合适候选小区。在与ue通信地连接后,基站可以是ue的服务小区,由此将ue与无线网络通信地连接。
48.现在转向图6,图6是可以结合本文所描述的系统、方法和技术的实施例使用的实例计算系统600的框图。系统600包含一个或多个计算装置602,所述计算装置可以特别地被配置成自动地控制在未经许可频谱中操作的无线通信网络和系统的一个或多个组件,例如基站、小区站点、gnb、飞机、ue,和或其相应部分或子组件。例如,计算系统600的至少部分的不同实例可以分别位于基站、小区站点、gnb和/或其它类型的地面站处;和/或飞机或其它类型的ue中。因此,计算装置602可以通信地连接到无线通信系统的驻存组件的一个或多个子组件,例如收发器、发射器、接收器、调制器、解调器、基带单元、远端射频单元、无线电、天线等,并且可以分别控制所述子组件的行为的至少一部分。
49.如图6中所说明,与使用未经许可频谱的无线通信网络相关联的一个或多个计算装置602可以包含例如一个或多个处理器和/或控制器、计算机、便携式计算装置(例如,平板计算机、膝上型计算机、移动装置等)、服务器、具有单个计算装置或服务器的逻辑外观的多个联网或分组计算装置或服务器、多个云计算装置等。因此,仅为了便于讨论而非限制目的,本文使用单数时态来指代一组计算装置602,尽管在一些实施例中,计算装置602可以包含多于一个物理计算装置。
50.计算装置602可以包含例如一个或多个处理器605(例如,中央处理单元或cpu、数字信号处理器或dsp、微处理器等)、一个或多个控制器608(例如,无线电资源控制器)、存储计算机可读和/或计算机可执行指令的一个或多个集合,例如指令612a-612c的一个或多个程序存储器610、随机存取存储器(ram)615和输入/输出(i/o)电路618,所有这些可以经由地址/数据总线620互连。一个或多个程序存储器610可以包括一个或多个有形的非暂时性计算机可读存储媒体和/或装置,并且存储于其上的计算机可读和/或计算机可执行指令612a-612c在由处理器605执行时可以使计算装置602执行本文所公开的方法400、500中的一个或多个和/或其部分。例如,计算机可执行指令612中的至少一些可执行以设定参考信号中的位值,执行参考信号的译码和/或解码,执行方法400的至少一部分,执行方法500的至少一部分,控制空对地系统的一个或多个组件,和/或执行与其相关联的一个或多个其它应用程序。
51.在这样做时,计算装置602可以接入一个或多个数据或存储器存储装置622a、622b,对应于系统600的数据可以存储在所述数据或存储器存储装置处。一个或多个数据存储装置622可以包括例如一个或多个存储器、一个或多个存储器装置、数据库、云数据存储装置,和/或一个或多个其它合适的数据存储装置。数据或存储器存储装置622a中的至少一个可以包含在计算装置602中,并且计算装置602(或由处理器605执行的指令612a-612c)的处理器605可以经由包括读取或写入命令、函数、应用程序编程接口、插件、操作、指令和/或类似者(在实施例中,其又可以由计算装置602提供)的链路和/或经由总线620接入一个或多个数据存储装置622。
52.在实施例中,计算装置602可以经由一个或多个网络或通信接口625接入远程定位
的数据存储装置622b,所述网络或通信接口分别耦合到与一个或多个远程数据存储装置622b通信地连接的链路628。图6中的链路628被描绘为到一个或多个专用和/或公共网络630的链路,然而,计算装置602和远程定位的数据存储装置622b不需要网络630通信地连接。例如,链路628可以提供计算装置602与数据存储装置622b之间的直接连接。链路628可以包含有线链路和/或一个或多个无线链路,和/或可以利用任何合适的通信技术。网络630可以包含一个或多个专用网络、公共因特网、一个或多个虚拟专用网络,和/或一些其它类型的网络,例如专用接入线、普通电话线、卫星链路、数据网络、这些的组合等。
53.在实施例中,系统600可以包含用户接口632,操作员可以经由所述用户接口设定和/或改变阈值和/或其它参数,例如干扰阈值和/或距离阈值。
54.应注意,虽然在图6中,系统600的计算装置602、数据存储装置622a、622b说明为单独且不同的实体,但是这仅为许多实施例中的一个。例如,任何数目的任何装置602和/或数据存储装置622可以包含在网络630中。另外或替代地,任何数目的任何装置602可以是逻辑、组合或集成装置或装置集合。
55.此外,相对于计算装置602,虽然指令612在图6中示为三个不同块612a、612b、612c,但是应了解,指令610可以包含任何数目的不同程序、模块、例程、和/或子例程,它们可以共同地使计算装置602实施它们相应的功能。再者,应了解,尽管仅示出一个处理器605,但是计算装置602可以包含多个处理器605,例如,一个或多个中央处理单元(cpu)和/或一个或多个数字信号处理器(dsp)。另外,尽管i/o电路618被示为单个块,但是应了解,i/o电路618可以包含多个不同类型的i/o电路。类似地,计算装置602的存储器610、615可以包含多个ram 615和/或多个程序存储器610。此外,虽然指令612被示为存储在程序存储器610中,但是任何或所有指令612可以另外或替代地部分或全部存储在ram 615和/或其它合适的本地存储器(未示出)中。
56.ram 615和/或程序存储器610可以实施为半导体存储器、磁性可读存储器、化学或生物可读存储器,和/或光学可读存储器,和/或可以利用一个或多个任何合适的存储器技术。在一些实施例中,计算装置602还可以经由链路628和i/o电路618可操作地连接到网络630。
57.本文中所描述的技术的实施例提供优于已知技术的显著优势和益处。如先前所论述,3gpp标准规范没有为基站提供一种通知ue上行链路方向上的高干扰水平的机制,因为3gpp标准特别针对无需外部干扰的明确指示和/或可以采用载波侦听多址访问和冲突避免的经许可频谱而构建。然而,在未经许可频谱中,如在任何时候,除了atg用户、基站和通信系统之外的不同类型的用户、基站和通信系统可以利用此类未经许可频谱,此类其它类型的用户、基站和/或系统可以在任何时候是用于atg无线网络的外部干扰源,并且不利的是,3gpp标准没有为基站提供通知ue用于上行链路接入目的的检测到的高ul干扰水平的机制。此外,尽管潜在的外部干扰源可能产生定向性质的干扰(例如,ul和dl),但是ue也无法确认或以其它方式确定ul和dl干扰水平之间的差异。再者,已知技术不能够在每空间方向的基础上发信号通知上行链路接入条件或约束,并且已知技术不能够防止或阻止可以需要不同tdd配置的ue(例如,远程定位的ue)的上行链路接入,并且因此可以显著地减小扇区或小区的容量和/或性能,或甚至可能会降低整个扇区或小区的性能。
58.幸运地,如上文所论述,本文所公开的新颖且非显而易见的技术解决这些和其它
缺点。例如,本文中所描述的技术避免3gpp标准对6ghz以下的未经许可频谱的谱带的改变,因此最小化对ue和基站软件修改的影响。例如,本文中所描述的技术的实施例利用可用,但未在一些频率配置中使用且因此另外为浪费的容量的位。另外,本文中所描述的技术允许在ue尝试接入小区之前通知ue具有空间维度的信道条件的变化。重要的是,本文所描述的新颖技术有助于减轻atg无线网络中的意外外部ul干扰,和/或控制远程定位的ue对小区的ul接入,所述小区特别地被配置成服务于atg网络内的大量近程到中程ue,由此增加此类小区的效率。
59.因此,如上文所述,本文中所描述的新颖技术能够维持飞机与服务基站小区之间的上行链路和下行链路连接的高接入可靠性标准,以及有助于以高效方式管理高容量小区。
60.此外,虽然本文中所描述的系统、方法和技术可以适用于作为飞行中飞机的ue和作为使用未经许可频谱操作的空对地通信网络的无线网络,但是本领域技术人员将认识到,所描述的系统、方法和技术可以容易地应用于作为个人电子装置(例如,膝上型计算机、智能装置、平板计算机等)的ue,以及作为船舶、汽车、公共汽车或其它类型的车辆的ue。另外,本领域技术人员将认识到,本文中所描述的系统、方法和技术可以容易地应用于无线网络,所述无线网络提供基于陆地或地面的无线连接和/或为在海洋、湖泊和其它水体上行驶的车辆和装置提供无线连接。
61.附加考虑因素
62.在整个说明书中,多个实例可以实现被描述为单个实例的部件、操作或结构。尽管一种或多种方法的单独操作示出并被描述为单独的操作,但是单独操作中的一个或多个可以同时地执行,并且不需要按照所示顺序执行操作。在实例配置中呈现为独立部件的结构和功能可以实现为组合结构或部件。类似地,作为单个部件呈现的结构和功能可以作为单独的部件实施。这些和其它变化、修改、添加和改进都落入本文主题的范围内。
63.另外,某些实施例在本文中被描述为包含逻辑或若干例程、子例程、应用程序或指令。这些可以构成软件(例如,体现在非暂时性机器可读介质上的代码)或硬件。在硬件中,例程等是能够执行某些操作的有形单元,并且可以以某种方式配置或布置。在实例实施例中,一个或多个计算机系统(例如,独立的客户端或服务器计算机系统)或者计算机系统的一个或多个硬件模块(例如,处理器或处理器组)可以通过软件(例如,应用或应用部分)被配置成操作以执行如本文所描述的某些操作的硬件模块。
64.在各个实施例中,硬件模块可以机械地或电子地实施。例如,硬件模块可以包括永久性地配置成执行某些操作的专用电路或逻辑(例如,专用处理器,例如,现场可编程门阵列(fpga)或专用集成电路(asic))。硬件模块还可以包括通过软件被临时地配置成执行某些操作的可编程逻辑或电路系统(例如,如专用处理器或其它可编程处理器中所包含的)。应当了解,在专用且永久配置的电路系统中或在临时配置的电路系统中(例如,通过软件进行配置)机械地实施硬件模块的决策可能受成本和时间考虑驱使。
65.因此,术语“硬件模块”应理解为包含有形实体,是被物理构造、永久配置(例如,硬接线)或临时配置(例如,编程)成以某种方式操作或执行本文所描述的某些操作的实体。考虑到硬件模块被临时配置(例如,编程)的实施例,无需在任何一个时刻配置或实例化每个硬件模块。例如,在硬件模块包括使用软件来配置的通用处理器的情况下,通用处理器在不
同时间可以被配置成对应的不同硬件模块。因此,软件可以配置处理器例如以在一个时刻构成特定模块并且在不同时刻构成不同模块。
66.硬件模块可以向其它硬件模块提供信息,或从其它硬件模块接收信息。因此,所述硬件模块可以被认为是通信地耦合的。在同时存在多个此类硬件模块的情况下,可以通过连接硬件模块的信号传输(例如,通过适当的电路系统和总线)来实现通信。在其中在不同时间配置或实例化多个硬件模块的实施例中,可以例如通过在多个硬件模块能够访问的存储器结构中存储和检索信息来实现此类硬件模块之间的通信。例如,一个硬件模块可以执行操作并将这种操作的输出存储在其所通信耦合的存储器装置中。然后,另一个硬件模块可以在以后的时间访问这一存储器装置以检索和处理所存储的输出。硬件模块还可以发起与输入或输出装置的通信,并且可以对资源(例如,信息的集合)进行操作。
67.本文所述的示例方法的各种操作可以至少部分地由被临时配置(例如,通过软件)或永久配置为执行相关操作的一个或多个处理器执行。无论是临时配置还是永久配置,此类处理器都可以构成处理器实现的模块,这些模块运行以执行一个或多个操作或功能。在一些示例性实施例中,本文所指的模块可以包括处理器实现的模块。
68.类似地,本文所述的方法或例程可以至少部分地由处理器实现。例如,一种方法的至少一些操作可以由一个或多个处理器或处理器实现的硬件模块执行。操作中的某些的执行可以分布在不仅驻留在单个机器内还跨多个机器部署的一个或多个处理器之间。在一些实例实施例中,一个或多个处理器可以位于单个位置处(例如,在家庭环境中、在办公室环境中或作为服务器场),但是在其它实施例中,处理器可以跨多个位置分布。
69.操作中的某些的执行可以分布在不仅驻留在单个机器内还跨多个机器部署的一个或多个处理器之间。在一些示例性实施例中,一个或多个处理器或处理器实现的模块可以位于单个地理位置(例如,在家庭环境、办公室环境或服务器场内)。在其它示例实施例中,一个或多个处理器或处理器实现的模块可以分布在多个地理位置。
70.除非另外明确说明,否则本文使用例如“处理”、“计算”、“运算”、“确定”、“呈现”、“显示”等等单词的论述可以指代操纵或变换表示为一个或多个存储器(例如,易失性存储器、非易失性存储器,或其组合)、寄存器,或接收、存储、传输或显示信息的其它机器组件内的物理(例如,电子、磁性或光学)量的数据的机器(例如,计算机)的动作或过程。
71.如本文所使用的,任何对“一个实施例(one embodiment)”或“一个实施例(an embodiment)”的提及意味着结合所述实施例所描述的特定元件、特征、结构或特性被包含在至少一个实施例中。因此短语“在一个实施例中”在本说明书中的各个地方出现未必都是指相同的实施例。
72.可以使用“耦合”和“连接”连同其派生词等表达来描述一些实施例。例如,可以使用术语“耦合”来描述一些实施例,以指示两个或更多个元件直接物理接触或电接触。然而,术语“耦合”还可以意指两个或更多个元件并非彼此直接接触,但仍彼此合作或交互。实施例并不局限于此。
73.本领域的普通技术人员将认识到,在不脱离本发明的范围的情况下,可以关于上述实施例做出各种各样的修改、变更和组合,并且此些修改、变更和组合将被视为处于本发明概念的范围内。
74.虽然已经参考特定实例描述本发明,但所述特定实例仅意图是说明性的而非限制
本发明,对于所属领域的一般技术人员而言将显而易见的是可在不脱离本发明的精神和范围的情况下对所公开的实施例进行改变、添加和/或删除。
75.给出前述描述仅为清楚理解;并且不应由其理解不必要的限制,因为本发明范围内的修改可对于本领域普通技术人员显而易知。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1