选择用于NTN终端之间的直接通信无线电资源的制作方法

文档序号:31932123发布日期:2022-10-26 00:44阅读:76来源:国知局
选择用于NTN终端之间的直接通信无线电资源的制作方法
选择用于ntn终端之间的直接通信无线电资源
技术领域
1.示例实施例涉及用于调度无线电资源的装置、方法和计算机程序,例如用于第一非陆地网络(ntn)终端与第二非陆地网络(ntn)终端(诸如飞行器、船舶或其他形式的ntn用户设备(ue))之间的通信的侧链路无线电资源(sidelink radio resourece)的调度。


背景技术:

2.第五代(5g)新无线电(nr)空中接口可以被增强以支持非陆地网络(ntn),其中旨在通过星载和机载通信平台提供全球连接,诸如通过使用卫星和高空平台站(haps)。该领域仍需进一步发展。


技术实现要素:

3.在第一方面,本说明书描述了一种装置,该装置包括用于执行以下操作的部件:确定用于通过直接无线电链路从非陆地网络的第一通信节点向非陆地网络的第二通信节点传输数据的候选无线电资源集合;至少部分基于与非陆地网络中的至少一个被调度的无线电传输相关联的传播延迟、和/或与由第一通信节点进行的无线电传输相关联的传播延迟,将候选无线电资源中的一个或多个候选无线电资源标识为与至少一个被调度的无线电传输(例如,其可以是侧链路传输、上行链路传输或下行链路传输)冲突的冲突无线电资源;通过从候选无线电资源集合中排除所标识的一个或多个冲突无线电资源,生成候选无线电资源子集;以及从候选无线电资源子集中,选择用于通过直接无线电链路传输数据的无线电资源。该装置可以是物理侧链路共享信道(pssch)调度器,该pssch调度器可以例如设置在卫星或陆地上的基站处。第一通信节点和第二通信节点可以是非陆地网络终端(ue)。它们可以位于飞行器、船舶、高海拔平台等上(或形成其一部分)。
4.直接无线电链路可以是侧链路,诸如新无线电(nr)侧链路。
5.在一些示例实施例中,用于执行标识一个或多个冲突无线电资源的部件还包括用于执行以下操作的部件:使用被调度的无线电传输的传输时间间隔、和非陆地网络的第三通信节点与第一通信节点之间的传播延迟(例如,估计传播延迟),确定第一通信节点处用于接收由第三通信节点进行的被调度的无线电传输的估计接收时间间隔;以及标识与第一通信节点处的估计接收时间间隔在时间上交叠的一个或多个候选无线电资源。以这种方式,可以避免半双工冲突。
6.在一些示例实施例中,用于执行标识一个或多个冲突无线电资源的部件还包括用于执行以下操作的部件:基于候选无线电资源的相应传输时间间隔、和第一通信节点与第二通信节点之间的传播延迟,确定第二通信节点处用于候选无线电资源集合中的至少一些候选无线电资源的估计接收时间间隔;以及标识第二通信节点处的估计接收时间间隔与由第二通信节点进行的被调度的无线电传输在时间上交叠的一个或多个候选无线电资源。以这种方式,可以进一步避免半双工冲突。
7.一些示例实施例还包括用于执行以下操作的部件:确定一个或多个第一时间间
隔,在一个或多个第一时间间隔期间,最大数目的同时传输链路(例如,侧链路)被调度以由第一通信节点操作的,并且其中用于执行标识一个或多个冲突无线电资源的部件被配置为:标识与第一时间间隔中的任何第一时间间隔在时间上交叠的一个或多个候选无线电资源。
8.一些示例实施例还包括用于执行以下操作的部件:确定一个或多个第二时间间隔,在一个或多个第二时间间隔期间,最大数目的同时接收链路(例如,侧链路)被调度以由第二通信节点操作的,并且其中用于执行标识一个或多个冲突无线电资源的部件被配置为:使用与候选无线电资源相关联的相应传输时间间隔、和第一通信节点与第二通信节点之间的传播延迟,确定第二通信节点处的估计接收时间间隔,并且标识相应接收时间间隔与第二时间间隔中的任何第二时间间隔在时间上交叠的一个或多个候选无线电资源。
9.一些示例实施例还包括用于执行以下操作的部件:针对候选无线电资源中的一些或所有候选无线电资源,确定有可能在第二通信节点处引起干扰的干扰链路的第一集合;以及至少部分基于第一通信节点与第二通信节点之间的第一传播延迟和干扰链路的第一集合中的至少一个干扰链路的传输节点与第二通信节点之间的第二传播延迟之间的差异,确定用于通过直接无线电链路进行的通信的第一预测sinr。第一预测sinr可以基于以下中的一项或多项的方向相关天线增益来确定:第一通信节点、第二通信节点、至少一个干扰链路的传输节点。用于执行从候选无线电资源子集中选择用于通过直接无线电链路传输数据的无线电资源的部件可以被配置为:选择使第一预测sinr最大化的候选无线电资源。
10.一些示例实施例还包括用于执行以下操作的部件:针对候选无线电资源中的一些或所有候选无线电资源,确定由于从第一通信节点到第二通信节点的无线电传输而可能经历干扰的受干扰链路的第二集合;以及至少部分基于第一通信节点与受干扰链路的第二集合中的至少一个受干扰链路的接收节点之间的第三传播延迟和至少一个受干扰链路的传输节点与接收节点之间的第四传播延迟之间的差异,确定用于通过至少一个受干扰链路进行的通信的第二预测sinr。第二预测sinr可以基于至少一个受干扰链路的传输节点和/或接收节点和/或第一通信节点的方向相关天线增益来确定。用于执行从候选无线电资源子集中选择用于通过直接无线电链路传输数据的无线电资源的部件可以被配置为选择使受干扰链路的第二集合中的多个受干扰链路中的最低第二预测sinr最大化的候选无线电资源。
11.在一些示例实施例中,用于从候选无线电资源子集中选择用于通过直接无线电链路传输数据的无线电资源的部件可以被配置为:选择使第一预测sinr和最低第二预测sinr中的最小值最大化的候选无线电资源。
12.上述部件可以包括:至少一个处理器;以及包括计算机程序代码的至少一个存储器,至少一个存储器和计算机程序代码被配置为与至少一个处理器一起引起该装置的执行。
13.在第二方面,本说明书描述了一种方法,该方法包括:确定用于通过直接无线电链路(诸如侧链路)从非陆地网络的第一通信节点向非陆地网络的第二通信节点传输数据的候选无线电资源集合;至少部分基于与非陆地网络中的至少一个被调度的无线电传输相关联的传播延迟、和/或与由第一通信节点进行的无线电传输相关联的传播延迟,将候选无线电资源中的一个或多个候选无线电资源标识为与至少一个被调度的无线电传输冲突的冲
突无线电资源;通过从候选无线电资源集合中排除所标识的一个或多个冲突无线电资源,生成候选无线电资源子集;以及从候选无线电资源子集中,选择用于通过直接无线电链路传输数据的无线电资源。该方法可以由物理侧链路共享信道(pssch)调度器来实现。第一通信节点和第二通信节点可以是非陆地网络终端(ue),诸如安装在飞行器、船舶等上的无线电模块。
14.标识一个或多个冲突无线电资源还可以包括:使用被调度的无线电传输的传输时间间隔、和非陆地网络的第三通信节点与第一通信节点之间的传播延迟(例如,估计传播延迟),确定第一通信节点处的、用于接收由第三通信节点进行的被调度的无线电传输的估计接收时间间隔;以及标识与第一通信节点处的估计接收时间间隔在时间上交叠的一个或多个候选无线电资源。以这种方式,可以避免半双工冲突。
15.标识一个或多个冲突无线电资源还可以包括:基于候选无线电资源的相应传输时间间隔、和第一通信节点与第二通信节点之间的传播延迟,确定第二通信节点处的、用于候选无线电资源集合中的至少一些候选无线电资源的估计接收时间间隔;以及标识第二通信节点处的估计接收时间间隔与由第二通信节点进行的被调度的无线电传输在时间上交叠的一个或多个候选无线电资源。以这种方式,可以进一步避免半双工冲突。
16.该方法还可以包括:确定一个或多个第一时间间隔,在一个或多个第一时间间隔期间,最大数目的同时传输链路(例如,侧链路)被调度以由第一通信节点操作的一个或多个第一时间间隔,并且其中用于执行标识一个或多个冲突无线电资源的部件被配置为:标识与第一时间间隔中的任何第一时间间隔在时间上交叠的一个或多个候选无线电资源。
17.该方法还可以包括:确定一个或多个第二时间间隔,在一个或多个第二时间间隔期间,最大数目的同时接收链路(例如,侧链路)被调度以由第二通信节点操作的,并且其中标识一个或多个冲突无线电资源可以被配置为:使用与候选无线电资源相关联的相应传输时间间隔、和第一通信节点与第二通信节点之间的传播延迟,确定第二通信节点处的估计接收时间间隔,并且标识相应接收时间间隔与第二时间间隔中的任何第二时间间隔在时间上交叠的一个或多个候选无线电资源。
18.该方法还可以包括:针对候选无线电资源中的一些或所有候选无线电资源,确定有可能在第二通信节点处引起干扰的干扰链路的第一集合;以及至少部分基于第一通信节点与第二通信节点之间的第一传播延迟与干扰链路的第一集合中的至少一个干扰链路的传输节点与第二通信节点之间的第二传播延迟之间的差异,确定用于通过直接无线电链路进行的通信的第一预测sinr。第一预测sinr可以基于以下中的一项或多项的方向相关天线增益来确定:第一通信节点、第二通信节点、至少一个干扰链路的传输节点。无线电资源可以被选择以使第一预测sinr最大化。
19.该方法还可以包括:针对候选无线电资源中的一些或所有候选无线电资源,确定由于从第一通信节点到第二通信节点的无线电传输而可能经历干扰的受干扰链路的第二集合;以及至少部分基于第一通信节点与受干扰链路的第二集合中的至少一个受干扰链路的接收节点之间的第三传播延迟和至少一个受干扰链路的传输节点与接收节点之间的第四传播延迟之间的差异,确定用于通过至少一个受干扰链路进行的通信的第二预测sinr。第二预测sinr可以基于至少一个受干扰链路的传输节点和/或接收节点和/或第一通信节点的方向相关天线增益来确定。无线电资源可以选自用于通过直接无线电链路传输数据的
候选无线电资源子集,以使受干扰链路的第二集合中的多个受干扰链路中的最低第二预测sinr最大化。
20.该方法还可以包括:从候选无线电资源子集中选择用于通过直接无线电链路传输数据的无线电资源,以使第一预测sinr和最低第二预测sinr中的最小值最大化。
21.在第三方面,本说明书描述了一种计算机可读指令,该指令在由计算装置执行时引起计算装置执行(至少)参考第二方面描述的任何方法。
22.在第四方面,本说明书描述了一种计算机可读介质(诸如非暂态计算机可读介质),该介质包括存储在其上的程序指令,该程序指令用于执行(至少)参考第二方面描述的任何方法。
23.在第五方面,本说明书描述了一种装置,该装置包括:至少一个处理器;以及包括计算机程序代码的至少一个存储器,该计算机程序代码在由至少一个处理器执行时引起该装置执行(至少)参考第二方面描述的任何方法。
24.在第六方面,本说明书描述了一种计算机程序,该计算机程序包括用于引起装置至少执行以下操作的指令:确定用于通过直接无线电链路从非陆地网络的第一通信节点向非陆地网络的第二通信节点传输数据的候选无线电资源集合;至少部分基于与非陆地网络中的至少一个被调度的无线电传输相关联的传播延迟、和/或与由第一通信节点进行的无线电传输相关联的传播延迟,将候选无线电资源中的一个或多个候选无线电资源标识为与至少一个被调度的无线电传输冲突的冲突无线电资源;通过从候选无线电资源集合中排除所标识的一个或多个冲突无线电资源,生成候选无线电资源子集;以及从候选无线电资源子集中,选择用于通过直接无线电链路传输数据的无线电资源。
25.在第七方面,本说明书描述一种pssch调度器(或某种其他部件),该pssch调度器(或某种其他部件)用于确定用于通过直接无线电链路从非陆地网络的第一通信节点(例如,ntn终端)向非陆地网络的第二通信节点(例如,ntn终端)传输数据的候选无线电资源集合;pssch调度器(或某种其他部件)的冲突检测模块,用于至少部分基于与非陆地网络中的至少一个被调度的无线电传输相关联的传播延迟、和/或与由第一通信节点进行的无线电传输相关联的传播延迟,将候选无线电资源中的一个或多个候选无线电资源标识为与至少一个被调度的无线电传输(例如,其可以是侧链路传输、上行链路传输或下行链路传输)冲突的冲突无线电资源;pssch调度器(或某种其他部件)的控制模块,用于通过从候选无线电资源集合中排除所标识的一个或多个冲突无线电资源,生成候选无线电资源子集;以及pssch调度器(或某种其他部件)的选择模块,用于从候选无线电资源子集中,选择用于通过直接无线电链路传输数据的无线电资源。
附图说明
26.现在将参考附图以非限制性示例的方式描述示例实施例,在附图中:
27.图1至图4是根据示例实施例的系统的框图;
28.图5是示出根据示例实施例的算法的流程图;
29.图6是根据示例实施例的系统的框图;
30.图7是根据示例实施例的时序图;
31.图8是根据示例实施例的系统的框图;
32.图9至图11是示出根据示例实施例的算法的流程图;
33.图12和图13是根据示例实施例的系统的框图;
34.图14是示出根据示例实施例的算法的流程图;
35.图15至图18是根据示例实施例的系统的框图;
36.图19和图20是示出根据示例实施例的算法的流程图;
37.图21是根据示例实施例的系统的组件的框图;以及
38.图22a和图22b示出了有形介质,该有形介质分别是可移动非易失性存储器单元和光盘(cd),该有形介质存储计算机可读代码,该计算机可读代码在由计算机运行时执行根据示例实施例的操作。
具体实施方式
39.本发明的各种实施例所寻求的保护范围由独立权利要求规定。说明书中描述的不属于独立权利要求的范围的实施例和特征(如果有的话)应当被解释为对理解本发明的各种实施例有用的示例。
40.在描述和附图中,相似的附图标记自始至终指代相似的元素。
41.示例实施例涉及用于调度无线电资源的装置、方法和计算机程序,例如用于第一非陆地网络(ntn)终端与第二非陆地网络(ntn)终端(诸如飞行器、船舶或其他形式的ntn用户设备(ue))之间的通信的侧链路无线电资源的调度。
42.ntn可以通过星载和机载通信平台实现全球连接,诸如通过使用卫星和高空平台站(haps)。用于ue之间的直接通信的nr侧链路的3gpp rel-16中的标准化可以提供一种在允许经由ntn ue(诸如飞行器、船舶等)之间的侧链路进行直接通信方面提高ntn性能的方法。例如,参考图1至图3,现在将解释可以有助于理解示例实施例的一些场景。
43.图1是根据示例实施例的系统的框图,该系统总体上由附图标记10指示。系统10包括第一飞行器a、第二飞行器b和卫星12。来自任一飞行器处的用户设备的通信可以经由可以充当基站的卫星12而被路由。
44.在系统10中,在卫星与第二飞行器b之间的卫星链路故障或卫星链路质量劣化的情况下,通过经由与第一飞行器a相关联的中间相邻用户设备将数据从卫星12重新路由到ue,可以在与飞行器b相关联的用户设备处保持服务质量。
45.图2是根据示例实施例的系统的框图,该系统总体上由附图标记20指示。系统20包括上述系统10的第一飞行器a、第二飞行器b和卫星12。
46.在系统20中,在第二飞行器b上的瞬时业务需求高峰(这不能通过相应卫星链路的最大容量来满足)的情况下,可以经由一个或多个相邻ue(例如,与第一飞行器a相关联的ue)来聚合附加数据流,以增加峰值吞吐量。
47.图3是根据示例实施例的系统的框图,该系统总体上由附图标记30指示。系统30包括上述系统10和20的第一飞行器a、第二飞行器b和卫星12,并且还包括第三飞行器c。
48.在系统30中,第二飞行器b与过载的卫星波束相关联,例如,因为第三飞行器c的用户设备占用了几乎所有的波束容量。通过经由可以由未充分利用的卫星波束所服务的第一飞行器a来重新路由部分或全部业务,可能仍然能够满足第二飞行器b的业务需求。
49.因此,通过允许ntn终端(ue)(例如,飞行器、船舶等)之间的直接无线电通信,可以
通过增强可靠性、增加吞吐量和/或负载平衡来改进ntn性能。
50.图4是根据示例实施例的系统的框图,该系统总体上由附图标记40指示。系统40包括位于不同区域内的多个用户设备(例如,卫星点波束)。如图4所示,多个用户设备的中央区域42包括大量设备,并且可能变得过载。例如,系统40可以示出飞行器在繁忙机场上方的堆叠结构中的位置,其中大部分飞行器位于中央区域42内。
51.系统40示出了如何通过将业务从中央区域42内的ue重新路由到由相邻的未充分利用的点波束所服务的ue来使用侧链路来卸载拥塞的点波束,从而改进ntn系统性能。例如,中央区域42内的三个设备均被示出为使用侧链路,以经由多个区域中的第二区域44内的节点进行通信。
52.ntn场景中(诸如系统10、20、30和40中)的ue之间的距离可以比例如车辆到一切(v2x)场景中的距离(其中该距离通常最多为数百米)大。例如,不同飞行器的ue之间的距离可以在数十公里或数百公里的量级。可以使用具有更高传输功率的特定天线在这样的ue之间建立侧链路,但这样的距离可能导致一毫秒量级的传播延迟。考虑到nr侧链路传输可能使用持续时间在125μs到1ms之间的时隙发生在所谓的物理侧链路共享信道(pssch)中,一毫秒量级的侧链路传播延迟可以对应于若干时隙持续时间。
53.解决传播延迟问题的一种可能方法是使用所谓的“时隙聚合”,其中用户有效地将其传输分布在多个连续时隙上(例如,通过盲重复)。时隙聚合可以增加无线电接入延迟,因为每个用户在延长的时间段内占用信道。此外,可能需要较长的保护间隔(gi)(大约1ms)来处理较长的侧链路传播延迟,从而导致频谱效率损失。对于较大的子载波间隔(scs)(例如,在mmwave频谱中),可能有必要聚合很多时隙以使分配给gi的时间比例最小化。例如,假定在4ms的聚合的传输时间(导致20%的频谱效率损失)之后存在1ms的gi,对于120khz的scs(即,每个时隙的持续时间为125μs),则需要聚合32个时隙。
54.如以下详细讨论的,本文中描述的示例实施例不使用诸如时隙聚合等解决方案,而是考虑传播延迟并且使用该知识来标识和避免用于调度无线电资源的调度冲突。可以由可以设置在gnb处的调度器(例如,pssch调度器)来执行这样的无线电资源调度。gnb可以处于卫星运营商的控制之下。
55.图5是示出根据示例实施例的算法的流程图,该算法总体上由附图标记50指示。算法50可以例如由物理侧链路共享信道(pssch)调度器来实现。
56.算法50开始于操作52,其中在该操作中,确定用于通过直接无线电链路(例如,nr侧链路)从非陆地网络(ntn)的第一通信节点向非陆地网络的第二通信节点传输数据的候选无线电资源集合。第一通信节点和第二通信节点可以是ntn终端(ue)。这些终端可以位于飞行器、船舶、高海拔平台等处(或形成其一部分)。例如,操作52可以如上所述确定用于在第一飞行器a和第二飞行器b上的ue之间传输数据的候选无线电资源集合。
57.候选无线电资源可以由时域资源(例如,一个或多个时隙)和/或频域资源(例如,一个或多个子信道)来定义。gnb可以(例如,基于所接收的缓冲器状态报告)确定频域中的资源大小(例如,连续子信道的长度)。例如,高缓冲水平可能导致gnb考虑较大资源,而低缓冲水平可能导致gnb考虑较小资源。
58.图6是根据示例实施例的系统的框图,该系统总体上由附图标记60指示。系统60包括以下各项的示意性指示:用于从第一设备i到第二设备j的传输的第一通信链路(i,j)62、
用于从第三设备k到第一设备i的传输的第二通信链路(k,i)63、以及用于从第二设备j到第四设备l的传输的第三通信链路(j,l)64。其他传输也是可能的(例如,与上述传输相对的方向上的传输)。系统60中所示的设备是飞行器,但本文中描述的原理适用于其他示例实施例。
59.在从源ue(诸如第一设备i)接收到与源ue和目的地ue(诸如第二设备j)之间的侧链路逻辑信道相关的调度请求(sr)或缓冲器状态报告(bsr)时,相关gnb首先确定用于pssch传输的候选资源集合(参见算法50的操作52)。这样的集合可以受到针对源ue而配置的侧链路资源池的约束,即,只有在配置的侧链路资源池内的无线电资源可以被认为是潜在候选。候选资源集合还可能受到时间间隔(即,资源选择窗口)的约束,该约束是由为了满足预定义分组延迟预算的要求所施加的,即,只有在该时间间隔内的无线电资源可以被认为是潜在候选。候选资源集合也可能受所确定的资源大小的约束。
60.在算法50的操作54,标识冲突(例如,通过pssch调度器的冲突检测模块来标识冲突)。例如,可以至少部分基于与至少一个被调度的无线电传输相关联的传播延迟和/或与由第一设备i进行的无线电传输相关联的传播延迟来确定与非陆地网络中的至少一个被调度的无线电传输冲突的、用于从第一设备i到第二设备j的传输的一个或多个候选无线电资源(如在操作52中生成的)。冲突可以基于观察到设备(由于自干扰)不能在同一载波上同时传输和接收pssch来确定,这可以称为半双工(hd)冲突。
61.在操作56,通过从在操作52中确定的候选无线电资源集合中排除在操作54中标识的一个或多个冲突的无线电资源,(例如,通过pssch调度器的控制模块)生成候选无线电资源子集。
62.最后,在操作58中,从候选无线电资源子集中选择用于传输数据(例如,通过直接无线电链路(i,j))的无线电资源。操作58可以由pssch调度器的选择模块来实现。
63.如下面详细讨论的,操作58可以从候选无线电资源子集中选择无线电资源(例如,由于源ue(诸如第一设备i)或目的地ue(诸如第二设备j)不可用而被排除的无线电资源)。具体地,相关pssch调度器可以基于预期的(即,预测的,而不是测量的)信干噪比(sinr)来选择用于链路(i,j)上的pssch传输的无线电资源(t*,f*)。
64.图7是根据示例实施例的总体上由附图标记70指示的时序图。
65.时序图70示出了以下各项的相对时序:
66.·
在第一设备i处从第三设备k接收的信号(通过第二通信链路
67.63);
68.·
由第一设备i向第二设备j传输的信号(通过第一通信链路62);
69.·
在第二设备j处从第一设备i接收的信号(通过第一通信链路
70.62);以及
71.·
由第二设备j向第四设备l传输的信号(通过第三通信链路64)。
72.如时序图70所示,如果第一设备i尝试在接收由第三设备k传输的信号的同时进行传输,则在第一设备i处发生半双工冲突。类似地,如果第二设备j尝试在接收由第一设备i传输的信号的同时进行传输,则在第二设备j处发生半双工冲突。
73.链路(i,j)的侧链路(sl)传播延迟(下文中由τ
ij
表示)影响源ue(i)处的哪个传输时隙与目的地ue(j)处的哪个(哪些)时隙发生干扰。假定ue不能在一个载波上同时传输和
接收pssch,则pssch调度器在分配无线电资源时需要考虑sl传播延迟,以避免半双工(hd)冲突。
74.更具体地,如时序图70所示,在源ue(i)预期从另一ue(k)接收pssch期间的时隙(t)可以从候选资源集合中被排除,因为在该时隙中调度链路(i,j)会导致源ue(i)处的自干扰并且阻止所接收的pssch的成功解码。例如,如果链路(k,i)已经在时隙t

中被调度并且对应的接收时间间隔(t


ki
)与时隙t交叠,则源ue(i)预期在时隙t期间接收pssch。结果,源ue(i)可能不会被调度以在时隙t中向目的地ue(j)传输。pssch调度器在确定源ue处是否存在hd冲突时会考虑相应sl传播延迟(τ
ki
)。
75.类似地,目的地ue(j)的接收时间间隔(t+τ
ij
)与由目的地ue(j)进行的到另一ue(l)的所调度的pssch传输在其中交叠的时隙(t)可以从候选资源集合中被排除,因为在该时隙中调度链路(i,j)会导致目的地ue(j)处的自干扰。例如,如果链路(j,l)已经在与链路(i,j)的接收时间间隔(t+τ
ij
)交叠的时隙t

中被调度,则目的地ue(j)预期在它将从源ue(i)进行接收的时间期间进行传输。结果,源ue(i)可能不会被调度以在时隙t中向目的地ue(j)传输。pssch调度器在确定目的地ue处是否存在hd冲突时会考虑相应的sl传播延迟(τ
ij
)。
76.sl传播延迟(τ
ij
)可以由gnb基于ue的位置(例如,地理坐标)来确定。更具体地,gnb可以根据其相应位置确定一对ue(i,j)之间的距离r
ij
,并且然后通过将该距离(r
ij
)除以光速(c)来确定sl传播延迟(τ
ij
)),即,τ
ij
=r
ij
/c。
77.gnb还可以配置ue以报告sl传播延迟(例如,在ue位置信息不可用或不完整的情况下)。这样的测量报告可以由ue在上行链路中使用rrc消息或mac控制元素(ce)来传达。通过使用可能值的预定义表中的索引,可以将特定sl传播延迟值报告给gnb。
78.图8是根据示例实施例的系统的框图,该系统总体上由附图标记80指示。系统80包括第一用户设备(ue1)81、第二用户设备(ue2)82和第三用户设备(ue3)83。每个用户设备可以能够与其他用户设备中的一个或两个通信,例如使用nr侧链路,如上所述。
79.为了调度从第一用户设备81到第二用户设备82的传输,pssch调度器可以确定何时调度第一用户设备81以向任何其他设备传输数据或从任何其他设备接收数据。类似地,对于所有候选传输时间,pssch调度器可以确定第二用户设备82是否被调度,以在来自第一用户设备的候选传输将到达第二用户设备的时间,向任何其他设备传输数据或从任何其他设备接收数据。因此,需要了解相关传播延迟。
80.图9是示出根据示例实施例的算法的流程图,该算法总体上由附图标记90指示。算法90可以使用系统80或某种类似系统来实现。
81.算法90开始于操作92,其中在该操作中,确定第一通信节点(诸如第一用户设备81)处的、用于由非陆地网络的第三通信节点(诸如第三用户设备83)进行的被调度的无线电传输的估计接收时间间隔。所确定的接收时间间隔是基于被调度的无线电传输的传输时间间隔和第三通信节点与第一通信节点之间的传播延迟(例如,估计传播延迟)的。
82.在操作94,标识与在操作92中确定的接收时间间隔在时间上交叠的一个或多个候选无线电资源。这些候选无线电资源被标识为与第三通信节点的被调度的无线电传输冲突并且从而提供算法50的操作54的示例实现。
83.图10是示出根据示例实施例的算法的流程图,该算法总体上由附图标记100指示。
算法100可以使用系统80或某种类似系统来实现。
84.算法100开始于操作102,其中在该操作中,基于如下项确定第二通信节点(诸如第二用户设备82)处的、用于候选无线电资源集合中的至少一些候选无线电资源(其可以由第一用户设备81传输)的估计接收时间间隔:上述候选无线电资源的相应传输时间间隔、和第一通信节点(例如,第一使用的设备81)与第二通信节点(例如,第二用户设备82)之间的传播延迟(例如,估计传播延迟)。
85.在操作104,标识一个或多个候选无线电资源,其中在一个或多个候选无线电资源中,第二通信节点处的估计接收时间间隔与由第二通信节点进行的被调度的无线电传输在时间上交叠。这些候选无线电资源被标识为与第二通信节点的被调度的无线电传输冲突,并且从而提供算法50的操作54的示例实现。
86.当然,算法50的操作54的示例实现可以使用上述算法80和算法90两者。以这种方式,可以基于对适当传播延迟的了解来标识(和防止)半双工冲突。
87.除了或代替标识半双工冲突,在操作54的示例实现中,可以标识其他形式的冲突,如下面进一步讨论的。
88.在候选无线电资源子集的生成中(例如,在上述操作56中),基于在同时活动的sl传输或接收波束的最大数目方面的ue能力,可以从候选资源集合中排除时隙。例如,如果源ue(i)一次最多可以形成两个sl传输波束,并且两个传出链路(i,k1)和(i,k2)已经在时隙t中被调度,则可能无法在同一时隙t中调度第三链路(i,j)。类似地,如果目的地ue(j)一次最多可以形成两个sl接收波束,并且两个传入链路(l1,j)和(l2,j)已经被调度,使得目的地ue(j)预期要在时间间隔(t+τ
ij
)期间在两条链路上同时接收,则可能无法在时隙t中调度第三链路(i,j)。在这种情况下,pssch调度器在确定预期在接收时间间隔内同时活动的sl接收波束的数目时会考虑相应sl传播延迟。
89.gnb可以配置ue以在同时活动的传输或接收sl波束的最大数目方面报告ue能力,以帮助pssch调度器确定ue在特定时隙中的传输(或接收)可用性。这样的报告可以由ue在上行链路中使用rrc消息或mac控制元素(ce)来传达。
90.图11是示出根据示例实施例的算法的流程图,该算法总体上由附图标记110指示。
91.算法110开始于操作112,其中在该操作中,标识一个或多个第一时间间隔,其中最大数目的同时传输链路(例如,侧链路)在一个或多个第一时间间隔期间被调度以由第一通信节点操作;和/或标识一个或多个第二时间间隔,其中最大数目的同时接收链路在一个或多个第二时间间隔期间被调度以由第二通信节点操作。
92.在操作114,将如下的一个或多个候选无线电资源标识为冲突无线电资源:与上述第一时间间隔中的任何第一时间间隔在时间上交叠的一个或多个候选无线电资源,和/或在第二通信节点处的相应接收时间间隔与上述第二时间间隔中的任何第二时间间隔在时间上交叠的一个或多个候选无线电资源。
93.因此,算法110是算法50的操作54的示例实现。
94.如上所述,在多个物理侧链路共享信道(pssch)传输的调度中可能会出现冲突。当调度物理侧链路共享信道(pssch)传输和物理上行链路共享信道(pusch)传输时,可能会出现相关问题。
95.图12是根据示例实施例的系统的框图,该系统总体上由附图标记120指示。系统
120包括多个飞行器(包括第一飞行器122和第二飞行器123)和卫星124。如系统120中所示,第一飞行器122能够使用侧链路(sl)与它的每个邻居通信,并且还能够使用ntn天线与卫星124通信。第一飞行器122的ntn天线安装在飞行器机身之上,以用于将pusch信号传输到卫星124,该信号可能是高度定向的(以增加snr)。类似地,与相邻飞行器的侧链路通信可能至少在仰角上是定向的(即,几乎没有能量辐射到太空)。
96.如系统120中所示,来自第二飞行器123的侧链路(pssch)传输可能与来自第二飞行器123的上行链路(pusch)传输冲突(例如,由于交叠的传输波束)。因此,在某些情况下,可能需要在正交无线电资源中调度pssch和pusch。因此,本文中描述的pssch调度器利用ue的三维(3d)sl波束辐射图(方位角和仰角)来确定ue之间的pssch干扰潜力以及pssch/pusch干扰潜力。使用3d辐射模式的另一动机是不同ue(飞行器、船舶等)可能位于不同高度。
97.如上所述,从在算法50的操作56中生成的候选时隙子集(即,基于半双工约束和/或对同时波束的最大数目的约束,由于源ue(i)或目的地ue(j)不可用而未被排除的时隙)中,pssch调度器在操作58中选择用于链路(i,j)上的pssch传输的无线电资源(t*,f*)。操作图58可以基于预期的(即,预测的,而不是测量的)信干噪比(sinr)。
98.很多机制是可能的,通过这些机制可以在操作58中选择用于传输的无线电资源。下面讨论一些示例算法。
99.图13是根据示例实施例的系统的框图,该系统总体上由附图标记130指示。
100.系统130包括用于从第一设备i到第二设备j的传输的第一通信链路(i,j)132和用于从第三设备k到第四设备l的传输的第二通信链路(k,l)134的示意性指示。如图13所示,从第三设备k到第四设备l的传输可以在第二设备j处被检测到。因此,链路(k,l)可能干扰链路(i,j),使得链路(k,l)可以被称为潜在干扰链路。
101.图14是示出根据示例实施例的算法的流程图,该算法总体上由附图标记140指示。
102.在操作142,pssch调度器可以为多个候选无线电资源(例如,在上述操作52中生成的候选无线电资源)中的一些或所有候选无线电资源确定有可能在第二通信节点(j)处引起干扰的干扰链路的第一集合。如上所述,在系统130中,对于链路(i,j),链路(k,l)是潜在干扰链路。
103.在操作144,至少部分基于链路(i,j)的第一通信节点(i)与第二通信节点(j)之间的第一传播延迟(τ
ij
)与干扰链路的第一集合中的至少一个干扰链路(k,l)的传输节点(k)与第二通信节点(j)之间的第二传播延迟(τ
kj
)之间的差异,确定用于通过直接无线电链路(例如,侧链路)进行的通信的第一预测sinr。第一预测sinr可以基于第一通信节点(i)、第二通信节点(j)和/或至少一个干扰链路的传输节点(k)的方向相关天线增益来确定。
104.如下文进一步讨论的,在操作58的示例实现中,该第一预测sinr(如在操作144中生成的)可以在无线电资源的选择期间使用(例如,可能希望使该sinr最大化)。
105.下面提供算法140的示例实现的其他细节。
106.对于每个候选无线电资源(t,f),pssch调度器可以确定潜在干扰链路(k,l)的第一集合该干扰链路的在无线电资源(t',f')中被调度的传输在无线电资源(t,f)中被调度的情况下可能会对链路(i,j)造成有害干扰,如系统130所示。为了确定是否
存在这样的潜在干扰,pssch调度器可以使用所确定的(或所报告的)sl传播延迟。更具体地,集合可以定义如下:
107.即,潜在干扰链路被定义为在与候选无线电资源(t,f)交叠、并且在时间上偏移δτ=τ
ij-kj的、在无线电资源(t',f')中被调度的链路(k,l)。注意,在特定情况τ
ij
≈τ
kj
下,时间偏移δτ基本上为零,并且这种情况类似于陆地网络,其中sl传播延迟在很大程度上可以忽略不计。
108.基于所确定的集合pssch调度器可以计算在无线电资源(t,f)中被调度的情况下,链路(i,j)的预期sinr,如下所示:
[0109][0110][0111]
其中
[0112]
γ
ij
(t,f)是在无线电资源(t,f)中被调度的情况下链路(i,j)的预期sinr
[0113]
·
p
ij
是由ue i在向ue j传输时使用的传输功率
[0114]
·gij
是ue i在向ue j传输(或从ue j接收)时的方向相关天线增益
[0115]
·
是在ue i的水平坐标系中指向ue j的方向(仰角,方位角)
[0116]
·rij
是ue i与ue j之间的视线距离
[0117]
·
n是接收器噪声功率
[0118]
任何一对ue(i,j)的视线距离r
ij
和方向可以由gnb基于ue的位置(例如,地理坐标)使用众所周知的几何公式来确定。
[0119]
用于pssch的传输功率p
ij
可以设置为所有链路的已知常数(例如,等于最大ue传输功率p
max
),或者可以由网络控制(并且因此为gnb所知)。在前一种情况下,并且忽略接收器噪声功率n,上述预期sinr可以由预期信噪比(sir)代替
[0120][0121]
在各向同性(全向)pssch传输/接收的假定情况下,sir可以进一步简化为:
[0122][0123]
这仅取决于ue之间的视线距离和集合
[0124]
在包括定向(例如,波束成形的)pssch传输和/或接收的示例实施例中,gnb可以从相应ue接收关于方向相关天线增益的信息。该信息可以由ue在上行链路中使用rrc消息或mac控制元素(ce)来报告。
[0125]
为了使信令开销最小化,方向相关天线增益可以由一个或多个sl波束特性紧凑地描述。
[0126]
图15是根据示例实施例的系统的框图,该系统总体上由附图标记150指示,其中sl波束特性包括与辐射图的主瓣相对应的第一sl波束增益g
1,i
和与辐射图的旁瓣相对应的第二sl波束增益g
0,i

[0127]
sl波束特性还可以包括sl波束宽度,诸如仰角波束宽度δθi(例如,半功率仰角波束宽度)和/或方位角波束宽度(例如,半功率方位角波束宽度)。
[0128]
图16是根据示例实施例的系统的框图,该系统总体上由附图标记160指示,其中示出了仰角波束宽度δθi。类似地,图17是根据示例实施例的系统的框图,该系统总体上由附图标记170指示,其中示出了方位角波束宽度
[0129]
特定天线增益或波束宽度值可以通过使用可能值的预定义表中的索引来报告给gnb。例如,gnb可以通过下式使用该信息来近似方向相关天线增益:
[0130][0131]
其中π(
·
)表示矩形函数。这样的近似可以被认为是保守的,因为它假定在远离主瓣的方向上的天线增益(以及因此干扰)比在这些方向上的实际天线增益更高。因此,pssch调度器可以使用这样的近似来“保证安全”。注意,在特定情况下,这会简化为(即,主瓣增益),并且因此
[0132]
[0133]
对分母(即,干扰)的主要贡献来自集合中的如下链路(k,l)
[0134][0135]
即,ue j落在ue k的传输波束(主瓣)内,而ue k落在ue j的接收波束(主瓣)内。例如,如果|θ
kj-θ
kl
|<δθk/2并且则gnb可以确定ue j落入ue k的传输波束内。类似地,如果|θ
jk-θ
ji
|<δθj/2并且则gnb可以确定ue k落入ue j的接收波束内。
[0136]
根据上述条件,用表示这样的主要干扰贡献者的集合,pssch调度器可以使用以下近似
[0137][0138]
在g
1,i
不依赖于i(即,对所有ue而言都是相似的)的特定情况下,这个近似简化为
[0139][0140]
其仅取决于ue之间的视线距离和上面定义的主要干扰贡献者集合
[0141]
可以由pssch调度器使用上述公式(包括近似)中的任何一个来确定链路的预期sinr或sir。自然,对sl波束特性的更精确了解可以产生对链路所经历的实际sinr或sir的更好估计。
[0142]
在上述公式中的任何一个中,如果潜在干扰ue k在距ue j的最大sl干扰范围ρ之外,则分母和中来自潜在干扰链路(k,l)的干扰贡献可以忽略(即,被认为是零)。例如,可以使用这样的最大sl干扰范围来对在某个(最大)高度h飞行的一对飞行器之间的los地平线进行建模。更具体地,这样的最大sl干扰范围可以通过下式指定:
[0143][0144]
其中re表示地球的半径。例如,在商业航空的特殊情况下,35000英尺的典型飞行高度产生约为750公里的最大sl(飞行器对飞行器)干扰范围。因此,超过该地平线的分离的任何飞行器对都被地球有效地彼此屏蔽(在本文中描述的实施例感兴趣的频率范围内)。
[0145]
通过在分母中包括项θ(ρ-r
kj
),可以在上述公式中的任何一个中考虑这种屏蔽效应,其中θ(
·
)表示heaviside阶跃函数。例如,最后的近似变为:
[0146][0147]
如上所述,算法50的操作54可以在标识冲突时考虑潜在干扰链路。如下文进一步讨论的,潜在受干扰链路可以与冲突的标识有关。
[0148]
图18是根据示例实施例的系统的框图,该系统总体上由附图标记180指示。
[0149]
系统180包括用于从第一设备i到第二设备j的传输的第一通信链路(i,j)182和用于从第三设备u到第四设备v的传输的第二通信链路(u,v)184的示意性指示。如图18所示,从第一设备i到第二设备j的传输可以在第四设备v处被检测到。因此,链路(i,j)可能干扰链路(u,v),使得链路(u,v)可以称为潜在受干扰链路。
[0150]
图19是示出根据示例实施例的算法的流程图,该算法总体上由附图标记190指示。
[0151]
在操作192,pssch调度器可以为候选无线电资源中的一些或所有候选无线电资源(例如,在操作52中确定的候选无线电资源)确定由于第一设备(i)的无线电传输而可能经历干扰的受干扰链路的集合。
[0152]
在操作194,至少部分基于第一通信节点(i)与至少一个受干扰链路(u,v)的接收节点(v)之间的传播延迟(τ
iv
)与至少一个受干扰链路(u,v)的传输节点与接收节点之间的第二传播延迟(τ
uv
)之间的差异,确定用于通过受干扰链路的第二集合中的至少一个受干扰链路(u,v)进行的通信的第二预测sinr。第二预测sinr可以基于至少一个受干扰链路的传输节点(u)和/或接收节点(v)和/或第一通信节点(i)的方向相关天线增益来确定。
[0153]
如下面进一步讨论的,在操作58的示例实现中,该第二预测sinr可以在无线电资源的选择期间使用。例如,可能希望使多个受干扰链路中的最低第二预测sinr最大化。
[0154]
下面提供算法190的示例实现的其他细节。
[0155]
对于每个候选无线电资源(t,f),pssch调度器可以确定潜在受干扰链路(u,v)的第二集合该干扰链路的在无线电资源(t',f')中被调度的传输在无线电资源(t,f)中被调度的情况下可能会受到来自链路(i,j)的有害干扰,如图18所示。为了确定是否存在这样的潜在干扰,pssch调度器可以使用所确定的(或所报告的)sl传播延迟。更具体地,集合可以定义如下:
[0156][0157]
即,潜在受干扰链路被定义为在与候选无线电资源(t,f)交叠、并且在时间上偏移δτ

=τ
iv-τ
uv
的、在无线电资源(t',f')中被调度的链路(u,v)。注意,在特定情况τ
iv
≈τ
uv
下,时间偏移δτ

基本上为零,并且这种情况类似于陆地网络,其中sl传播延迟在很大程度上可以忽略不计。
[0158]
在链路(i,j)将在无线电资源(t,f)中被调度的假设下,基于所确定的集合
pssch调度器可以计算集合中每个链路(u,v)的预期sinr,如下所示:
[0159][0160]
其中分母(即,干扰)中的集合包括链路(i,j)。
[0161]
潜在受干扰链路(u,v)的集合可以不限于侧链路(pssch)。特别地,它可以包括一个或多个上行链路(pusch),其中接收端(v)不是ue而是ntn的轨道卫星。以这种方式,卫星被认为是“非常高空飞行的接收器”,它也可能会受到来自要调度的潜在pssch传输的干扰,如上所述。以这种方式,pssch调度器可以在做出pssch调度决策时考虑其对所调度的pusch传输的影响,从而提高pssch和pusch共存性。(这里假定pssch调度器可以访问pusch调度。替代地,pssch和pusch可以由单个调度器联合调度。)
[0162]
在链路(i,j)将在无线电资源(t,f)中被调度的假设下,pssch调度器可以确定集合中的所有潜在受干扰链路(u,v)中的最低预期sinr,即,
[0163][0164]
图20是示出根据示例实施例的算法的流程图,该算法总体上由附图标记200指示。
[0165]
算法200开始于操作201,其中在该操作中,确定用于通过直接无线电链路(例如,nr侧链路)从非陆地网络的第一通信节点向非陆地网络的第二通信节点传输数据的候选无线电资源集合。操作201可以与上述操作52相同。
[0166]
在操作203,标识冲突。例如,至少部分基于与至少一个被调度的无线电传输相关联的传播延迟和/或与由第一通信节点进行的无线电传输相关联的传播延迟,可以确定与非陆地网络中的至少一个被调度的无线电传输冲突的一个或多个候选无线电资源。操作203可以与上述操作54相同。
[0167]
在操作205,通过从在操作201中确定的候选无线电资源集合中排除在操作203中标识的一个或多个冲突无线电资源,生成候选无线电资源子集。
[0168]
在操作207,预测一个或多个sinr值。sinr值可以包括在上述操作144中确定的第一sinr值和/或在上述操作194中确定的第二sinr值。
[0169]
最后,在操作209中,从候选无线电资源子集中选择用于通过直接无线电链路传输数据的无线电资源。
[0170]
操作209可以选择候选无线电资源,使得:
[0171]
·
第一预测sinr被最大化;
[0172]
·
第二预测sinr中的最低者被最大化;或者
[0173]
·
上述要求的一些组合。
[0174]
下面提供操作209的其他细节。
[0175]
基于为每个候选无线电资源(t,f)中的链路(i,j)而确定的预期sinr,pssch调度器可以选择使预期sinr最大化的无线电资源(t*,f*),即,
[0176]
(t
*
,f
*
)=argmax
(t,f)
γ
ij
(t,f)
ꢀꢀ
(15)
[0177]
尽管这种“贪婪”方法使链路(i,j)的预期sinr最大化,但它没有考虑该调度决策可能对集合中的潜在受干扰链路中的任何一个产生的潜在不利影响(即,链路质量下降)。
[0178]
代替(或除了)使链路(i,j)的预期sinr最大化,pssch调度器可以选择使所有干扰链路中的最低(即,最坏情况)预期sinr最大化的无线电资源(t*,f*)(即,最大最小标准),即,
[0179]
(t
*
,f
*
)=argmax
(t,f)
min(γ
ij
(t,f),γ
min
(t,f))
[0180]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(16)
[0181]
从这个角度来看,“最佳”无线电资源是要调度的pssch传输“最适合”的无线电资源(即,所有干扰链路中的最低预期sinr最高)。
[0182]
在平局的情况下,pssch调度器可以在平局的无线电资源(tied radio resource)中随机选择无线电资源,或者使用另一标准来打破平局(例如,及时选择最早无线电资源)。
[0183]
pssch调度器可以半持久地调度链路(i,j)(即,使用所配置的授权)。在这种情况下,所选择的无线电资源(t*,f*)可以在时间上以所配置的周期t(时隙)重复出现m个传输机会,即,链路在一组等间隔(在时域中)的无线电资源(t
*
+mt,f
*
)(其中m=0、
……
、m-1)中被调度。
[0184]
为了在整个持续时间(mt)中确保良好的链路质量,pssch调度器可以选择跨所有传输机会使链路的最低预期sinr最大化的无线电资源(t*,f*),即,
[0185]
(t
*
,f
*
)=argmax
(t,f)
minmγ
ij
(t+mt,f)
[0186]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)
[0187]
代替(或除了)跨所有传输机会使链路(i,j)的最低预期sinr最大化,pssch调度器可以选择跨所有传输机会使所有干扰链路的最低预期sinr最大化的无线电资源(t*,f*),即
[0188]
(t
*
,f
*
)=argmax
(t,f)
min
m min(г
ij
(t+mt,f),г
min
(t+mt,f))
[0189]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(18)
[0190]
在上面讨论的至少一些示例实施例中,为了应对多达几个时隙的长sl传播延迟,提出了一种pssch调度器,该pssch调度器使用所确定的或所报告的sl传播延迟信息来执行无冲突pssch调度——而不需要频谱效率低下的、延迟增加的时隙聚合。基于sl传播延迟信息,半双工(hd)冲突、以及与tx和rx处的sl波束可用性相关的冲突都被标识,并且冲突时隙可以从资源分配中被排除。从请求链路的角度来看,潜在干扰链路和潜在受干扰链路同样基于这样的sl传播延迟信息来确定。基于假定的los无线电信道和gnb处可用的方向相关sl天线增益信息的sinr预测可以用于以使链路之间的交叉干扰最小化的方式来分配无线电资源。
[0191]
为了完整起见,图21是前述示例实施例中的一个或多个的组件的示意图,其在下
文中统称为处理系统300。处理系统300例如可以是以下权利要求中提及的装置。
[0192]
处理系统300可以具有处理器302、紧密耦合到处理器并且包括ram 314和rom 312的存储器304、以及可选地的用户输入310和显示器318。处理系统300可以包括用于到网络/装置的连接的一个或多个网络/装置接口308,例如,可以是有线或无线的调制解调器。网络/装置接口308也可以作为到其他装置的连接来操作,诸如不是网络侧装置的设备/装置。因此,无需网络参与的设备/装置之间的直接连接是可能的。
[0193]
处理器302被连接到每个其他组件以便控制其操作。
[0194]
存储器304可以包括非易失性存储器,诸如硬盘驱动器(hdd)或固态驱动器(ssd)。存储器304的rom 312尤其存储操作系统315并且可以存储软件应用316。存储器304的ram 314由处理器302使用以临时存储数据。操作系统315可以包含在由处理器执行时实现上述算法50、90、100、110、140、190和200的多个方面的代码。注意,在小型设备/装置的情况下,存储器可能最适合小尺寸使用,即,并不总是使用硬盘驱动器(hdd)或固态驱动器(ssd)。
[0195]
处理器302可以采取任何合适的形式。例如,它可以是一个微控制器、多个微控制器、一个处理器或多个处理器。
[0196]
处理系统300可以是独立的计算机、服务器、控制台或其网络。处理系统300和所需要的结构部件可以都在诸如iot设备/装置等设备/装置内部,即,嵌入到非常小的尺寸。
[0197]
在一些示例实施例中,处理系统300还可以与外部软件应用相关联。这些可以是存储在远程服务器设备/装置上的应用,并且可以部分或专门在远程服务器设备/装置上运行。这些应用可以称为云托管应用。处理系统300可以与远程服务器设备/装置通信以便利用存储在那里的软件应用。
[0198]
图22a和图22b示出了有形介质,该有形介质分别是可移动存储器单元365和光盘(cd)368,该有形介质存储计算机可读代码,该计算机可读代码在由计算机运行时可以执行根据上述示例实施例的方法。可移动存储器单元365可以是记忆棒,例如usb记忆棒,该记忆棒具有存储计算机可读代码的内部存储器366。内部存储器366可以由计算机系统经由连接器367来访问。cd 368可以是cd-rom或dvd等。可以使用其他形式的有形存储介质。有形介质可以是能够存储数据/信息的任何设备/装置,该数据/信息可以在设备/装置/网络之间交换。
[0199]
本发明的实施例可以以软件、硬件、应用逻辑、或软件、硬件和应用逻辑的组合来实现。软件、应用逻辑和/或硬件可以驻留在存储器或任何计算机介质上。在示例实施例中,应用逻辑、软件或指令集被维护在各种常规计算机可读介质中的任何一种上。在本文档的上下文中,“存储器”或“计算机可读介质”可以是可以包含、存储、传送、传播或传输指令以供指令执行系统、装置或设备(诸如计算机)使用或与其结合使用的任何非暂态介质或部件。
[0200]
在相关的情况下,对“计算机可读介质”、“计算机程序产品”、“有形地体现的计算机程序”等或“处理器”或“处理电路系统”等的引用应当理解为不仅包括具有不同架构(诸如单/多处理器架构和顺序/并行架构)的计算机,而且还包括专用电路(诸如现场可编程门阵列(fpga)、专用集成电路(asic)、信号处理设备/装置和其他设备/装置)。对计算机程序、指令、代码等的引用应当理解为表示用于可编程处理器固件的软件,诸如作为用于处理器的指令的硬件设备/装置的可编程内容、或者用于固定功能设备/装置、门阵列、可编程逻辑
设备/装置等的被配置的设置或配置设置。
[0201]
如果需要,本文中讨论的不同功能可以以不同的顺序和/或彼此同时执行。此外,如果需要,上述功能中的一个或多个可以是可选的或者可以组合。类似地,还将理解,图5、图9至图11、图14、图19和图20的流程图仅是示例,并且其中描述的各种操作可以被省略、重新排序和/或组合。
[0202]
应当理解,上述示例实施例纯粹是说明性的并且不限制本发明的范围。在阅读本说明书之后,其他变化和修改对于本领域技术人员将是很清楚的。
[0203]
此外,本技术的公开应当被理解为包括本文中明确或隐含地公开的任何新颖特征或特征的任何新颖组合或其任何概括,并且在本技术或从其衍生的任何申请的实施期间,新的权利要求可以被制定以涵盖任何这样的特征和/或这样的特征的组合。
[0204]
尽管在独立权利要求中阐述了本发明的各个方面,但是本发明的其他方面包括来自所描述的示例性实施例和/或从属权利要求的特征与独立权利要求的特征的其他组合,而不仅仅是在权利要求中明确给出的组合。
[0205]
在此还应当注意,虽然以上描述了各种示例,但这些描述不应当被认为是限制性的。相反,在不脱离如所附权利要求中限定的本发明范围的情况下,可以进行若干变化和修改。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1