微通道散热装置及电子设备的制作方法

文档序号:32299478发布日期:2022-11-23 07:49阅读:167来源:国知局
微通道散热装置及电子设备的制作方法

1.本发明涉及电子产品散热技术领域,更具体地,涉及一种微通道散热装置及电子设备。


背景技术:

2.随着投影设备逐渐家庭化,用户对投影产品的性能要求也在不断提高。当前市场上超短焦投影设备存在热虚焦问题,即随着设备温度的升高,画面清晰度降低,从而降低了用户体验。因此解决或减轻热虚焦问题是产品走向成熟的必经之路。
3.近年,微通道散热由于其高效的散热能力,逐渐在微电子散热领域应用开来,光机设备体积小、产热高,要做到局部高效散热,散热器件不仅需要满足微型化要求,而且需要较之传统方式更高的散热效率。
4.现有的微通道散热方式主要通过工质流经热源带走热量的方式进行热量转移,较大的比表面积提高了散热效率,但其散热极限及其散热能力仍难以满足长久高温热源的散热需求。


技术实现要素:

5.本发明的一个目的是提供一种微通道散热装置及电子设备的新技术方案,至少能够解决现有技术的微通道散热方式散热能力依然不足的问题。
6.本发明的第一方面,提供了一种微通道散热装置,包括:微通道散热器,所述微通道散热器包括蒸发部、冷凝部和节流部,所述节流部位于所述蒸发部和冷凝部之间,所述蒸发部具有微通道流道;恒流压缩泵,所述恒流压缩泵具有抽气端和排气端,所述抽气端与所述蒸发部连通,所述排气端与所述冷凝部连通,所述恒流压缩泵与所述冷凝部、所述节流部和所述蒸发部之间形成用于制冷工质循环的散热通道,且所述恒流压缩泵与所述冷凝部、所述节流部和所述蒸发部之间形成逆卡诺循环。
7.可选地,所述微通道流道为多个,多个所述微通道流道成排布置,所述微通道流道的第一端朝向热源,所述微通道流道的第二端朝向所述冷凝部,所述微通道流道与所述抽气端连通。
8.可选地,所述冷凝部包括:液化层,所述液化层设在所述微通道流道的第二端,所述液化层与所述排气端连通。
9.可选地,所述液化层由靠近所述排气端的一侧朝向远离所述排气端的一侧倾斜向上延伸。
10.可选地,所述冷凝部还包括:散热翅片,所述散热翅片的一端与所述液化层连接,所述散热翅片的另一端用于连接外部风道。
11.可选地,所述散热翅片为多个,多个所述散热翅片间隔开成排布置。
12.可选地,所述节流部设在所述液化层的远离所述排气端的一侧。
13.可选地,所述节流部为压降节流槽。
14.可选地,所述微通道流道和所述抽气端之间设有气体缓存区。
15.本发明的第二方面,提供一种电子设备,包括:
16.设备主体,所述设备主体具有热源;
17.如上述实施例中所述的微通道散热装置,所述微通道散热装置与所述热源的位置相对应,以对所述设备主体散热。
18.本发明的微通道散热装置,采用微通道散热器与恒流压缩泵,其中,微通道散热器的蒸发部具有微通道流道,微通道流道体积小,比表面积大,保证微通道流道内制冷工质的流速较高,有利于提高微通道散热装置的散热效率,同时有利于满足微通道散热装置的小型化需求。并且本发明的微通道散热装置中恒流压缩泵与冷凝部、节流部和蒸发部之间形成逆卡诺循环,将微通道散热的优势与逆卡诺循环制冷相结合,进一步提高微通道散热装置的换热效率,提升用户使用体验。
19.通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
20.被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
21.图1是根据本发明实施例的电子设备的结构示意图;
22.图2是根据本发明实施例的微通道散热装置的一个剖面图;
23.图3是根据本发明实施例的微通道散热装置的另一个剖面图。
24.附图标记:
25.电子设备200;
26.微通道散热装置100;
27.微通道散热器10;蒸发部11;微通道流道111;冷凝部12;液化层121;散热翅片122;节流部13;气体缓存区14;
28.恒流压缩泵20;抽气端21;排气端22;
29.设备主体110。
具体实施方式
30.现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
31.以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
32.对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
33.在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
34.应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一
个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
35.本发明的说明书和权利要求书中,若涉及到术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
36.在本发明的描述中,需要理解的是,若涉及到术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
37.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,涉及到的术语“安装”、“相连”、“连接”,应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
38.下面结合附图具体描述根据本发明实施例的微通道散热装置100。
39.如图1至图3所示,根据本发明实施例的微通道散热装置100包括微通道散热器10和恒流压缩泵20。
40.具体而言,微通道散热器10包括蒸发部11、冷凝部12和节流部13,节流部13位于蒸发部11和冷凝部12之间,蒸发部11具有微通道流道111。恒流压缩泵20具有抽气端21和排气端22,抽气端21与蒸发部11连通,排气端22与冷凝部12连通,恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间形成用于制冷工质循环的散热通道,且恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间形成逆卡诺循环,将微通道散热的优势与逆卡诺循环制冷相结合,进一步提高微通道散热装置100的换热效率,提升用户使用体验。
41.换言之,参见图1,根据本发明实施例的微通道散热装置100主要用于对电子产品进行散热。如图2和图3所示,微通道散热装置100主要由微通道散热器10和恒流压缩泵20组成。其中,微通道散热器10主要由蒸发部11、冷凝部12和节流部13组成,节流部13设置在蒸发部11和冷凝部12之间,节流部13可以用于降低制冷工质的压力,蒸发部11具有微通道流道111,微通道流道111具有体积小、比表面积大等特点,有利于提高制冷工质的流速,提高散热效率。恒流压缩泵20具有抽气端21和排气端22,恒流压缩泵20能够件低温低压气体转变成高温高压气体。
42.抽气端21与蒸发部11连通,排气端22与冷凝部12连通,恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间可以形成用于制冷工质循环的散热通道。并且恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间形成逆卡诺循环。当然,对于本领域技术人员来说,逆卡诺循环的原理是可以理解并且能够实现的,在本发明中不再详细赘述。
43.在本发明的微通道散热装置100中,参见图1和图2,微通道散热装置100的蒸发部11与电子设备200的热源接触,微通道流道111内制冷工质吸热气化,形成低温低压蒸气。蒸气经恒流压缩泵20后,蒸汽的压力和温度同时上升,形成高温高压蒸气。高温高压介质(高
温高压蒸汽)流经冷凝部12的过程中,冷凝为低温高压液体。低温高压液体经过节流部13后转变成低温低压液体,最后低温低压液体(制冷工质)再次进入微通道流道111,实现逆卡诺循环。低温低压液体(制冷工质)通过微通道流道111,在大比表面积散热环境下吸收热源热量,由液相转为气相,通过潜热将热量大量吸收,从而完成一个制冷循环,实现微通道散热装置100的高效散热。
44.由此,根据本发明实施例的微通道散热装置100,采用微通道散热器10与恒流压缩泵20,其中,微通道散热器10的蒸发部11具有微通道流道111,微通道流道111体积小,比表面积大,保证微通道流道111内制冷工质的流速较高,有利于提高微通道散热装置100的散热效率,同时有利于满足微通道散热装置100的小型化需求。并且本发明的微通道散热装置100中恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间形成逆卡诺循环,将微通道散热的优势与逆卡诺循环制冷相结合,进一步提高微通道散热装置100的换热效率,提升用户使用体验。
45.根据本发明的一个实施例,微通道流道111为多个,多个微通道流道111成排布置,微通道流道111的第一端朝向热源,微通道流道111的第二端朝向冷凝部12,微通道流道111与抽气端21连通。
46.也就是说,如图3所示,微通道流道111设置成多个,多个微通道流道111成排布置,微通道流道111的避免作为制冷工质的对流面,极大地增加了微通道流道111的比表面积,提高制冷工质的流速,进一步强化了微通道流道111的散热效果。微通道流道111的第一端朝向热源,以吸收热源产生的热量,微通道流道111的第二端朝向冷凝部12,微通道流道111与抽气端21连通。制冷工质在微通道流道111、抽气端21、排气端22、冷凝部12、节流部13之间形成逆卡诺制冷循环,有效提高了微通道散热装置100的散热效率。
47.在本发明的一些具体实施方式中,冷凝部12包括:液化层121,液化层121设在微通道流道111的第二端,液化层121与排气端22连通。液化层121由靠近排气端22的一侧朝向远离排气端22的一侧倾斜向上延伸。冷凝部12还包括:散热翅片122,散热翅片122的一端与液化层121连接,散热翅片122的另一端用于连接外部风道。散热翅片122为多个,多个散热翅片122间隔开成排布置。
48.也就是说,参见图2,冷凝部12包括液化层121,液化层121设置在微通道流道111的第二端,液化层121与排气端22连通。经过恒流压缩泵20处理后的制冷工质(高温低压气体)形成高温高压气体,高温高压气体经液化层121换热后形成低温高压液体。液化层121由靠近排气端22的一侧朝向远离排气端22的一侧倾斜向上延伸,使液化层121具有一定斜度,保证气体不会迅速流经液化层121,进一步提高排热效率。冷凝部12还包括散热翅片122,散热翅片122的一端与液化层121连接,散热翅片122的另一端用于连接外部风道,制冷工质在流经液化层121的过程中,在外部风道的散热作用下,凝结成低温高压液体。散热翅片122为多个,多个散热翅片122间隔开成排布置,有利于提高液化层121的液化效率,进一步改善微通道散热装置100的整体散热效率。
49.在本发明的一些具体实施方式中,节流部13设在液化层121的远离排气端22的一侧。节流部13为压降节流槽。微通道流道111和抽气端21之间设有气体缓存区14。
50.换句话说,如图2所示,节流部13设置在液化层121的远离排气端22的一侧。节流部13可以采用压降节流槽。流经压降节流槽的制冷工质(低温高压液体)变成低温低压液体,
液态工质随后进入微通道流道111进行热量收集转变为低温低压液态。微通道流道111和抽气端21之间设置有气体缓存区14。
51.当电子设备200工作时,热源产生大量的热,微通道散热装置100的蒸发部11与热源接触,微通道流道111内的制冷工质吸热气化,形成低温低压蒸气。蒸气经恒流压缩泵20后压力和温度同时上升,形成高温高压蒸气。高温高压介质流经冷凝部12的液化层121,在散热片(翅片)的强化散热作用下冷凝为低温高压液体,散热片与外风道进行搭配,可以根据风道布局进行翅片方向设计,可更大程度的提高散热效果。冷凝液体继而流经压降节流槽,根据pv=nrt,流束在节流处形成局部收缩,从而使流速增加,静压力降低,起到降温减压的作用,形成的低温低压液体通过微通道流道111,在大比表面积散热环境下吸收热源热量,由液相转为气相,通过潜热将热量大量吸收,从而完成一个制冷循环。
52.本发明的微通道散热装置100的微通道散热器10的内部可采用负压状态及r22/r134a/r124/r717等作为制冷工质,或采用常压状态及r744作为制冷工质,或采用其他可实施的高温制冷剂。可根据实际温压环境需要选配合适的制冷剂,故本发明自由度较高,可实现0-100℃内的温度控制。对于制冷工质的型号,例如,r744代表二氧化碳工质,r22代表氟利昂工质等都是本领域技术人员所熟知的,在本发明中不在详细赘述。
53.当然,对于本领域技术人员来说,微通道散热装置100的其他结构及其工作原理是可以理解并且能够实现的,在本发明中不再详细赘述。
54.总而言之,根据本发明实施例的微通道散热装置100,采用微通道散热器10与恒流压缩泵20,其中,微通道散热器10的蒸发部11具有微通道流道111,微通道流道111体积小,比表面积大,保证微通道流道111内制冷工质的流速较高,有利于提高微通道散热装置100的散热效率,同时有利于满足微通道散热装置100的小型化需求。并且本发明的微通道散热装置100中恒流压缩泵20与冷凝部12、节流部13和蒸发部11之间形成逆卡诺循环,将微通道散热的优势与逆卡诺循环制冷相结合,进一步提高微通道散热装置100的换热效率,提升用户使用体验。
55.根据本发明的第二方面,参见图1至图3,提供一种电子设备200包括设备主体110和上述实施例中的微通道散热装置100。
56.其中,设备主体110具有热源,微通道散热装置100与热源的位置相对应,以对设备主体110散热。在本发明中,电子设备200可以是投影设备,vr、ar等电子产品。
57.以电子设备200为投影设备为例,投影设备工作时产生大量的热,会咋成投影设备存在热虚焦等问题,从而影响画面质量。本发明通过采用微通道散热装置100,既满足小型化的设计需求,又能将微通道散热的优势与逆卡诺循环制冷相结合,进一步提高微通道散热装置100的换热效率,提升用户使用体验。
58.当然,对于本领域技术人员来说,电子设备200的其他结构以及工作原理是可以理解并且能够实现的,在本发明中不再详细赘述。
59.虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1