用于可重构智能表面(的制作方法

文档序号:36172160发布日期:2023-11-24 13:15阅读:108来源:国知局
用于可重构智能表面(的制作方法
用于可重构智能表面(ris)辅助式定位和对象感测的配置框架和定位参考信号(prs)关联机制和触发
1.相关申请的交叉引用
2.本专利申请要求于
2021
年4月8日提交的题为“configuration framework and positioning reference signal(prs)association mechanisms and triggering for reconfigurable intelligent surface(ris)-aided positioning and object sensing(
用于可重构智能表面
(ris)
辅助式定位和对象感测的配置框架和定位参考信号
(prs)
关联机制和触发
)”的希腊申请
no.20210100241
的优先权,该申请被转让给本技术受让人并通过援引整体明确纳入于本文

3.公开背景
4.1.
公开领域
5.本公开的各方面一般涉及无线通信

6.2.
相关技术描述
7.无线通信系统已经过了数代的发展,包括第一代模拟无线电话服务
(1g)、
第二代
(2g)
数字无线电话服务
(
包括过渡的
2.5g

2.75g
网络
)、
第三代
(3g)
具有因特网能力的高速数据无线服务和第四代
(4g)
服务
(
例如,长期演进
(lte)

wimax)。
目前在用的有许多不同类型的无线通信系统,包括蜂窝以及个人通信服务
(pcs)
系统

已知蜂窝系统的示例包括蜂窝模拟高级移动电话系统
(amps)
,以及基于码分多址
(cdma)、
频分多址
(fdma)、
时分多址
(tdma)、
全球移动通信系统
(gsm)
等的数字蜂窝系统

8.第五代
(5g)
无线标准
(
被称为新无线电
(nr))
要求更高的数据传输速度

更大数目的连接和更好的覆盖

以及其他改进

根据下一代移动网络联盟,
5g
标准被设计成向成千上万个用户中的每一者提供数十兆比特每秒的数据率,以及向办公楼层里的数十位员工提供1千兆比特每秒的数据率

应当支持几十万个同时连接以支持大型传感器部署

因此,相比于当前的
4g
标准,
5g
移动通信的频谱效率应当显著提高

此外,相比于当前标准,信令效率应当提高并且等待时间应当被显著减少

9.概述
10.以下给出了与本文所公开的一个或多个方面相关的简化概述

由此,以下概述既不应被认为是与所有构想的方面相关的详尽纵览,以下概述也不应被认为标识与所有构想的方面相关的关键性或决定性要素或描绘与任何特定方面相关联的范围

相应地,以下概述的唯一目的是在以下给出的详细描述之前以简化形式呈现与关于本文所公开的机制的一个或多个方面相关的某些概念

11.在一方面,一种由用户装备
(ue)
执行的无线定位方法包括:参与定位会话或感测会话;以及从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

12.在一方面,一种由网络实体执行的无线定位方法包括:参与和用户装备
(ue)
的定
位会话或感测会话;确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及向该
ue
传送该
rpo
信息

13.在一方面,一种用户装备
(ue)
包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:参与定位会话或感测会话;以及经由该至少一个收发机从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

14.在一方面,一种网络实体包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:参与和用户装备
(ue)
的定位会话或感测会话;确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及使得该至少一个收发机向该
ue
传送该
rpo
信息

15.在一方面,一种用户装备
(ue)
包括:用于参与定位会话或感测会话的装置;以及用于从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据的装置,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

16.在一方面,一种网络实体包括:用于参与和用户装备
(ue)
的定位会话或感测会话的装置;用于确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息的装置,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及用于向该
ue
传送该
rpo
信息的装置

17.在一方面,一种存储计算机可执行指令的非瞬态计算机可读介质,这些计算机可执行指令在由用户装备
(ue)
执行时使该
ue
:参与定位会话或感测会话;以及从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

18.在一方面,一种存储计算机可执行指令的非瞬态计算机可读介质,这些指令在由网络实体执行时使该网络实体执行:参与和用户装备
(ue)
的定位会话或感测会话;确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及向该
ue
传送该
rpo
信息

19.基于附图和详细描述,与本文所公开的各方面相关联的其他目标和优点对本领域技术人员而言将是显而易见的

20.附图简述
21.给出附图以帮助对本公开的各方面进行描述,且提供附图仅用于解说各方面而非对其进行限定

22.图1解说了根据本公开的各方面的示例无线通信系统

23.图
2a

2b
解说了根据本公开的各方面的示例无线网络结构

24.图
3a

3c
是可在用户装备
(ue)、
基站

以及网络实体中分别采用并且被配置成支
持如本文所教导的通信的组件的若干样本方面的简化框图

25.图
4a

4b
是解说根据本公开的各方面的示例帧结构和这些帧结构内的信道的示图

26.图5解说了根据本公开的各方面的使用可重构智能表面
(ris)
进行无线通信的示例系统

27.图6解说了根据本公开的各方面的使用多个
ris 610
进行无线通信的示例系统

28.图7是解说根据本公开的各方面的可以如何经由无线下行链路信令控制
ris
的示例的示图

29.图8解说了根据本公开的各方面的使用
ris
进行无线定位的两个示例场景

30.图9解说了根据本公开的各方面的具有多个
ris
的用于进行无线通信的示例系统

31.图
10a

10c
解说了根据本公开的各方面的使用
ris1010
进行无线通信的示例系统

32.图
11
解说了根据本公开的各方面的具有多个
ris1110
的用于无线通信的示例系统

33.图
12
和图
13
解说了根据本公开的各方面的示例无线定位方法

34.详细描述
35.本公开的各方面在以下针对出于解说目的提供的各种示例的描述和相关附图中提供

可设计替换方面而不脱离本公开的范围

另外,本公开中众所周知的元素将不被详细描述或将被省去以免湮没本公开的相关细节

36.措辞“示例性”和
/
或“示例”在本文中用于意指“用作示例

实例或解说”。
本文中描述为“示例性”和
/
或“示例”的任何方面不必被解释为优于或胜过其他方面

同样地,术语“本公开的各方面”不要求本公开的所有方面都包括所讨论的特征

优点或操作模式

37.本领域技术人员将领会,以下描述的信息和信号可使用各种不同技术和技艺中的任何一种来表示

例如,贯穿以下描述可能被述及的数据

指令

命令

信息

信号


(
比特
)、
码元以及码片可部分地取决于具体应用

部分地取决于所期望的设计

部分地取决于对应技术等而由电压

电流

电磁波

磁场或磁粒子

光场或光粒子

或其任何组合表示

38.此外,许多方面以由例如计算设备的元件执行的动作序列的形式来描述

将认识到,本文中所描述的各种动作能由专用电路
(
例如,专用集成电路
(asic))、
由正被一个或多个处理器执行的程序指令

或由这两者的组合来执行

另外,本文中所描述的动作序列可被认为是完全体现在任何形式的非瞬态计算机可读存储介质内,该非瞬态计算机可读存储介质中存储有一经执行就将使得或指令设备的相关联处理器执行本文中所描述的功能性的相应计算机指令集

由此,本公开的各个方面可以数种不同形式体现,所有这些形式都已被构想为落在所要求保护的主题内容的范围内

另外,对于本文中所描述的每一方面,任何此类方面的对应形式可在本文中被描述为例如“被配置成执行所描述的动作的逻辑”。
39.如本文中所使用的,术语“用户装备”(ue)
和“基站”并非旨在专用于或以其他方式被限定于任何特定的无线电接入技术
(rat)
,除非另有说明

一般而言,
ue
可以是被用户用来在无线通信网络上进行通信的任何无线通信设备
(
例如,移动电话

路由器

平板计算机

膝上型计算机

消费者资产定位设备

可穿戴设备
(
例如,智能手表

眼镜

增强现实
(ar)/
虚拟现实
(vr)
头戴式设备等
)、
交通工具
(
例如,汽车

摩托车

自行车等
)、
物联网
(iot)
设备

)。ue
可以是移动的或者可以
(
例如,在某些时间
)
是驻定的,并且可与无线电接入网
(ran)
进行通信

如本文中所使用的,术语“ue”可以互换地被称为“接入终端”或“at”、“客户端设备”、“无线设备”、“订户设备”、“订户终端”、“订户站”、“用户终端”或“ut”、“移动设备”、“移动终端”、“移动站”、
或其变型

一般而言,
ue
可以经由
ran
与核心网进行通信,并且通过核心网,
ue
可与外部网络
(
诸如因特网
)
以及与其他
ue
连接

当然,连接到核心网和
/
或因特网的其他机制对于
ue
而言也是可能的,诸如通过有线接入网

无线局域网
(wlan)
网络
(
例如,基于电气与电子工程师协会
(ieee)802.11
规范等
)
等等

40.基站可取决于该基站被部署在其中的网络而根据若干
rat
之一进行操作来与
ue
通信,并且可以替换地被称为接入点
(ap)、
网络节点
、b
节点

演进型b节点
(enb)、
下一代
enb(ng-enb)、
新无线电
(nr)b
节点
(
也被称为
gnb

gnodeb)
等等

基站可主要被用于支持由
ue
进行的无线接入,包括支持关于所支持
ue
的数据

语音


/
或信令连接

在一些系统中,基站可提供纯边缘节点信令功能,而在其他系统中,基站可提供附加的控制和
/
或网络管理功能
。ue
可籍以向基站发送信号的通信链路被称为上行链路
(ul)
信道
(
例如,反向话务信道

反向控制信道

接入信道等
)。
基站可籍以向
ue
发送信号的通信链路被称为下行链路
(dl)
或前向链路信道
(
例如,寻呼信道

控制信道

广播信道

前向话务信道等
)。
如本文所使用的,术语话务信道
(tch)
可以指上行链路
/
反向话务信道或下行链路
/
前向话务信道

41.术语“基站”可以指单个物理传送接收点
(trp)
或者可以指可能或可能不共置的多个物理
trp。
例如,在术语“基站”指单个物理
trp
的情况下,该物理
trp
可以是与基站的蜂窝小区
(
或若干个蜂窝小区扇区
)
相对应的基站天线

在术语“基站”指多个共置的物理
trp
的情况下,该物理
trp
可以是基站的天线阵列
(
例如,如在多输入多输出
(mimo)
系统中或在基站采用波束成形的情况下
)。
在术语“基站”指多个非共置的物理
trp
的情况下,该物理
trp
可以是分布式天线系统
(das)(
经由传输介质来连接到共用源的在空间上分离的天线的网络
)
或远程无线电头端
(rrh)(
连接到服务基站的远程基站
)。
替换地,非共置的物理
trp
可以是从
ue
接收测量报告的服务基站和该
ue
正在测量其参考射频
(rf)
信号的邻居基站

由于
trp
是基站从其传送和接收无线信号的点,如本文中所使用的,因此对来自基站的传输或在基站处的接收的引用应被理解为引用该基站的特定
trp。
42.在支持
ue
定位的一些实现中,基站可能不支持
ue
的无线接入
(
例如,可能不支持关于
ue
的数据

语音


/
或信令连接
)
,但是可以替代地向
ue
传送要被
ue
测量的参考信号


/
或可以接收和测量由
ue
传送的信号

此类基站可被称为定位塔台
(
例如,在向
ue
传送信号的情况下
)

/
或被称为位置测量单元
(
例如,在接收和测量来自
ue
的信号的情况下
)。
[0043]“rf
信号”包括通过传送方与接收方之间的空间来传输信息的给定频率的电磁波
。”如本文中所使用的,传送方可向接收方传送单个“rf
信号”或多个“rf
信号”。
然而,由于
rf
信号通过多径信道的传播特性,接收方可接收到与每个所传送
rf
信号相对应的多个“rf
信号”。
传送方与接收方之间的不同路径上所传送的相同
rf
信号可被称为“多径”rf
信号

[0044]
图1解说了根据本公开的各方面的示例无线通信系统
100。
无线通信系统
100(
其也可被称为无线广域网
(wwan))
可包括各个基站
102(
被标记为“bs”)
和各个
ue 104。
基站
102
可包括宏蜂窝小区基站
(
高功率蜂窝基站
)

/
或小型蜂窝小区基站
(
低功率蜂窝基站
)。
在一方面,宏蜂窝小区基站可包括
enb

/

ng-enb(
其中无线通信系统
100
对应于
lte
网络
)、
或者
gnb(
其中无线通信系统
100
对应于
nr
网络
)、
或两者的组合,并且小型蜂窝小区基站可
包括毫微微蜂窝小区

微微蜂窝小区

微蜂窝小区等等

[0045]
各基站
102
可共同地形成
ran
并且通过回程链路
122
来与核心网
170(
例如,演进型分组核心
(epc)

5g
核心
(5gc))
对接,以及通过核心网
170
去往一个或多个位置服务器
172(
例如,位置管理功能
(lmf)
或安全用户面定位
(supl)
位置平台
(slp))。(

)
位置服务器
172
可以是核心网
170
的一部分或者可在核心网
170
外部

除了其他功能,基站
102
还可执行与传递用户数据

无线电信道暗码化和暗码解译

完整性保护

报头压缩

移动性控制功能
(
例如,切换

双连通性
)、
蜂窝小区间干扰协调

连接设立和释放

负载平衡

非接入阶层
(nas)
消息的分发
、nas
节点选择

同步
、ran
共享

多媒体广播多播服务
(mbms)、
订户和装备追踪
、ran
信息管理
(rim)、
寻呼

定位

以及警报消息的递送中的一者或多者相关的功能

基站
102
可通过回程链路
134(
其可以是有线的或无线的
)
直接或间接地
(
例如,通过
epc/5gc)
彼此通信

[0046]
基站
102
可与
ue 104
进行无线通信

每个基站
102
可为相应的地理覆盖区域
110
提供通信覆盖

在一方面,一个或多个蜂窝小区可由每个地理覆盖区域
110
中的基站
102
支持
。“蜂窝小区”是用于与基站
(
例如,在某个频率资源上,被称为载波频率

分量载波

载波

频带等等
)
进行通信的逻辑通信实体,并且可与标识符
(
例如,物理蜂窝小区标识符
(pci)、
虚拟蜂窝小区标识符
(vci)、
蜂窝小区全局标识符
(cgi))
相关联以区分经由相同或不同载波频率操作的蜂窝小区

在一些情形中,可根据可为不同类型的
ue
提供接入的不同协议类型
(
例如,机器类型通信
(mtc)、
窄带
iot(nb-iot)、
增强型移动宽带
(embb)
或其他
)
来配置不同蜂窝小区

由于蜂窝小区由特定的基站支持,因此术语“蜂窝小区”可取决于上下文而指代逻辑通信实体和支持该逻辑通信实体的基站中的任一者或两者

在一些情形中,在载波频率可被检测到并且被用于地理覆盖区域
110
的某个部分内的通信的意义上,术语“蜂窝小区”还可以指基站的地理覆盖区域
(
例如,扇区
)。
[0047]
虽然相邻宏蜂窝小区基站
102
的各地理覆盖区域
110
可部分地交叠
(
例如,在切换区域中
)
,但是一些地理覆盖区域
110
可能基本上被较大的地理覆盖区域
110
交叠

例如,小型蜂窝小区
(sc)
基站
102'
可具有基本上与一个或多个宏蜂窝小区基站
102
的地理覆盖区域
110
交叠的地理覆盖区域
110'。
包括小型蜂窝小区和宏蜂窝小区基站两者的网络可被称为异构网络

异构网络还可包括家用
enb(henb)
,该
henb
可向被称为封闭订户群
(csg)
的受限群提供服务

[0048]
基站
102

ue 104
之间的通信链路
120
可包括从
ue 104
到基站
102
的上行链路
(
亦称为反向链路
)
传输和
/
或从基站
102

ue 104
的下行链路
(
亦称为前向链路
)
传输

通信链路
120
可使用
mimo
天线技术,包括空间复用

波束成形


/
或发射分集

通信链路
120
可通过一个或多个载波频率

载波的分配可以关于下行链路和上行链路是非对称的
(
例如,与上行链路相比可将更多或更少载波分配给下行链路
)。
[0049]
无线通信系统
100
可进一步包括在无执照频谱
(
例如,
5ghz)
中经由通信链路
154

wlan

(sta)152
处于通信的无线局域网
(wlan)
接入点
(ap)150。
当在无执照频谱中进行通信时,
wlan sta 152

/

wlan ap 150
可在进行通信之前执行畅通信道评估
(cca)
或先听后讲
(lbt)
规程以确定信道是否可用

[0050]
小型蜂窝小区基站
102'
可在有执照和
/
或无执照频谱中操作

当在无执照频谱中操作时,小型蜂窝小区基站
102'
可采用
lte

nr
技术并且使用与由
wlan ap 150
使用的频谱
相同的
5ghz
无执照频谱

在无执照频谱中采用
lte/5g
的小型蜂窝小区基站
102'
可推升对接入网的覆盖和
/
或增加接入网的容量

无执照频谱中的
nr
可被称为
nr-u。
无执照频谱中的
lte
可被称为
lte-u、
有执照辅助式接入
(laa)

multefire。
[0051]
无线通信系统
100
可进一步包括毫米波
(mmw)
基站
180
,该
mmw
基站
180
可在
mmw
频率和
/
或近
mmw
频率中操作以与
ue 182
处于通信

极高频
(ehf)
是电磁频谱中的
rf
的一部分
。ehf
具有
30ghz

300ghz
的范围以及1毫米到
10
毫米之间的波长

该频带中的无线电波可被称为毫米波


mmw
可向下扩展至具有
100
毫米波长的
3ghz
频率

超高频
(shf)
频带在
3ghz

30ghz
之间扩展,其还被称为厘米波

使用
mmw/

mmw
射频频带的通信具有高路径损耗和相对短的射程
。mmw
基站
180

ue 182
可利用
mmw
通信链路
184
上的波束成形
(
发射和
/
或接收
)
来补偿极高路径损耗和短射程

此外,将领会,在替换配置中,一个或多个基站
102
还可使用
mmw
或近
mmw
以及波束成形来进行传送

相应地,将领会,前述解说仅仅是示例,并且不应当被解读成限定本文中所公开的各个方面

[0052]
发射波束成形是一种用于将
rf
信号聚焦在特定方向上的技术

常规地,当网络节点
(
例如,基站
)
广播
rf
信号时,该网络节点在所有方向上
(
全向地
)
广播该信号

利用发射波束成形,网络节点确定给定目标设备
(
例如,
ue)(
相对于传送方网络节点
)
位于哪里,并在该特定方向上投射较强下行链路
rf
信号,从而为接收方设备提供较快
(
就数据率而言
)
且较强的
rf
信号

为了在发射时改变
rf
信号的方向性,网络节点可在正在广播该
rf
信号的一个或多个发射机中的每个发射机处控制该
rf
信号的相位和相对振幅

例如,网络节点可使用产生
rf
波的波束的天线阵列
(
被称为“相控阵”或“天线阵列”)

rf
波的波束能够“被引导”指向不同的方向,而无需实际地移动这些天线

具体地,来自发射机的
rf
电流以正确的相位关系被馈送到个体天线,以使得来自分开的天线的无线电波在期望方向上相加在一起以增大辐射,而同时在不期望方向上抵消以抑制辐射

[0053]
发射波束可以是准共置的,这意味着它们在接收方
(
例如,
ue)
看来具有相同的参数,而不论该网络节点的发射天线本身是否在物理上是共置的


nr
中,存在四种类型的准共置
(qcl)
关系

具体而言,给定类型的
qcl
关系意味着:关于目标波束上的目标参考
rf
信号的某些参数可以从关于源波束上的源参考
rf
信号的信息推导出

如果源参考
rf
信号是
qcl
类型a,则接收方可以使用源参考
rf
信号来估计在相同信道上传送的目标参考
rf
信号的多普勒频移

多普勒扩展

平均延迟

以及延迟扩展

如果源参考
rf
信号是
qcl
类型b,则接收方可以使用源参考
rf
信号来估计在相同信道上传送的目标参考
rf
信号的多普勒频移和多普勒扩展

如果源参考
rf
信号是
qcl
类型c,则接收方可以使用源参考
rf
信号来估计在相同信道上传送的目标参考
rf
信号的多普勒频移和平均延迟

如果源参考
rf
信号是
qcl
类型d,则接收方可以使用源参考
rf
信号来估计在相同信道上传送的目标参考
rf
信号的空间接收参数

[0054]
在接收波束成形中,接收机使用接收波束来放大在给定信道上检测到的
rf
信号

例如,接收机可在特定方向上增大天线阵列的增益设置和
/
或调整天线阵列的相位设置,以放大从该方向接收到的
rf
信号
(
例如,增大其增益水平
)。
由此,当接收机被称为在某个方向上进行波束成形时,这意味着该方向上的波束增益相对于沿其他方向的波束增益而言是较高的,或者该方向上的波束增益相比于对该接收机可用的所有其他接收波束在该方向上的波束增益而言是最高的

这导致从该方向接收的
rf
信号有较强的收到信号强度
(
例如,参考
信号收到功率
(rsrp)、
参考信号收到质量
(rsrq)、
信号与干扰加噪声比
(sinr)
等等
)。
[0055]
接收波束可以是空间相关的

空间关系意味着用于第二参考信号的发射波束的参数可以从关于第一参考信号的接收波束的信息推导出

例如,
ue
可使用特定的接收波束从基站接收一个或多个参考下行链路参考信号
(
例如,定位参考信号
(prs)、
跟踪参考信号
(trs)、
相位跟踪参考信号
(ptrs)、
因蜂窝小区而异的参考信号
(crs)、
信道状态信息参考信号
(csi-rs)、
主同步信号
(pss)、
副同步信号
(sss)、
同步信号块
(ssb)
等等
)。ue
随后可以基于接收波束的参数来形成发射波束以用于向该基站发送一个或多个上行链路参考信号
(
例如,上行链路定位参考信号
(ul-prs)、
探通参考信号
(srs)、
解调参考信号
(dmrs)、ptrs
等等
)。
[0056]
注意,取决于形成“下行链路”波束的实体,该波束可以是发射波束或接收波束

例如,若基站正形成下行链路波束以向
ue
传送参考信号,则该下行链路波束是发射波束

然而,若
ue
正形成下行链路波束,则该下行链路波束是用于接收下行链路参考信号的接收波束

类似地,取决于形成“上行链路”波束的实体,该波束可以是发射波束或接收波束

例如,若基站正形成上行链路波束,则该上行链路波束是上行链路接收波束,而若
ue
正形成上行链路波束,则该上行链路波束是上行链路发射波束

[0057]

5g
中,无线节点
(
例如,基站
102/180、ue 104/182)
在其中操作的频谱被划分成多个频率范围:
fr1(

450

6000mhz)、fr2(

24250

52600mhz)、fr3(
高于
52600mhz)、
以及
fr4(

fr1

fr2
之间
)。
在多载波系统
(
诸如
5g)
中,载波频率之一被称为“主载波”或“锚载波”或“主服务蜂窝小区”或“pcell”,并且剩余载波频率被称为“辅载波”或“副服务蜂窝小区”或“scell”。
在载波聚集中,锚载波是在由
ue 104/182
利用的主频率
(
例如,
fr1)
上并且在
ue 104/182
在其中执行初始无线电资源控制
(rrc)
连接建立规程或发起
rrc
连接重建规程的蜂窝小区上操作的载波

主载波携带所有共用控制信道以及因
ue
而异的控制信道,并且可以是有执照频率中的载波
(
然而,并不总是这种情形
)。
辅载波是在第二频率
(
例如,
fr2)
上操作的载波,一旦在
ue 104
与锚载波之间建立了
rrc
连接就可以配置该载波,并且该载波可被用于提供附加无线电资源

在一些情形中,辅载波可以是无执照频率中的载波

辅载波可仅包含必要的信令信息和信号,例如,因
ue
而异的信令信息和信号可能不存在于辅载波中,因为主上行链路和下行链路载波两者通常都是因
ue
而异的

这意味着蜂窝小区中的不同
ue 104/182
可具有不同下行链路主载波

这对于上行链路主载波而言同样成立

网络能够在任何时间改变任何
ue 104/182
的主载波

例如,这样做是为了平衡不同载波上的负载

由于“服务蜂窝小区”(
无论是
pcell
还是
scell)
对应于某个基站正用于进行通信的载波频率
/
分量载波,因此术语“蜂窝小区”、“服务蜂窝小区”、“分量载波”、“载波频率”等等可被可互换地使用

[0058]
例如,仍然参照图1,由宏蜂窝小区基站
102
利用的频率之一可以是锚载波
(
或“pcell”)
,并且由该宏蜂窝小区基站
102

/

mmw
基站
180
利用的其他频率可以是辅载波
(“scell”)。
对多个载波的同时传送和
/
或接收使得
ue 104/182
能够显著增大其数据传输和
/
或接收速率

例如,多载波系统中的两个
20mhz
聚集载波与由单个
20mhz
载波获得的数据率相比较而言理论上将导致数据率的两倍增加
(
即,
40mhz)。
[0059]
无线通信系统
100
可进一步包括
ue 164
,该
ue 164
可在通信链路
120
上与宏蜂窝小区基站
102
进行通信和
/
或在
mmw
通信链路
184
上与
mmw
基站
180
进行通信

例如,宏蜂窝小区
基站
102
可支持
pcell
和一个或多个
scell
以用于
ue 164
,并且
mmw
基站
180
可支持一个或多个
scell
以用于
ue 164。
[0060]
在图1的示例中,一个或多个地球轨道卫星定位系统
(sps)
航天器
(sv)112(
例如,卫星
)
可被用作任何所解说
ue(
为了简单起见在图1中示为单个
ue 104)
的位置信息的独立源
。ue 104
可包括一个或多个专用
sps
接收机,这些专用
sps
接收机专门设计成从
sv 112
接收
sps
信号
124
以推导地理位置信息
。sps
通常包括传送方系统
(
例如,
sv 112)
,其被定位成使得接收方
(
例如,
ue 104)
能够至少部分地基于从传送方接收到的信号
(
例如,
sps
信号
124)
来确定这些接收方在地球上或上方的位置

此类传送方通常传送用设定数目个码片的重复伪随机噪声
(pn)
码来标记的信号

虽然传送方通常位于
sv 112
中,但是有时也可位于基于地面的控制站

基站
102、

/
或其他
ue 104


[0061]
sps
信号
124
的使用能通过各种基于卫星的扩增系统
(sbas)
来扩增,该
sbas
可与一个或多个全球性和
/
或区域性导航卫星系统相关联或者以其他方式被启用以与一个或多个全球性和
/
或区域性导航卫星系统联用

例如,
sbas
可包括提供完整性信息

差分校正等的扩增系统,诸如广域扩增系统
(waas)、
欧洲对地静止导航覆盖服务
(egnos)、
多功能卫星扩增系统
(msas)、
全球定位系统
(gps)
辅助地理扩增导航或
gps
和地理扩增导航系统
(gagan)
等等

由此,如本文中所使用的,
sps
可包括一个或多个全球性和
/
或区域性导航卫星系统和
/
或扩增系统的任何组合,并且
sps
信号
124
可包括
sps、

sps、

/
或与此类一个或多个
sps
相关联的其他信号

[0062]
无线通信系统
100
可进一步包括一个或多个
ue(
诸如
ue 190)
,该一个或多个
ue
经由一个或多个设备到设备
(d2d)
对等
(p2p)
链路
(
被称为“侧链路”)
间接地连接到一个或多个通信网络

在图1的示例中,
ue 190
具有与连接到一个基站
102
的一个
ue 104

d2d p2p
链路
192(
例如,
ue 190
可通过其间接地获得蜂窝连通性
)
,以及与连接到
wlan ap 150

wlan sta 152

d2d p2p
链路
194(ue 190
可通过其间接地获得基于
wlan
的因特网连通性
)。
在一示例中,
d2d p2p
链路
192

194
可以使用任何公知的
d2d rat(
诸如
lte
直连
(lte-d)、wifi
直连
(wifi-d)、

)
来支持

[0063]

2a
解说了示例无线网络结构
200。
例如,
5gc 210(
也被称为下一代核心
(ngc))
可在功能上被视为控制面功能
214(
例如,
ue
注册

认证

网络接入

网关选择等
)
和用户面功能
212(
例如,
ue
网关功能

对数据网络的接入
、ip
路由等
)
,它们协同地操作以形成核心网

用户面接口
(ng-u)213
和控制面接口
(ng-c)215

gnb 222
连接到
5gc 210
,尤其连接到控制面功能
214
和用户面功能
212。
在附加配置中,
ng-enb 224
也可经由至控制面功能
214

ng-c 215
以及至用户面功能
212

ng-u 213
来连接到
5gc 210。
此外,
ng-enb 224
可经由回程连接
223
直接与
gnb 222
进行通信

在一些配置中,下一代
ran(ng-ran)220
可以仅具有一个或多个
gnb 222
,而其他配置包括一个或多个
ng-enb 224
和一个或多个
gnb 222。gnb 222

ng-enb 224
可与
ue 204(
例如,图1中所描绘的任何
ue)
进行通信

另一可任选方面可包括位置服务器
230
,位置服务器
230
可与
5gc 210
处于通信以为
ue 204
提供位置辅助

位置服务器
230
可被实现为多个分开的服务器
(
例如,物理上分开的服务器

单个服务器上的不同软件模块

跨越多个物理服务器扩展的不同软件模块等等
)
,或者替换地可各自对应于单个服务器

位置服务器
230
可被配置成支持用于
ue 204
的一个或多个位置服务,
ue 204
能够经由核心网
、5gc 210

/
或经由因特网
(
未解说
)
连接到位置服务器
230。
此外,位置服务器
230
可被
集成到核心网的组件中,或者替换地可在核心网外部

[0064]

2b
解说了另一示例无线网络结构
250。5gc 260(
其可对应于图
2a
中的
5gc 210)
可在功能上被视为控制面功能
(
由接入和移动性管理功能
(amf)264
提供
)
以及用户面功能
(
由用户面功能
(upf)262
提供
)
,它们协同地操作以形成核心网
(
即,
5gc 260)。
用户面接口
263
和控制面接口
265

ng-enb 224
连接到
5gc 260
,尤其分别连接到
upf 262

amf 264。
在附加配置中,
gnb 222
也可经由至
amf 264
的控制面接口
265
以及至
upf 262
的用户面接口
263
来连接到
5gc 260。
此外,
ng-enb 224
可在具有或没有至
5gc 260

gnb
直接连通性的情况下经由回程连接
223
直接与
gnb 222
进行通信

在一些配置中,
ng-ran 220
可以仅具有一个或多个
gnb 222
,而其他配置包括一个或多个
ng-enb 224
和一个或多个
gnb 222。gnb 222

ng-enb 224
可与
ue 204(
例如,图1中所描绘的任何
ue)
进行通信
。ng-ran 220
的基站通过
n2
接口与
amf 264
进行通信,并且通过
n3
接口与
upf 262
进行通信

[0065]
amf 264
的功能包括注册管理

连接管理

可达性管理

移动性管理

合法拦截


ue 204
与会话管理功能
(smf)266
之间的会话管理
(sm)
消息的传输

用于路由
sm
消息的透明代理服务

接入认证和接入授权


ue 204
与短消息服务功能
(smsf)(
未示出
)
之间的短消息服务
(sms)
消息的传输

以及安全性锚功能性
(seaf)。amf 264
还与认证服务器功能
(ausf)(
未示出
)

ue 204
交互,并接收作为
ue 204
认证过程的结果而确立的中间密钥

在基于
umts(
通用移动电信系统
)
订户身份模块
(usim)
来认证的情形中,
amf 264

ausf
中检索安全材料
。amf 264
的功能还包括安全上下文管理
(scm)。scm

seaf
接收密钥,该密钥被
scm
用来推导因接入网而异的密钥
。amf 264
的功能性还包括:用于监管服务的位置服务管理


ue 204

lmf 270(
其充当位置服务器
230)
之间的位置服务消息的传输


ng-ran 220

lmf 270
之间的位置服务消息的传输

用于与演进分组系统
(eps)
互通的
eps
承载标识符分配

以及
ue 204
移动性事件通知

另外,
amf 264
还支持非
3gpp(
第三代伙伴项目
)
接入网的功能性

[0066]
upf 262
的功能包括:充当
rat

/rat
间移动性的锚点
(
在适用时
)、
充当互连至数据网络
(
未示出
)
的外部协议数据单元
(pdu)
会话点

提供分组路由和转发

分组检视

用户面策略规则实施
(
例如,选通

重定向

话务引导
)、
合法拦截
(
用户面收集
)、
话务使用报告

用于用户面的服务质量
(qos)
处置
(
例如,上行链路
/
下行链路速率实施

下行链路中的反射性
qos
标记
)、
上行链路话务验证
(
服务数据流
(sdf)

qos
流映射
)、
上行链路和下行链路中的传输级分组标记

下行链路分组缓冲和下行链路数据通知触发

以及向源
ran
节点发送和转发一个或多个结束标记摂
。upf 262
还可支持在用户面上在
ue 204
与位置服务器
(
诸如
slp 272)
之间传输位置服务消息

[0067]
smf 266
的功能包括会话管理
、ue
网际协议
(ip)
地址分配和管理

用户面功能的选择和控制


upf 262
处用于将话务路由到正确目的地的话务引导配置

对策略实施和
qos
的部分控制

以及下行链路数据通知
。smf 266
用于与
amf 264
进行通信的接口被称为
n11
接口

[0068]
另一可任选方面可包括
lmf 270

lmf 270
可与
5gc 260
处于通信以为
ue 204
提供位置辅助
。lmf 270
可被实现为多个分开的服务器
(
例如,物理上分开的服务器

单个服务器上的不同软件模块

跨越多个物理服务器扩展的不同软件模块等等
)
,或者替换地可各自对应于单个服务器
。lmf 270
可被配置成支持用于
ue 204
的一个或多个位置服务,
ue 204
能够
经由核心网
、5gc 260

/
或经由因特网
(
未解说
)
连接到
lmf 270。slp 272
可支持与
lmf 270
类似的功能,但是
lmf 270
可在控制面上
(
例如,使用旨在传达信令消息而不传达语音或数据的接口和协议
)

amf 264、ng-ran 220、
以及
ue 204
通信,
slp 272
可在用户面上
(
例如,使用旨在携带语音和
/
或数据的协议,如传输控制协议
(tcp)

/

ip)

ue 204
和外部客户端
(

2b
中未示出
)
通信

[0069]

3a、3b

3c
解说了可被纳入
ue 302(
其可对应于本文所描述的任何
ue)、
基站
304(
其可对应于本文所描述的任何基站
)、
以及网络实体
306(
其可对应于或体现本文所描述的任何网络功能,包括位置服务器
230

lmf 270)
中的若干示例组件
(
由对应的框来表示
)
以支持如本文所教导的文件传输操作

将领会,这些组件在不同实现中可在不同类型的装置中
(
例如,在
asic


在片上系统
(soc)
中等
)
实现

所解说的组件也可被纳入到通信系统中的其他装置中

例如,系统中的其他装置可包括与所描述的那些组件类似的组件以提供类似的功能性

此外,给定装置可包含这些组件中的一个或多个组件

例如,装置可包括使得该装置能够在多个载波上操作和
/
或经由不同技术进行通信的多个收发机组件

[0070]
ue 302
和基站
304
各自分别包括无线广域网
(wwan)
收发机
310

350
,从而提供用于经由一个或多个无线通信网络
(
未示出
)(
诸如
nr
网络
、lte
网络
、gsm
网络等等
)
进行通信的装置
(
例如,用于传送的装置

用于接收的装置

用于测量的装置

用于调谐的装置

用于抑制进行传送的装置等等
)。wwan
收发机
310

350
可分别连接到一个或多个天线
316

356
,以用于经由至少一个指定
rat(
例如,
nr、lte、gsm

)
在感兴趣的无线通信介质
(
例如,特定频谱中的某个时间
/
频率资源集
)
上与其他网络节点
(
诸如其他
ue、
接入点

基站
(
例如,
enb、gnb)

)
进行通信
。wwan
收发机
310

350
可根据指定
rat
以各种方式分别被配置成用于传送和编码信号
318

358(
例如,消息

指示

信息等
)
,以及反之分别被配置成用于接收和解码信号
318

358(
例如,消息

指示

信息

导频等
)。
具体地,
wwan
收发机
310

350
分别包括一个或多个发射机
314

354
以分别用于传送和编码信号
318

358
,并分别包括一个或多个接收机
312

352
以分别用于接收和解码信号
318

358。
[0071]
至少在一些情形中,
ue 302
和基站
304
还分别包括一个或多个短程无线收发机
320

360。
短程无线收发机
320

360
可分别连接到一个或多个天线
326

366
,并且提供用于经由至少一个指定
rat(
例如,
wifi、lte-d、d、pc5、
专用短程通信
(dsrc)、
车载环境无线接入
(wave)、
近场通信
(nfc)

)
在感兴趣的无线通信介质上与其他网络节点
(
诸如其他
ue、
接入点

基站等
)
进行通信的装置
(
例如,用于传送的装置

用于接收的装置

用于测量的装置

用于调谐的装置

用于抑制进行传送的装置等
)。
短程无线收发机
320

360
可根据指定
rat
以各种方式分别被配置成用于传送和编码信号
328

368(
例如,消息

指示

信息等
)
,以及反之分别被配置成用于接收和解码信号
328

368(
例如,消息

指示

信息

导频等
)。
具体地,短程无线收发机
320

360
分别包括一个或多个发射机
324

364
以分别用于传送和编码信号
328

368
,并分别包括一个或多个接收机
322

362
以分别用于接收和解码信号
328

368。
作为特定示例,短程无线收发机
320

360
可以是
wifi
收发机

收发机


/
或收发机
、nfc
收发机

或交通工具到交通工具
(v2v)

/
或车联网
(v2x)
收发机

[0072]
包括至少一个发射机和至少一个接收机的收发机电路系统在一些实现中可包括集成设备
(
例如,实施为单个通信设备的发射机电路和接收机电路
)
,在一些实现中可包括
分开的发射机设备和分开的接收机设备,或者在其他实现中可按其他方式来实施

在一方面,发射机可包括或耦合到诸如天线阵列之类的多个天线
(
例如,天线
316、326、356、366)
,该多个天线准许该相应装置执行发射“波束成形”,如本文中所描述的

类似地,接收机可包括或耦合到诸如天线阵列之类的多个天线
(
例如,天线
316、326、356、366)
,该多个天线准许该相应装置执行接收波束成形,如本文中所描述的

在一方面,发射机和接收机可共享相同的多个天线
(
例如,天线
316、326、356、366)
,以使得该相应装置在给定时间只能进行接收或传送,而不是同时进行两者
。ue 302

/
或基站
304
的无线通信设备
(
例如,收发机
310

320
中的一者或两者和
/
或收发机
350

360
中的一者或两者
)
还可包括用于执行各种测量的网络监听模块
(nlm)


[0073]
至少在一些情形中,
ue 302
和基站
304
还包括卫星定位系统
(sps)
接收机
330

370。sps
接收机
330

370
可分别连接到一个或多个天线
336

376
,并且可分别提供用于接收和
/
或测量
sps
信号
338

378
的装置,这些
sps
信号诸如全球定位系统
(gps)
信号

全球导航卫星系统
(glonass)
信号

伽利略信号

北斗信号

印度区域性导航卫星系统
(navic)、
准天顶卫星系统
(qzss)

。sps
接收机
330

370
可分别包括用于接收和处理
sps
信号
338

378
的任何合适的硬件和
/
或软件
。sps
接收机
330

370
在适当时向其他系统请求信息和操作,并执行必要的计算以使用由任何合适的
sps
算法获得的测量来确定
ue 302
和基站
304
的定位

[0074]
基站
304
和网络实体
306
各自分别包括至少一个网络接口
380

390
,从而提供用于与其他网络实体进行通信的装置
(
例如,用于传送的装置

用于接收的装置等
)。
例如,网络接口
380

390(
例如,一个或多个网络接入端口
)
可被配置成经由基于有线的回程连接或无线回程连接来与一个或多个网络实体通信

在一些方面,网络接口
380

390
可被实现为被配置成支持基于有线的信号通信或无线信号通信的收发机

该通信可涉及例如发送和接收:消息

参数


/
或其他类型的信息

[0075]
ue 302、
基站
304
和网络实体
306
还包括可结合如本文中所公开的操作来使用的其他组件
。ue 302
包括处理器电路系统,其实现用于提供例如与无线定位有关的功能性

以及用于提供其他处理功能性的处理系统
332。
基站
304
包括用于提供例如与如本文中所公开的无线定位有关的功能性

以及用于提供其他处理功能性的处理系统
384。
网络实体
306
包括用于提供例如与如本文中所公开的无线定位有关的功能性

以及用于提供其他处理功能性的处理系统
394。
处理系统
332、384

394
因此可提供用于处理的装置,诸如用于确定的装置

用于计算的装置

用于接收的装置

用于传送的装置

用于指示的装置等等

在一方面,处理系统
332、384

394
可包括例如一个或多个处理器,诸如一个或多个通用处理器

多核处理器
、asic、
数字信号处理器
(dsp)、
现场可编程门阵列
(fpga)、
其他可编程逻辑器件或处理电路系统

或其各种组合

[0076]
ue 302、
基站
304
和网络实体
306
包括存储器电路系统,其分别实现用于维持信息
(
例如,指示所保留资源

阈值

参数等等的信息
)
的存储器组件
340、386

396(
例如,各自包括存储器设备
)。
存储器组件
340、386

396
因此可提供用于存储的装置

用于检索的装置

用于维持的装置等

在一些情形中,
ue 302、
基站
304
和网络实体
306
可分别包括定位组件
342、388

398。
定位组件
342、388

398
分别可以是作为处理系统
332、384

394
的一部分或与其耦合的硬件电路,这些硬件电路在被执行时使得
ue 302、
基站
304
和网络实体
306
执行
本文所描述的功能性

在其他方面,定位组件
342、388

398
可以在处理系统
332、384

394
的外部
(
例如,调制解调器处理系统的一部分

与另一处理系统集成等等
)。
替换地,定位组件
342、388

398
分别可以是存储在存储器组件
340、386

396
中的存储器模块,这些存储器模块在由处理系统
332、384

394(
或调制解调器处理系统

另一处理系统等
)
执行时使得
ue 302、
基站
304
和网络实体
306
执行本文所描述的功能性


3a
解说了定位组件
342
的可能位置,该定位组件
342
可以是
wwan
收发机
310、
存储器组件
340、
处理系统
332、
或其任何组合的一部分,或者可以是自立组件


3b
解说了定位组件
388
的可能位置,该定位组件
388
可以是
wwan
收发机
350、
存储器组件
386、
处理系统
384、
或其任何组合的一部分,或者可以是自立组件


3c
解说了定位组件
398
的可能位置,该定位组件
398
可以是
(

)
网络接口
390、
存储器组件
396、
处理系统
394、
或其任何组合的一部分,或者可以是自立组件

[0077]
ue 302
可包括耦合到处理系统
332
的一个或多个传感器
344
,以提供用于感测或检测移动和
/
或取向信息的装置,该移动和
/
或取向信息独立于从由
wwan
收发机
310、
短程无线收发机
320、

/

sps
接收机
330
接收到的信号推导出的运动数据

作为示例,
(

)
传感器
344
可包括加速度计
(
例如,微机电系统
(mems)
设备
)、
陀螺仪

地磁传感器
(
例如,罗盘
)、
高度计
(
例如,气压高度计
)

/
或任何其他类型的移动检测传感器

此外,传感器
344
可包括多个不同类型的设备并将它们的输出进行组合以提供运动信息

例如,
(

)
传感器
344
可使用多轴加速度计和取向传感器的组合来提供计算
2d

/

3d
坐标系中的定位的能力

[0078]
另外,
ue 302
包括用户接口
346
,用户接口
346
提供用于向用户提供指示
(
例如,可听和
/
或视觉指示
)

/
或用于
(
例如,在用户致动感测设备
(
诸如按键板

触摸屏

话筒等
)
之际
)
接收用户输入的装置

尽管未示出,但基站
304
和网络实体
306
也可包括用户接口

[0079]
更详细地参照处理系统
384
,在下行链路中,来自网络实体
306

ip
分组可被提供给处理系统
384。
处理系统
384
可以实现用于
rrc


分组数据汇聚协议
(pdcp)


无线电链路控制
(rlc)
层和媒体接入控制
(mac)
层的功能性

处理系统
384
可提供与系统信息
(
例如,主信息块
(mib)、
系统信息块
(sib))
广播
、rrc
连接控制
(
例如,
rrc
连接寻呼
、rrc
连接建立
、rrc
连接修改

以及
rrc
连接释放
)、rat
间移动性

以及
ue
测量报告的测量配置相关联的
rrc
层功能性;与报头压缩
/
解压缩

安全性
(
暗码化

暗码解译

完整性保护

完整性验证
)、
以及切换支持功能相关联的
pdcp
层功能性;与上层
pdu
的传递

通过自动重复请求
(arq)
的纠错
、rlc
服务数据单元
(sdu)
的级联

分段和重组
、rlc
数据
pdu
的重新分段

以及
rlc
数据
pdu
的重新排序相关联的
rlc
层功能性;以及与逻辑信道与传输信道之间的映射

调度信息报告

纠错

优先级处置

以及逻辑信道优先级排序相关联的
mac
层功能性

[0080]
发射机
354
和接收机
352
可实现与各种信号处理功能相关联的层
1(l1)
功能性

包括物理
(phy)
层的层1可包括传输信道上的检错

传输信道的前向纠错
(fec)
译码
/
解码

交织

速率匹配

映射到物理信道上

物理信道的调制
/
解调

以及
mimo
天线处理

发射机
354
基于各种调制方案
(
例如,二进制相移键控
(bpsk)、
正交相移键控
(qpsk)、m
相移键控
(m-psk)、m
正交振幅调制
(m-qam))
来处置至信号星座的映射

经译码和经调制的码元可随后被拆分成并行流

每个流随后可被映射到正交频分复用
(ofdm)
副载波,在时域和
/
或频域中与参考信号
(
例如,导频
)
复用,并且随后使用快速傅里叶逆变换
(ifft)
组合到一起以产生携带时域
ofdm
码元流的物理信道


ofdm
码元流被空间预编码以产生多个空间流

来自信道估计器的信道估计可被用来确定编码和调制方案以及用于空间处理

信道估计可从由
ue 302

送的参考信号和
/
或信道状况反馈推导出

每个空间流随后可被提供给一个或多个不同的天线
356。
发射机
354
可用相应空间流来调制
rf
载波以供传输

[0081]

ue 302
,接收机
312
通过其相应的天线
316
来接收信号

接收机
312
恢复调制到
rf
载波上的信息并将该信息提供给处理系统
332。
发射机
314
和接收机
312
实现与各种信号处理功能相关联的层1功能性

接收机
312
可对该信息执行空间处理以恢复出以
ue 302
为目的地的任何空间流

若有多个空间流以
ue 302
为目的地,则它们可由接收机
312
组合成单个
ofdm
码元流

接收机
312
随后使用快速傅里叶变换
(fft)
将该
ofdm
码元流从时域转换到频域

频域信号对
ofdm
信号的每个副载波包括单独的
ofdm
码元流

通过确定最有可能由基站
304
传送的信号星座点来恢复和解调每个副载波上的码元

以及参考信号

这些软判决可基于由信道估计器计算出的信道估计

这些软判决随后被解码和解交织以恢复出原始由基站
304
在物理信道上传送的数据和控制信号

这些数据和控制信号随后被提供给实现层
3(l3)
和层
2(l2)
功能性的处理系统
332。
[0082]
在上行链路中,处理系统
332
提供传输信道与逻辑信道之间的解复用

分组重组

暗码解译

报头解压缩以及控制信号处理以恢复出来自核心网的
ip
分组

处理系统
332
还负责检错

[0083]
类似于结合由基站
304
进行的下行链路传输所描述的功能性,处理系统
332
提供与系统信息
(
例如,
mib、sib)
捕获
、rrc
连接

以及测量报告相关联的
rrc
层功能性;与报头压缩
/
解压缩和安全性
(
暗码化

暗码解译

完整性保护

完整性验证
)
相关联的
pdcp
层功能性;与上层
pdu
的传递

通过
arq
的纠错
、rlc sdu
的级联

分段和重组
、rlc
数据
pdu
的重新分段

以及
rlc
数据
pdu
的重新排序相关联的
rlc
层功能性;以及与逻辑信道与传输信道之间的映射


mac sdu
复用到传输块
(tb)



tb
解复用
mac sdu、
调度信息报告

通过混合自动重复请求
(harq)
的纠错

优先级处置

以及逻辑信道优先级排序相关联的
mac
层功能性

[0084]
由信道估计器从由基站
304
传送的参考信号或反馈中推导出的信道估计可由发射机
314
用来选择恰适的编码和调制方案

以及促成空间处理

由发射机
314
生成的空间流可被提供给不同天线
316。
发射机
314
可用相应空间流来调制
rf
载波以供传输

[0085]
在基站
304
处以与结合
ue 302
处的接收机功能所描述的方式相类似的方式来处理上行链路传输

接收机
352
通过其相应的天线
356
来接收信号

接收机
352
恢复调制到
rf
载波上的信息并将该信息提供给处理系统
384。
[0086]
在上行链路中,处理系统
384
提供传输信道与逻辑信道之间的解复用

分组重组

暗码解译

报头解压缩

控制信号处理以恢复出来自
ue 302

ip
分组

来自处理系统
384

ip
分组可被提供给核心网

处理系统
384
还负责检错

[0087]
为方便起见,
ue 302、
基站
304

/
或网络实体
306
在图
3a

3c
中被示为包括可根据本文中描述的各种示例来配置的各种组件

然而将领会,所解说的框在不同设计中可具有不同功能性

[0088]
ue 302、
基站
304
和网络实体
306
的各种组件可分别在数据总线
334、382

392
上彼此通信


3a

3c
的各组件可按各种方式来实现

在一些实现中,图
3a

3c
的组件可以实现在一个或多个电路中,诸如举例而言一个或多个处理器和
/
或一个或多个
asic(
其可包括一个或多个处理器
)。
此处,每个电路可使用和
/
或纳入用于存储由该电路用来提供这一功能性的信息或可执行代码的至少一个存储器组件

例如,由框
310

346
表示的功能性中的一
些或全部功能性可由
ue 302
的处理器和存储器组件来实现
(
例如,通过执行恰适的代码和
/
或通过恰适地配置处理器组件
)。
类似地,由框
350

388
表示的功能性中的一些或全部功能性可由基站
304
的处理器和存储器组件来实现
(
例如,通过执行恰适的代码和
/
或通过恰适地配置处理器组件
)。
此外,由框
390

398
表示的功能性中的一些或全部功能性可由网络实体
306
的处理器和存储器组件来实现
(
例如,通过执行恰适的代码和
/
或通过恰适地配置处理器组件
)。
为了简单起见,各种操作

动作和
/
或功能在本文中被描述为“由
ue”、“由基站”、“由网络实体”等来执行

然而,如将领会的,此类操作

动作


/
或功能实际上可由
ue 302、
基站
304、
网络实体
306
等等的特定组件或组件组合来执行,这些组件诸如处理系统
332、384、394、
收发机
310、320、350

360、
存储器组件
340、386

396、
定位组件
342、388

398


[0089]
nr
支持数个基于蜂窝网络的定位技术,包括基于下行链路的定位方法

基于上行链路的定位方法

以及基于下行链路和上行链路的定位方法

基于下行链路的定位方法包括:
lte
中的观察抵达时间差
(otdoa)、nr
中的下行链路抵达时间差
(dl-tdoa)、
以及
nr
中的下行链路出发角
(dl-aod)。

otdoa

dl-tdoa
定位规程中,
ue
测量从成对基站接收到的参考信号
(
例如,
prs、trs、csi-rs、ssb

)
的抵达时间
(toa)
之间的差值
(
被称为参考信号时间差
(rstd)
或抵达时间差
(tdoa)
测量
)
,并且将这些差值报告给定位实体

更具体而言,
ue
在辅助数据中接收参考基站
(
例如,服务基站
)
和多个非参考基站的标识符
(id)。ue
随后测量参考基站与每个非参考基站之间的
rstd。
基于所涉及基站的已知位置和
rstd
测量,定位实体可以估计
ue
的位置

[0090]
对于
dl-aod
定位,定位实体使用来自
ue
的关于多个下行链路发射波束的收到信号强度测量的波束报告来确定该
ue

(

)
传送方基站之间的
(

)
角度

定位实体随后可基于所确定的
(

)
角度和
(

)
传送方基站的
(

)
已知位置来估计
ue
的位置

[0091]
基于上行链路的定位方法包括上行链路抵达时间差
(ul-tdoa)
和上行链路抵达角
(ul-aoa)。ul-tdoa
类似于
dl-tdoa
,但是
ul-tdoa
基于由
ue
传送的上行链路参考信号
(
例如,
srs)。
对于
ul-aoa
定位,一个或多个基站测量在一个或多个上行链路接收波束上从
ue
接收到的一个或多个上行链路参考信号
(
例如,
srs)
的收到信号强度

定位实体使用信号强度测量和
(

)
接收波束的
(

)
角度来确定
ue

(

)
基站之间的
(

)
角度

基于所确定的
(

)
角度和
(

)
基站的
(

)
已知位置,定位实体可以随后估计
ue
的位置

[0092]
基于下行链路和上行链路的定位方法包括:增强型蜂窝小区
id(e-cid)
定位和多往返时间
(rtt)
定位
(
也被称为“多蜂窝小区
rtt”)。

rtt
规程中,发起方
(
基站或
ue)

rtt
测量信号
(
例如,
prs

srs)
传送给响应方
(ue
或基站
)
,该响应方将
rtt
响应信号
(
例如,
srs

prs)
传送回发起方
。rtt
响应信号包括
rtt
测量信号的
toa

rtt
响应信号的传送时间之间的差
(
被称为接收-传送
(rx-tx)
时间差
)。
发起方计算
rtt
测量信号的传送时间与
rtt
响应信号的
toa
之间的差
(
被称为传送-接收
(tx-rx)
时间差
)。
发起方与响应方之间的传播时间
(
亦被称为“飞行时间”)
可以从
tx-rx

rx-tx
时间差来计算

基于传播时间和已知的光速,可以确定发起方与响应方之间的距离

对于多
rtt
定位,
ue
执行与多个基站的
rtt
规程以使得该
ue
的位置能够基于各基站的已知位置来确定
(
例如,使用多边定位
)。rtt
和多
rtt
方法可与其他定位技术
(
诸如,
ul-aoa

dl-aod)
组合以提高位置准确性

[0093]
e-cid
定位方法基于无线电资源管理
(rrm)
测量


e-cid
中,
ue
报告服务蜂窝小区
id、
定时提前
(ta)、
以及所检测到的邻居基站的标识符

估计定时和信号强度

随后,基于该
信息和基站的已知位置来估计
ue
的位置

[0094]
为了辅助定位操作,位置服务器
(
例如,位置服务器
230、lmf 270、slp 272)
可向
ue
提供辅助数据

例如,辅助数据可包括:测量来自其的参考信号的基站
(
或基站的蜂窝小区
/trp)
的标识符

参考信号配置参数
(
例如,连贯定位子帧的数目

定位子帧的周期性

静默序列

跳频序列

参考信号标识符

参考信号带宽等
)

/
或适用于特定定位方法的其他参数

替换地,辅助数据可直接源自基站自身
(
例如,在周期性地广播的开销消息中等
)。
在一些情形中,
ue
自身可以能够检测邻居网络节点而无需使用辅助数据

[0095]

otdoa

dl-tdoa
定位规程的情形中,辅助数据可进一步包括预期
rstd
值和相关联的不确定性

或围绕预期
rstd
的搜索窗口

在一些情形中,预期
rstd
的值范围可以是
+/-500
微秒
(
μ
s)。
在一些情形中,当被用于定位测量的任何资源处于
fr1
中时,预期
rstd
的不确定性的值范围可以是
+/-32
μ
s。
在其他情形中,当被用于
(

)
定位测量的所有资源处于
fr2
中时,预期
rstd
的不确定性的值范围可以是
+/-8
μ
s。
[0096]
位置估计可通过其他名称来称呼,诸如定位估计

位置

定位

定位锁定

锁定等等

位置估计可以是大地式的并且包括坐标
(
例如,纬度

经度和可能的海拔
)
,或者可以是市政式的并且包括街道地址

邮政地址

或某个其他口头上的位置描述

位置估计可进一步相对于某个其他已知位置来定义或以绝对项来定义
(
例如,使用纬度

经度和可能的海拔
)。
位置估计可包括预期误差或不确定性
(
例如,通过包括位置预期将以某个指定或默认的置信度被包含在其内的面积或体积
)。
[0097]
各种帧结构可被用于支持网络节点
(
例如,基站与
ue)
之间的下行链路和上行链路传输


4a
是解说根据本公开的各方面的下行链路帧结构的示例的示图
400。

4b
是解说根据本公开的各方面的下行链路帧结构内的信道的示例的示图
430。
其他无线通信技术可具有不同的帧结构和
/
或不同的信道

[0098]
lte
以及在一些情形中
nr
在下行链路上利用
ofdm
并且在上行链路上利用单载波频分复用
(sc-fdm)。
然而,不同于
lte

nr
还具有在上行链路上使用
ofdm
的选项
。ofdm

sc-fdm
将系统带宽划分成多个
(k

)
正交副载波,这些副载波也常被称为频调

频槽等

每个副载波可用数据来调制

一般而言,调制码元对于
ofdm
是在频域中发送的,而对于
sc-fdm
是在时域中发送的

毗邻副载波之间的间隔可以是固定的,且副载波的总数
(k)
可取决于系统带宽

例如,副载波的间隔可以是
15
千赫兹
(khz)
,而最小资源分配
(
资源块
)
可以是
12
个副载波
(
或即
180khz)。
因此,对于
1.25、2.5、5、10

20
兆赫兹
(mhz)
的系统带宽,标称
fft
大小可以分别等于
128、256、512、1024

2048。
系统带宽还可被划分成子带

例如,子带可覆盖
1.08mhz(
即,6个资源块
)
,并且对于
1.25、2.5、5、10

20mhz
的系统带宽,可分别有
1、2、4、8

16
个子带

[0099]
lte
支持单个参数设计
(
副载波间隔
(scs)、
码元长度等
)。
相比之下,
nr
可支持多个参数设计
(
μ
)
,例如,为
15khz(
μ

0)、30khz(
μ

1)、60khz(
μ

2)、120khz(
μ

3)、

240khz(
μ

4)
或更大的副载波间隔可以是可用的

在每个副载波间隔中,每时隙存在
14
个码元

对于
15khz scs(
μ

0)
,每子帧存在一个时隙,每帧存在
10
个时隙,时隙历时是1毫秒
(ms)
,码元历时是
66.7
微秒
(
μ
s)
,并且具有
4k fft
大小的最大标称系统带宽
(

mhz

)

50。
对于
30khz scs(
μ

1)
,每子帧存在两个时隙,每帧存在
20
个时隙,时隙历时是
0.5ms
,码元历时是
33.3
μs,并且具有
4k fft
大小的最大标称系统带宽
(

mhz

)

100。
对于
60khz scs(
μ

2)
,每子帧存在四个时隙,每帧存在
40
个时隙,时隙历时是
0.25ms
,码元历时是
16.7
μs,并且具有
4k fft
大小的最大标称系统带宽
(

mhz

)

200。
对于
120khz scs(
μ

3)
,每子帧存在八个时隙,每帧存在
80
个时隙,时隙历时是
0.125ms
,码元历时是
8.33
μs,并且具有
4k fft
大小的最大标称系统带宽
(

mhz

)

400。
对于
240khz scs(
μ

4)
,每子帧存在
16
个时隙,每帧存在
160
个时隙,时隙历时是
0.0625ms
,码元历时是
4.17
μs,并且具有
4k fft
大小的最大标称系统带宽
(

mhz

)

800。
[0100]
在图
4a
和图
4b
的示例中,使用
15khz
的参数设计

由此,在时域中,
10ms
帧被划分成
10
个相等大小的子帧,每个子帧
1ms
,并且每个子帧包括一个时隙

在图
4a

4b
中,水平地
(

x
轴上
)
表示时间,其中时间从左至右增加,而垂直地
(
在y轴上
)
表示频率,其中频率从下至上增大
(
或减小
)。
[0101]
资源网格可被用于表示时隙,每个时隙包括频域中的一个或多个时间并发的资源块
(rb)(
也被称为物理
rb(prb))。
资源网格进一步被划分成多个资源元素
(re)。re
在时域中可对应于一个码元长度并且在频域中可对应于一个副载波

在图
4a
和图
4b
的参数设计中,对于正常循环前缀,
rb
可包含频域中的
12
个连贯副载波以及时域中的7个连贯码元,总共
84

re。
对于扩展循环前缀,
rb
可包含频域中的
12
个连贯副载波以及时域中的6个连贯码元,总共
72

re。
由每个
re
携带的比特数取决于调制方案

[0102]
一些
re
携带下行链路参考
(
导频
)
信号
(dl-rs)。dl-rs
可包括
prs、trs、ptrs、crs、csi-rs、dmrs、pss、sss、ssb



4a
解说了携带
prs

re
的示例位置
(
标记为“r”)。
[0103]
被用于
prs
的传输的资源元素
(re)
集合被称为“prs
资源”。
资源元素集合可在频域中跨越多个
prb
并在时域中跨越一时隙内的

n’个
(
诸如1个或多个
)
连贯码元

在时域中的给定
ofdm
码元中,
prs
资源占用频域中的连贯
prb。
[0104]
给定
prb
内的
prs
资源的传输具有特定的梳齿大小
(
也被称为“梳齿密度”)。
梳齿大小

n’表示
prs
资源配置的每个码元内的副载波间隔
(
或频率
/
频调间隔
)。
具体地,对于梳齿大小

n’,
prs

prb
的一码元的每第n个副载波中传送

例如,对于梳齿-4
,对于
prs
资源配置的每个码元,对应于每第四副载波
(
诸如副载波
0、4、8)

re
被用于传送
prs
资源的
prs。
当前,为梳齿-2、
梳齿-4、
梳齿-6
和梳齿-12
的梳齿大小得到
dl-prs
的支持


4a
解说了用于梳齿
6(
其跨越6个码元
)
的示例
prs
资源配置

即,带阴影
re
的位置
(
被标记为“r”)
指示梳齿-6

prs
资源配置

[0105]
当前,
dl-prs
资源使用全频域交错模式可跨越一时隙内的
2、4、6、

12
个连贯码元

可在时隙的任何由高层配置的下行链路或灵活
(fl)
码元中配置
dl-prs
资源

对于给定
dl-prs
资源的所有
re
,可能存在恒定的每资源元素能量
(epre)。
以下是针对
2、4、6

12
个码元上的梳齿大小
2、4、6

12
的逐码元频率偏移
。2-码元梳齿-2

{0,1}

4-码元梳齿-2

{0,1,0,1}

6-码元梳齿-2

{0,1,0,1,0,1}

12-码元梳齿-2

{0,1,0,1,0,1,0,1,0,1,0,1}

4-码元梳齿-4

{0,2,1,3}

12-码元梳齿-4

{0,2,1,3,0,2,1,3,0,2,1,3}

6-码元梳齿-6

{0,3,1,4,2,5}

12-码元梳齿-6

{0,3,1,4,2,5,0,3,1,4,2,5}
;以及
12
码元梳齿-12

{0,6,3,9,1,7,4,10,2,8,5,11}。
[0106]“prs
资源集”是用于
prs
信号的传输的
prs
资源集,其中每个
prs
资源具有
prs
资源
id。
另外,
prs
资源集中的
prs
资源与相同的
trp
相关联
。prs
资源集由
prs
资源集
id
来标识并且与
(

trp id
标识的
)
特定
trp
相关联

另外,
prs
资源集中的
prs
资源跨各时隙具有相同的
周期性

共用静默模式配置

以及相同的重复因子
(
诸如“prs-resourcerepetitionfactor(prs
资源重复因子
)”)。
周期性是从第一
prs
实例的第一
prs
资源的第一重复到下一
prs
实例的相同第一
prs
资源的相同第一重复的时间

周期性可具有从以下各项选择的长度:
2^
μ
*{4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240}
个时隙,其中
μ

0,1,2,3。
重复因子可具有从
{1,2,4,6,8,16,32}
个时隙选择的长度

[0107]
prs
资源集中的
prs
资源
id
与从单个
trp
传送的单个波束
(
或波束
id)
相关联
(
其中一
trp
可传送一个或多个波束
)。
即,
prs
资源集中的每个
prs
资源可在不同的波束上传送,并且如此,“prs
资源”(
或简称为“资源”)
还可被称为“波束”。
注意到,这不具有对
ue
是否已知传送
prs

trp
和波束的任何暗示

[0108]“prs
实例”或“prs
时机”是预期在其中传送
prs
的周期性地重复的时间窗口
(
诸如一群一个或多个连贯时隙
)
的一个实例
。prs
时机还可被称为“prs
定位时机”、“prs
定位实例”、“定位时机”、“定位实例”、“定位重复”,或简称为“时机”、“实例”、
或“重复”。
[0109]“定位频率层”(
也被简称为“频率层”)
是跨一个或多个
trp
的针对某些参数具有相同值的一个或多个
prs
资源集的集合

具体地,
prs
资源集的集合具有相同的副载波间隔和循环前缀
(cp)
类型
(
意味着为物理下行链路共享信道
(pdsch)
所支持的所有参数设计也为
prs
所支持
)、
相同的点
a、
下行链路
prs
带宽的相同值

相同的起始
prb(
和中心频率
)、
以及相同的梳齿大小

点a参数采用参数“arfcn-值
nr(arfcn-valuenr)”的值
(
其中“arfcn”代表“绝对射频信道号”)
并且是指定被用于传输和接收的一对物理无线电信道的标识符
/
代码

下行链路
prs
带宽可具有为
4prb
的粒度,并且最小值是
24prb
而最大值是
272prb。
当前,已定义了至多4个频率层,并且每
trp
每频率层可配置至多2个
prs
资源集

[0110]
频率层的概念在一定程度上类似分量载波和带宽部分
(bwp)
的概念,但是不同之处在于分量载波和
bwp
由一个基站
(
或宏蜂窝小区基站和小型蜂窝小区基站
)
用来传送数据信道,而频率层由若干
(
往往三个或更多个
)
基站用来传送
prs。ue
可在该
ue
向网络发送其定位能力时
(
诸如在
lte
定位协议
(lpp)
会话期间
)
指示该
ue
能支持的频率层数目

例如,
ue
可以指示该
ue
能支持一个还是四个定位频率层

[0111]

4b
解说了无线电帧的下行链路时隙内的各种信道的示例


nr
中,信道带宽或系统带宽被划分成多个
bwp。bwp
是从针对给定载波的给定参数设计的共用
rb
的毗连子集中选择的一组毗连
prb。
一般而言,可以在下行链路和上行链路中指定为4个
bwp
的最大值

即,
ue
可被配置成在下行链路上有至多4个
bwp
,并且在上行链路上有至多4个
bwp。
在给定时间仅一个
bwp(
上行链路或下行链路
)
可以是活跃的,这意味着
ue
一次仅可在一个
bwp
上进行接收或传送

在下行链路上,每个
bwp
的带宽应当等于或大于
ssb
的带宽,但是其可以包含或可以不包含
ssb。
[0112]
参照图
4b
,主同步信号
(pss)

ue
用来确定子帧
/
码元定时和物理层身份

副同步信号
(sss)

ue
用来确定物理层蜂窝小区身份群号和无线电帧定时

基于物理层身份和物理层蜂窝小区身份群号,
ue
可以确定
pci。
基于该
pci

ue
可以确定前述
dl-rs
的位置

携带
mib
的物理广播信道
(pbch)
可在逻辑上与
pss

sss
编群在一起以形成
ssb(
也被称为
ss/pbch)。mib
提供下行链路系统带宽中的
rb
数目

以及系统帧号
(sfn)。pdsch
携带用户数据

不通过
pbch
传送的广播系统信息
(
诸如系统信息块
(sib))、
以及寻呼消息

[0113]
物理下行链路控制信道
(pdcch)
在一个或多个控制信道元素
(cce)
内携带下行链
路控制信息
(dci)
,每个
cce
包括一个或多个
re

(reg)
集束
(
其可以跨越时域中的多个码元
)
,每个
reg
集束包括一个或多个
reg
,每个
reg
对应于频域中的
12
个资源元素
(
一个资源块
)
和时域中的一个
ofdm
码元

用于携带
pdcch/dci
的物理资源集在
nr
中被称为控制资源集
(coreset)。

nr
中,
pdcch
被限定于单个
coreset
并且与其自身的
dmrs
一起传送

这实现了针对
pdcch
的因
ue
而异的波束成形

[0114]
在图
4b
的示例中,每
bwp
存在一个
coreset
,并且该
coreset
跨越时域中的三个码元
(
尽管其可以是仅一个码元或两个码元
)。
与占用整个系统带宽的
lte
控制信道不同,在
nr
中,
pdcch
信道被局部化于频域中的特定区域
(
即,
coreset)。
由此,图
4b
中示出的
pdcch
的频率分量在频域中被解说为少于单个
bwp。
注意,尽管所解说的
coreset
在频域中是毗连的,但
coreset
不需要是毗连的

另外,
coreset
可以在时域中跨越少于三个码元

[0115]
pdcch
内的
dci
携带关于上行链路资源分配
(
持久和非持久
)
的信息和关于传送给
ue
的下行链路数据的描述
(
分别被称为上行链路准予和下行链路准予
)。
更具体而言,
dci
指示被调度用于下行链路数据信道
(
例如,
pdsch)
和上行链路数据信道
(
例如,
pusch)
的资源

可在
pdcch
中配置多个
(
例如,至多达8个
)dci
,并且这些
dci
可具有多种格式之一

例如,存在不同的
dci
格式以用于上行链路调度

用于下行链路调度

用于上行链路发射功率控制
(tpc)

。pdcch
可由
1、2、4、8、

16

cce
传输以容适不同的
dci
有效载荷大小或码率

[0116]
图5解说了根据本公开的各方面的使用可重构智能表面
(ris)510
进行无线通信的示例系统
500。ris(
例如,
ris 510)
是包括大量低成本

低功率近无源反射元件的二维表面,其属性是
(
通过软件
)
可重配置的而不是静态的

例如,通过
(
使用软件
)
仔细调谐反射元件的相移,
ris
的散射

吸收

反射和衍射属性可以随着时间改变

以此方式,
ris
的电磁
(em)
属性可被工程化为从传送方
(
例如,基站
、ue

)
收集无线信号,并且无源地将它们朝向目标接收方
(
例如,另一基站

另一
ue

)
进行波束成形

在图5的示例中,第一基站
502-1
控制
ris 510
的反射属性,以便与第一
ue 504-1
进行通信

[0117]
ris
技术的目标是创建智能无线电环境,其中无线传播条件与物理层信令一起被协同设计

系统
500
的这种增强型功能性可以在数个场景中提供技术优势

[0118]
作为第一示例场景,如图5中所示,第一基站
502-1(
例如,本文所描述的基站中的任一者
)
正在尝试在多个下行链路发射波束
(
标记为“0”、“1”、“2”和“3”)
上向第一
ue 504-1
和第二
ue 504-2(
例如,本文所描述的
ue
中的任两者,统称为
ue 504)
传送下行链路无线信号

然而,与第二
ue 504-2
不同,因为第一
ue 504-1
在阻碍物
520(
例如,建筑物

山或其他类型的阻碍物
)
后面,所以第一
ue 502-1
无法在本将来自第一基站
502-1
的视线
(los)
波束
(
即标记为“2”的下行链路发射波束
)
上接收无线信号

在这种场景中,第一基站
502-1
可以改为使用标记为“1”的下行链路发射波束来向
ris 510
传送无线信号,并且将
ris 510
配置成朝向第一
ue 504-1
将传入无线信号进行反射
/
波束成形

由此,第一基站
502-1
可以绕过阻碍物
520
传送无线信号

[0119]
注意,第一基站
502-1
还可以将
ris 510
配置成供第一
ue 504-1
在上行链路中使用

在这种情形中,第一基站
502-1
可以将
ris 510
配置成将来自第一
ue 504-1
的上行链路信号反射到第一基站
502-1
,从而使第一
ue 504-1
能够绕过阻碍物
520
传送上行链路信号

[0120]
作为系统
500
可以提供技术优势的另一示例场景,第一基站
502-1
可以知悉阻碍物
520
可以创建“盲区”,即,来自第一基站
502-1
的下行链路无线信号在其中衰减太大而无法
被该区域内的
ue(
例如,第一
ue 504-1)
可靠地检测到的地理区域

在这种场景中,第一基站
502-1
可以将
ris 510
配置成将下行链路无线信号反射到盲区中,以便向可能位于那里的
ue(
包括第一基站
502-1
不知悉的
ue)
提供覆盖

[0121]
ris(
例如,
ris 510)
可被设计成在第一模式
(
称为“模式
1”)
或第二模式
(
称为“模式
2”)
中操作,在第一模式中
ris
作为可重配置的镜子操作,在第二模式中
ris
作为接收机和发送机操作
(
类似于中继的放大和转发功能性
)。
某种
ris
可被设计为能够在模式1或模式2中操作,而其他
ris
可被设计为仅在模式1或模式2中操作

假设模式
1ris
具有可忽略硬件群延迟,而模式
2ris
由于被装备有基带处理能力而具有不可忽略硬件群延迟

由于与模式
1ris
相比,模式
2ris
有更强的处理能力,因此在一些情形中,模式
2ris
可以能够计算并报告其传送到接收
(tx-rx)
时间差测量
(
即,信号被转发到
ue
的时间与接收到从该
ue
返回的信号的时间之间的差值
)。
在图5的示例中,
ris 510
可以是模式1或模式
2ris。
[0122]
图5还解说了可以向
ue 504
中的一者或两者传送下行链路无线信号的第二基站
502-2。
作为示例,第一基站
502-1
可以是
ue 504
的服务基站,而第二基站
502-2
可以是相邻基站

第二基站
502-2
可以向
ue 504
中的一者或两者传送下行链路定位参考信号,作为涉及
(

)ue 504
的定位规程的一部分

替换地或附加地,第二基站
502-2
可以是
ue 504
中的一者或两者的辅蜂窝小区

在一些情形中,第二基站
502-2
还可以能够在给定
ris 510
当时不受第一基站
502-1
控制的情况下重配置该
ris 610。
[0123]
应注意,尽管图5解说了一个
ris 510
和控制该
ris 510
的一个基站
(
即,第一基站
502-1)
,但第一基站
502-1
可以控制多个
ris 510。
另外,
ris 510
可以由多个基站
502(
例如,第一基站
502-1
和第二基站
502-2
两者,以及可能更多的基站
)
控制

[0124]
图6解说了根据本公开的各方面的使用多个
ris 610
进行无线通信的示例系统
600。
在图6的示例中,代替具有一个或几个较大的
ris(
如图5的示例系统
500
中具有一个
ris 510)
,可以存在较大量
(
可能具有较小形状因子
)
的分布式
ris。
例如,较大的
ris
可以是
5x5
米或纳入建筑物的侧面,而较小的
ris
可以是
2x2

1x2
米,类似于
mimo
天线的尺寸

图6解说了分布在单个基站
602(
例如,本文描述的任何基站
)
周围的四个
ris 610(
具体地,
ris 610-1、ris 610-2、ris 610-3、ris 610-4)。
基站
602
可以服务三个
ue 604(
具体地,
ue 604-1、ue 604-2、

ue 604-3)
,其可以对应于本文描述的
ue
中的任一者

[0125]
基站
602
可以控制
ris 610
的反射属性以便与
ue 604
通信

例如,基站
602
可以仅借助于
ris 610-3

ue 604-3
通信

类似地,基站
602
可以借助于
ris 610-2

610-4
中的一者或两者与
ue 604-2
通信

相反,基站
02
可以直接和
/
或经由
ris 610-1

ue 604-1
通信

还如图6中所解说的,
ue 604
可以与一个或多个
ris 610
相关联

例如,
ue 604-2
可以经由
ris 610-2

610-4
中的一者或两者与基站
602
通信

[0126]
应当理解,与具有一个或几个较大
ris(
如图5中所示
)
相比,从
ue
的角度来看,其中存在较大量
(
较小的
)
分布式
ris(
如图6中所示
)
的系统提供更好的空间传送
/
接收分集

然而,此类系统还可能创造更嘈杂的环境

[0127]
应注意,尽管图6解说了三个
ue 604
和四个
ris 610
与基站
602
处于通信,如将理解的,可以分别存在比所解说的三个
ue 604
和四个
ris 610
更多或更少的
ue 604

ris 610。
[0128]
ris
可以经由有线接口或无线接口来控制

图7是解说根据本公开的各方面的可以如何经由无线下行链路信令控制
ris
的示例的示图
700。
在图7的示例中,水平地表示时间,
并且每个框表示一时隙

在图7的示例中,基站在时隙n中传送
pdcch
以服务两个目的:
(1)
将相位配置用于
ris
的每个
ris
元件
(
即,每个反射元件
)
以及
(2)
对时隙
n+k
调度用于特定
ue
的下行链路准予
(pdsch)。
在时隙n和
n+k
之间,
ris
被配置成服务特定
ue。
即,其反射元件的相位被配置成反射从基站到
ue
的下行链路信号,并且可能反射从
ue
到基站的上行链路信号

如果k很大,则
pdcch

pdsch
之间的所有时间
/
频率
ris
资源都被浪费

[0129]
ris
辅助式定位优选按
ue
透明的方式被支持

图8解说了根据本公开的各方面的使用
ris 810
进行无线定位的两个示例场景

在图8中,基站
802(
例如,本文描述的任何基站
)
正在控制
ris 810(
例如,本文描述的任何
ris)
并向
ue 804(
例如,本文描述的任何
ue)
传送
prs。
[0130]
图8解说了用于从基站
802

ue 804

prs
资源传输的两个场景

在场景
800
中,
ris 810“开启”(
即,向
ue 804
反射
prs
资源
)
并且
ue 804
将从基站
802
接收用于
prs
传输的两个主要路径

具体地,
ue 804
将在路径
812
上直接从基站
802
接收
prs
资源,并在路径
814
上从
ris 810
接收经反射的
prs
资源

在场景
850
中,
ris 810“关闭”(
即,不向
ue 804
反射
prs
资源
)
并且
ue
将因此从基站
802
接收用于
prs
传输的单个主要路径

如在图8中所解说的,在这两个场景中最早的
toa
是相同的

具体地,场景
800
和场景
850
两者中最早的
toa
是路径
812
在峰值
822

toa。
[0131]
在图8的示例中,路径
812
的峰值
822(
由较短的垂直线表示的
)
比路径
814
的峰值
824(
由较高的垂直线表示的
)


这可能是由于
ue 804
和基站
802
之间的一些阻挡或者
ue 804
和基站
802
之间的较大距离造成的

[0132]
作为按
ue
透明的方式用于支持
ris
辅助式定位的第一办法,单个
prs id
可以与单个
prs
资源相关联

由此,在场景
800
中,在路径
812
上直接从基站
802
接收到的
prs
资源将具有与在路径
814
上接收到的从
ris 810
反射的
prs
资源相同的
prs id。
在此方法中,在不知道一条路径
(
路径
814)
是否是来自
ris 810
的反射的情况下,
ue 804
将报告与该
prs
资源的多径和时间戳有关的信息

然而,网络将知道
ris 810
何时“开启”,并且可以因此将
ue 804
多径报告关联于
ris 810
开启
/
关闭信道简档

即,当
ue 804
正在测量
prs
资源时,网络
(
例如,位置服务器

服务基站
)
可以确定
ris 810
是否“开启”,并且如果是,则确定所报告的多径中的一者
(
路径
814)
是来自
ris 810


[0133]
这种办法存在各种缺点

例如,基于
ue
的定位
(
其中
ue 804
使用来自网络的信息计算其位置
)
并非固有地被支持,因为每个
prs
资源与单个地理传输点相关联
(
不支持单个
prs
资源与两个发射机位置相关联
)。
另外,
ue 804
无法跨测量一致地利用大规模统计数据,因为
ris

810
开启
/
关闭状态未知,导致次优的峰值检测

此外,
ue 804
不接收具有多个预期搜索窗口的辅助数据来帮助
ue 804
检测峰值
822

824
两者

[0134]
在按
ue
透明的方式支持
ris
辅助式定位的第二办法中,单个
prs id
可以与两个
prs
资源相关联

基站
802
可以在
ris 810“开启”时传送第一
prs
资源,并且在
ris 810“关闭”时传送第二
prs
资源

如在第一办法中,
ue 804
报告与用于所接收到的
prs
资源
(
无论是第一还是第二
)
的多径和时间戳有关的信息

网络将知道哪个
prs
资源对应于哪个
ris
状态,并且可以将
ue

804
多径报告与
ris

810
开启
/
关闭信道简档相关联

[0135]
这种办法存在各种缺点

例如,这两个
prs
资源的收到功率延迟简档
(pdp)
将具有强相关性
(
只要它们之间最早的
toa
相同
)
,并且当前没有信令来向
ue 804
提供该关联


外,对于基于
ue
的定位,当前支持的辅助数据已经允许网络将单独的位置配置用于每个
prs
资源
(
例如,每个
prs
资源可以与不同的
trp
相关联
)。
然而,这在该办法中是没有帮助的
(
与分布式天线系统
(das)
场景相比
)
,因为
ris“开启”prs
资源仍然具有与
ris“关闭”prs
资源相同的最早
toa
,并且因此具有相同的传输点

[0136]
本公开提供了增强型定位辅助数据信令以计及
ris
的存在的技术

作为第一技术,
prs
资源可以与多个天线点位置相关联
(
如以上所提及的,
prs
资源当前与单个传输点相关联
)。
即,用于定位会话的辅助数据
(
例如,来自位置服务器
)
中的每个
prs
资源配置可以包括
prs
资源和多个传输点位置之间的关联,包括实际传送
prs
资源的
trp
的位置

更具体地,除了传送
prs
资源的
trp
的位置
(
如当前支持的
)
之外,信令框架可以足够通用以使得能够将
prs
资源与可控或不可控反射位置和
/
或与已知或未知位置的反射相关联

[0137]
提及可控或不可控反射位置,这些可以是
ris
或环境中已标识的其他反射物
(
例如,镜子

窗户

钢墙等
)
的已知位置

关于
ris
,网络可能能够或可能无法控制
ris
的反射方向,因为
ris
是静态的,或者网络由于一些原因无法控制该特定
ris(
例如,因为它属于不同的网络
)。
在任一情形中,
ris
的位置为网络所知道,并且可以被包括在辅助数据中

关于其他反射物,它们无法由网络控制,并且可能已经由众包在环境中被标识

参照具有未知位置的反射物,这些可以是具有未知位置的
ris(
例如,由于与不同的网络相关联
)
或已在环境中标识
(
例如,经由众包
)
的另一可映射反射,但其位置未知

[0138]
此类通用信令框架可以通过在用于每个
prs
资源的辅助数据中提供反射点对象
(rpo)
的列表来启用

每个
rpo
可以与
rpo-id
和点位置
(
即,如果已知,反射点的地理位置
)
相关联

由此,对于定位辅助数据中的
prs
资源位置,除了用于传送
prs
资源的
trp
的地理位置的天线参考点
(arp)
位置字段之外,还将存在用于
ue
的环境中
(

)
反射物
(
例如,
ris
或该环境中已标识的其他反射物
)
的已知
(

)
地理位置的一个或多个
arp
反射位置字段

[0139]
图9解说了根据本公开的各方面的用于具有多个
ris 910
的无线通信的示例系统
900。
具体地,图9解说了两个
ris 910
,第一
ris 910-1(
标记为“ris1”)
和第二
ris 910-2(
标记为“ris2”)。
图9还解说了基站
902(
例如,本文所描述的任何基站
)
服务
ue 904(
例如,本文所描述的任何
ue)。
在图9的示例中,基站
902
能够控制
ris 910
的反射属性以便与
ue 904
通信

另外,网络已知
ris 910
的位置

[0140]
如图9中所示,两个
ris 910
都是“开启”。
如此,由基站
902
传送的
prs

ris 910

ue 904
反射

在该场景中,对于以上技术,定位辅助数据
(
例如,来自位置服务器或基站
902)
将包括用于基站
902
的位置的
arp
位置字段

用于
ris 910-1
的位置的第一
arp
反射位置字段

以及用于
ris 910-2
的位置的第二
arp
反射位置字段

注意,即使
ris 910
的反射方向不是由网络
(
例如,基站
902)
可控的,但是因为它们的位置是已知的,所以辅助数据仍将在
arp
反射位置字段中包括它们的位置

[0141]
注意,术语“反射点对象”和“rpo”可以指物理反射物或关于物理反射物的
rpo
信息

[0142]
作为增强定位辅助数据信令以计及
ris(
和其他反射物
)
的存在的第二技术,定位辅助数据可以包括反射点对象
(rpo)
的集合,其中每个
rpo
将包括以下参数:
rpo-id(
其可以是该技术中的索引值
)、
地理位置

以及可任选地,特定适用频带和
/
或频率范围

在该场景中,
prs
资源的
arp
字段可以包括
(
或以其他方式关联
)
指向关联
rpo
的一个或多个
rpo-id(


rpo-id
可以与一个或多个
prs
资源相关联
)。rpo
信息
(

prs
资源
、prs
资源集

定位频率层


/

trp
没有任何关联
)
可以在单独的信令中被发送到
ue。
例如,基站可以在一个或多个定位
sib(possib)
中广播
rpo。
替换地,基站可以在一个或多个
rrc

mac
控制元素
(mac-ce)
消息中向
ue
传送
rpo
信息

作为另一替换方案,位置服务器可以在一个或多个
lpp
消息中向
ue
发送
rpo
信息

[0143]
回头参照图9,对于以上技术,
ue 904
将在定位会话之前或期间的某个点接收
rpo
信息
。rpo
信息将包括用于
ris 910-1
的第一
rpo
和用于
ris 910-2
的第二
rpo。
每个
rpo
将包括
rpo-id(
例如,索引值
)、
地理位置

以及可任选地,相应
ris 910
的特定适用频带和
/
或频率范围

例如,
ris 910-1
可在
fr1
中操作并且
ris 910-2
可在
fr2
中操作

[0144]
仍参照图9,定位辅助数据
(
例如,来自位置服务器或基站
902)
将包括用于基站
902
的位置的
arp
位置字段

用于
ris 910-1

rpo
的第一
arp
反射位置字段

以及用于
ris 910-2

rpo
的第二
arp
反射位置字段

即,每个
arp
反射位置字段将包括相应
ris 910

rpo-id
,而不是如第一技术中每个
arp
反射位置字段包括相应
ris 910
的地理位置

注意,即使
ris 910
的反射方向不是由网络
(
例如,基站
902)
可控的,但是因为它们的位置是已知的,所以
rpo
信息仍将包括它们的位置

[0145]
如上所述,网络可以能够配置
/
控制
ris
的反射方向

这应该在定位辅助数据中计及

作为第一个选项,可以定义多个
rpo
,每个
rpo
将具有不同的
rpo-id
,但具有相同的地理位置和操作频段
/
频率范围

不同的
rpo-id
中的每一者将与
ris
的不同反射方向相关联

[0146]

10a

10c
解说了根据本公开的各方面的使用
ris1010
进行无线通信的示例系统

具体地,图
10a
至图
10c
解说了基站
1002(
例如,本文中描述的任何基站
)
服务
ue 1004(
例如,本文中描述的任何
ue)
并控制
ris1010(
例如,本文中描述的任何
ris)。
即,基站
1002
能够控制
ris1010
的反射属性以便与
ue 1004
通信

另外,网络已知
ris1010
的位置

[0147]
在图
10a
的示图
1000
中,基站
1002

ue 1004

ris1010
传送
prs
资源
(
标记为“prs
资源
1”)
,并且附加地将
ris1010
配置成在第一波束
1020-1(
标记为“波束
1”)
上第一方向中反射
prs
资源

在图
10b
的示图
1030
中,基站
1002

ue 1004

ris1010
传送
prs
资源,并且附加地将
ris1010
配置成在第二波束
1020-2(
标记为“波束
2”)
上第二方向中反射
prs
资源

在图
10c
的示图
1050
中,基站
1002

ue 1004

ris1010
传送
prs
资源,并且附加地将
ris1010
配置成在第二波束
1020-3(
标记为“波束
3”)
上第三方向中反射
prs
资源

[0148]
在图
10a
的示例中,对于本文描述的第一选项
(
标记为“选项
1”)
,当在波束
1020-1
上反射时,用于
ris1010

rpo-id

‘0’

在图
10b
的示例中,当在波束
1020-2
上反射时,用于
ris1010

rpo-id

‘1’

在图
10c
的示例中,当在波束
1020-3
上反射时,用于
ris1010

rpo-id

‘2’

与每个
rpo-id
相关联的信息的其余部分将相同

即,
rpo-id
‘0’

‘1’


‘2’
中每一者的地理位置和操作频带
/
频率范围将是相同的,因为每个
rpo-id
指同一
ris1010
的不同波束

[0149]
注意,尽管基站
1002
可以是配置
ris1010
的反射方向的实体,但并非必须如此

网络简单地需要知道可被配置的
ris1010
的不同反射方向,以便向
ue 1004
提供
rpo
信息

[0150]
作为计及
ris
反射方向可配置性的第二选项,每个
rpo
可以与
rpo-id

rpo-beam-set(rpo-波束-集合
)
相关联
。rpo-beam-set
可以包括
rpo-beam-id(
例如,索引值
)
的列表,每个
rpo-beam-id
对应于可控
ris
的不同发射滤波器
(
或接收
/
发射滤波器
)
,即发射波束

rpo-id

rpo-beam-id
的组合将因此对应于具有唯一性发射空间滤波器
(
或发射
/
接收空间滤波器
)
的唯一性的

可控反射方向,即发射波束

如果
rpo
是不可控的
(
即,
ris
反射的方向无法被控制,或者
rpo
不是
ris)
,则
rpo
将不包含任何
rpo-beam-id
,并且将由
rpo-id
和关联位置完全表征

[0151]
回头参照图
10a

10c
,对于第二选项
(
标记为“选项
2”)
,用于
ris1010

rpo-id

‘0’

在图
10a
的示例中,用于波束
1020-1

rpo-beam-id

‘0’

在图
10b
的示例中,用于波束
1020-2

rpo-beam-id

‘1’

在图
10c
的示例中,用于波束
1020-3

rpo-beam-id

‘2’

不同的
rpo-beam-id
将组成用于
rpo-id
=0的
rpo-beam-set。rpo-id
还将包括用于
ris1010
的地理位置和操作频段
/
频率范围

[0152]
对于具有未知位置的
rpo
,位置估计信息可以被包括在
rpo
配置中

这可以基于来自检测来自
rpo
的反射的多个
ue
的众包信息

[0153]
在一方面,
prs-id

rpo-id
之间可存在灵活且动态的关联

更具体地,可能存在静态
(

)
关联
(
例如,经由在定位会话开始时的“lpp
提供辅助数据”消息
)、
半静态
(

)
关联
(
例如,经由
rrc

/

lpp
信令
)、
或者
prs-id、prs
资源
id、prs
资源集
id、trp id、

/
或定位频率层与一个或多个
rpo-id

rpo-beam-id
之间的动态
(

)
关联
(
例如,经由
mac-ce

/

dci)。
由此,取决于关联是静态的

半静态的还是动态的,关联可以在定位会话之前或期间被改变
/
重配置
。ue
可以从服务基站或位置服务器
(
例如,与
ris
控制器服务器相关联的位置服务器
)
接收
(

)
关联命令

[0154]

11
解说了根据本公开的各方面的用于具有多个
ris1110
的无线通信的示例系统

具体地,图
11
解说了两个
ris1110
,第一
ris1110-1(
标记为“ris1”)
和第二
ris1110-2(
标记为“ris2”)。

11
还解说了基站
1102(
例如,本文所描述的任何基站
)
服务
ue 1104(
例如,本文所描述的任何
ue)。
在图
11
的示例中,基站
1102
能够控制
ris1110
的反射属性以便向
ue 1104
传送
prs
资源
(
标记为“prs
资源
1”)。
另外,网络已知
ris1110
的位置

[0155]
如示图
1100
中所示,两个
ris1110
都是“开启”。
如此,用于
prs
资源的位置信息
(
标记为“prs
资源
1-位置”)
包括用于
prs
资源的
arp
位置字段
(
给出基站
1102
的位置,标记为“trp
位置”)、
用于第一
ris1110-1

rpo-id

rpo-beam-id(
分别标记为“rpo1-id”和“rpo-beam1-id”)、
以及用于第二
ris1110-2

rpo-id

rpo-beam-id(
分别标记为“rpo2-id”和“rpo-beam2-id”)。
[0156]
如示图
1130
所示,
ris1110-1
已被“关闭”,或者以其他方式不向
ue 1104
传送,或者不能被
ue 1104
检测到

如此,
prs
资源位置字段被更新成包括仅用于第二
ris1110-2

rpo-id(“rpo2-id”)

rpo-beam-id(“rpo-beam2-id”)。prs
资源位置字段可以通过传送整个新的
prs
资源位置字段
(
例如,“prs
资源
1-位置”)、
仅经更新的部分
(
例如,“rpo2-id”和“rpo-beam2-id”)、
要忽略用于第一
ris1110-1

rpo
信息的指示

关于仅用于第二
ris1110-2

rpo
信息是有效的指示等来更新

[0157]
如示图
1150
所示,
ris1110-1
已重新“开启”,而
ris1110-2
已被“关闭”,或者以其他方式不向
ue 1104
传送,或者不能被
ue 1104
检测到

如此,
prs
资源位置字段被更新成包括仅用于第一
ris1110-1

rpo-id(“rpo1-id”)

rpo-beam-id(“rpo-beam1-id”)。prs
资源位置字段可以按与针对
ris1110-1
被“关闭”和针对
ris1110-1
被“开启”的被更新的相同方式来更新
(
示图
1130)。
[0158]

12
解说了根据本公开的各方面的无线定位的示例方法
1200。
在一方面,方法
1200
可由
ue(
例如,本文中所描述的
ue
中的任一者
)
来执行

[0159]

1210

ue
参与定位会话或感测会话
。ue
可以请求定位辅助数据以便执行定位会话

在一方面,操作
1210
可由
wwan
收发机
310、
处理系统
332、
存储器组件
340、

/
或定位组件
342
执行,其中任何或全部组件可被认为是用于执行该操作的装置

[0160]

1220

ue
从网络实体
(
例如,位置服务器

服务基站
)
接收由传输点
(
例如,
trp、
基站

信标发射机等
)
传送的用于至少一个
prs
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个
rpo

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

在一方面,操作
1220
可由
wwan
收发机
310、
处理系统
332、
存储器组件
340、

/
或定位组件
342
执行,其中任何或全部组件可被认为是用于执行该操作的装置

[0161]
在“感测”会话内,至少一个
rpo
的位置信息可以包含
ue
要开始感测处理的大致位置或目标“搜索空间”。
这可以作为不确定性区域信息来提供

在定位会话内,至少一个
rpo
的位置信息可以包含
rpo
的实际位置
(
以及可能包含形状信息,如果它不是“点反射物”)。
如此,该位置可以按经度和纬度或
(x
,y,
z)
坐标的格式,坐标可能相对于参考点

参考点可以是传输点的位置,或者可以与包含所有
rpo
的辅助数据一起被配置

如果位置信息包含形状信息,则这可以是例如形状的角的
(x、y、z)
坐标和形状标识符
(
例如,平面
)。
[0162]

13
解说了根据本公开的各方面的无线定位的示例方法
1300。
在一方面,方法
1300
可以由网络实体
(
例如,本文中所描述的基站

位置服务器
230、lmf 270、slp 272
中的任一者
)
来执行

[0163]

1310
,网络实体参与和
ue(
例如,本文中所描述的任何
ue)
的定位会话或感测会话

在一方面,在网络实体是基站的情况下,操作
1310
可由
wwan
收发机
350、
处理系统
384、
存储器组件
386、

/
或定位组件
388
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

在网络实体是位置服务器的情况下,操作
1310
可由网络接口
390、
处理系统
394、
存储器组件
396、

/
或定位组件
398
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

[0164]

1320
,网络实体确定用于能够反射波形的至少一个
rpo

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

在一方面,在网络实体是基站的情况下,操作
1320
可由
wwan
收发机
350、
处理系统
384、
存储器组件
386、

/
或定位组件
388
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

在网络实体是位置服务器的情况下,操作
1320
可由网络接口
390、
处理系统
394、
存储器组件
396、

/
或定位组件
398
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

[0165]

1330
,网络实体向
ue
传送
rpo
信息

在一方面,在网络实体是基站的情况下,操作
1330
可由
wwan
收发机
350、
处理系统
384、
存储器组件
386、

/
或定位组件
388
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

在网络实体是位置服务器的情况下,操作
1330
可由网络接口
390、
处理系统
394、
存储器组件
396、

/
或定位组件
398
来执行,这些组件中的任一者或全部可被认为是用于执行该操作的装置

[0166]
如将理解的,方法
1200
的技术优点包括在
ue
辅助定位的情形中实现将
ris
用于基于
ue
的定位和对最早和多径分量的
toa
的更准确和稳健的估计

[0167]
在以上详细描述中,可以看到在各示例中不同的特征被分组在一起

这种公开方式不应被理解为示例条款具有比每一条款中所明确提及的特征更多的特征的意图

相反,本公开的各个方面可包括少于所公开的个体示例条款的所有特征

因此,所附条款由此应该被认为是被纳入到本描述中,其中每一条款自身可为单独的示例

尽管每个从属条款在各条款中可以引用与其他条款之一的特定组合,但该从属条款的
(

)
方面不限于该特定组合

将领会,其他示例条款还可包括从属条款
(

)
方面与任何其它从属条款或独立条款的主题内容的组合或者任何特征与其他从属和独立条款的组合

本文所公开的各个方面明确包括这些组合,除非显式地表达或可以容易地推断出并不旨在特定的组合
(
例如,矛盾的方面,诸如将元件同时定义为绝缘体和导体
)。
此外,还旨在使条款的各方面可被包括在任何其他独立条款中,即使该条款不直接从属于该独立条款

[0168]
在以下经编号条款中描述了各实现示例:
[0169]
条款
1.
一种由用户装备
(ue)
执行的无线定位方法,包括:参与定位会话或感测会话;以及从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

[0170]
条款
2.
如条款1的方法,其中来自该至少一个
rpo
的反射方向是可控的

[0171]
条款
3.
如条款2的方法,其中该至少一个
rpo
是被连接到该网络实体所属的无线接入网的可重构智能表面
(ris)。
[0172]
条款
4.
如条款1的方法,其中来自该至少一个
rpo
的反射方向是不可控的

[0173]
条款
5.
如条款4的方法,其中该至少一个
rpo
是未被连接到该网络实体所属的无线接入网的
ris、
镜子

玻璃

金属

或其他反射物体

[0174]
条款
6.
如条款1至5中的任一者的方法,其中用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的地理位置

[0175]
条款
7.
如条款1至5中任一项的方法,其中:该至少一个
rpo
的地理位置对于该网络实体是未知的,并且用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的估计位置

[0176]
条款
8.
如条款1至7中的任一者的方法,其中该
prs
资源位置字段包括该传输点的该地理位置和用于该至少一个
rpo
的该位置信息

[0177]
条款
9.
如条款1至8中任一项的方法,其中:该
rpo
信息进一步包括
rpo
标识符,并且该
prs
资源位置字段包括该传输点的该地理位置和该
rpo
标识符

[0178]
条款
10.
如条款9的方法,其中该
rpo
信息进一步包括该至少一个
rpo
在其中操作的频带

频率范围或两者

[0179]
条款
11.
如条款1到
10
中任一者的方法,进一步包括:在来自基站的广播信息中接收该
rpo
信息

[0180]
条款
12.
如条款
11
的方法,其中该广播信息包括定位系统信息块
(possib)。
[0181]
条款
13.
如条款1到
10
中任一者的方法,进一步包括:在来自服务基站的单播信息中接收该
rpo
信息

[0182]
条款
14.
如条款1到
13
中任一者的方法,进一步包括:向该网络实体传送对该
rpo
信息的请求

[0183]
条款
15.
如条款1至
14
中任一项的方法,其中:该
rpo

ris
,并且该
ris
与多个
rpo
标识符相关联,该多个
rpo
标识符中的每一者与来自该
ris
的不同反射方向相关联

[0184]
条款
16.
如条款1至
14
中任一项的方法,其中:该
rpo

ris
,并且该
ris
与单个
rpo
标识符和多个
rpo
波束标识符相关联,该多个
rpo
波束标识符中的每一者与来自该
ris
的不同反射方向相关联

[0185]
条款
17.
如条款1至
16
中的任一者的方法,其中该至少一个
rpo

rpo
标识符与该至少一个
prs
资源的关联被静态地配置

[0186]
条款
18.
如条款
17
的方法,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被静态地配置包括该辅助数据是经由长期演进
(lte)
定位协议
(lpp)
提供辅助数据消息接收的

[0187]
条款
19.
如条款1至
16
中的任一者的方法,其中该至少一个
rpo

rpo
标识符与该至少一个
prs
资源的关联被半静态地配置

[0188]
条款
20.
如条款
19
的方法,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被半静态地配置包括该辅助数据是经由无线电资源控制
(rrc)、lpp
或两者信令接收的

[0189]
条款
21.
如条款1至
16
中的任一者的方法,其中该至少一个
rpo

rpo
标识符与该至少一个
prs
资源的关联被动态地配置

[0190]
条款
22.
如条款
21
的方法,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被动态地配置包括该辅助数据是经由媒体接入控制控制元素
(mac-ce)、
下行链路控制信息
(dci)
或两者接收的

[0191]
条款
23.
一种由网络实体执行的无线定位方法,包括:参与和用户装备
(ue)
的定位会话或感测会话;确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及向该
ue
传送该
rpo
信息

[0192]
条款
24.
如条款
23
的方法,其中该至少一个
rpo
是被连接到该网络实体所属的无线接入网的可重构智能表面
(ris)。
[0193]
条款
25.
如条款
23
的方法,其中该至少一个
rpo
是未被连接到该网络实体所属的无线接入网的
ris、
镜子

玻璃

金属

或其他反射物体

[0194]
条款
26.
如条款
23

25
中的任一者的方法,其中用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的地理位置

[0195]
条款
27.
如条款
23

25
中任一项的方法,其中:该至少一个
rpo
的地理位置对于该网络实体是未知的,并且用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的估计位置

[0196]
条款
28.
如条款
23

27
中任一项的方法,其中:该
rpo
信息进一步包括
rpo
标识符,并且该
prs
资源位置字段包括该传输点的地理位置和该
rpo
标识符

[0197]
条款
29.
一种用户装备
(ue)
,包括:存储器;收发机;以及处理器,该处理器通信地耦合至该存储器和该收发机,并且该处理器被配置成:参与定位会话或感测会话;以及经由该收发机从网络实体接收由传输点传送的用于至少一个定位参考信号
(prs)
资源的辅助数据,该辅助数据包括指示该传输点的地理位置的
prs
资源位置字段,该辅助数据进一步包括用于能够反射与该至少一个
prs
资源相关联的波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息

[0198]
条款
30.
如条款
29

ue
,其中来自该至少一个
rpo
的反射方向是可控的

[0199]
条款
31.
如条款
30

ue
,其中该至少一个
rpo
是被连接到该网络实体所属的无线接入网的可重构智能表面
(ris)。
[0200]
条款
32.
如条款
29

ue
,其中来自该至少一个
rpo
的反射方向是不可控的

[0201]
条款
33.
如条款
32

ue
,其中该至少一个
rpo
是未被连接到该网络实体所属的无线接入网的
ris、
镜子

玻璃

金属

或其他反射物体

[0202]
条款
34.
如条款
29

33
中任一者的
ue
,其中用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的地理位置

[0203]
条款
35.
如条款
29

33
中的任一者的
ue
,其中:该至少一个
rpo
的地理位置对于该网络实体是未知的,并且用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的估计位置

[0204]
条款
36.
如条款
29

35
中任一者的
ue
,其中该
prs
资源位置字段包括该传输点的该地理位置和用于该至少一个
rpo
的该位置信息

[0205]
条款
37.
如条款
29

36
中的任一者的
ue
,其中:该
rpo
信息进一步包括
rpo
标识符,并且该
prs
资源位置字段包括该传输点的该地理位置和该
rpo
标识符

[0206]
条款
38.
如条款
37

ue
,其中该
rpo
信息进一步包括该至少一个
rpo
在其中操作的频带

频率范围或两者

[0207]
条款
39.
如条款
29

38
中任一项的
ue
,其中该处理器被进一步配置成:经由该收发机在来自基站的广播信息中接收该
rpo
信息

[0208]
条款
40.
如条款
39

ue
,其中该广播信息包括定位系统信息块
(possib)。
[0209]
条款
41.
如条款
29

38
中任一项的
ue
,其中该处理器被进一步配置成:经由该收发机在来自服务基站的单播信息中接收该
rpo
信息

[0210]
条款
42.
如条款
29

41
中任一项的
ue
,其中该处理器被进一步配置成:使得该收发机向该网络实体传送对该
rpo
信息的请求

[0211]
条款
43.
如条款
29

42
中的任一者的
ue
,其中:该
rpo

ris
,并且该
ris
与多个
rpo
标识符相关联,该多个
rpo
标识符中的每一者与来自该
ris
的不同反射方向相关联

[0212]
条款
44.
如条款
29

42
中的任一者的
ue
,其中:该
rpo

ris
,并且该
ris
与单个
rpo
标识符和多个
rpo
波束标识符相关联,该多个
rpo
波束标识符中的每一者与来自该
ris
的不同反射方向相关联

[0213]
条款
45.
如条款
29

44
中任一者的
ue
,其中该至少一个
rpo

rpo
标识符与该至少一个
prs
资源的关联被静态地配置

[0214]
条款
46.
如条款
45

ue
,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被静态地配置包括该辅助数据是经由长期演进
(lte)
定位协议
(lpp)
提供辅助数据消息接收的

[0215]
条款
47.
如条款
29

44
中任一者的
ue
,其中该至少一个
rpo

rpo
标识符与该至少一个
prs
资源的关联被半静态地配置

[0216]
条款
48.
如条款
47

ue
,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被半静态地配置包括该辅助数据是经由无线电资源控制
(rrc)、lpp
或两者信令接收的

[0217]
条款
49.
如条款
29

44
中任一者的
ue
,其中该至少一个
rpo

rpo
标识符与该至少
一个
prs
资源的关联被动态地配置

[0218]
条款
50.
如条款
49

ue
,其中该至少一个
rpo
的该
rpo
标识符与该至少一个
prs
资源的该关联被动态地配置包括该辅助数据是经由媒体接入控制控制元素
(mac-ce)、
下行链路控制信息
(dci)
或两者接收的

[0219]
条款
51.
一种网络实体,包括:存储器;收发机;以及处理器,该处理器通信地耦合至该存储器和该收发机,并且该处理器被配置成:参与和用户装备
(ue)
的定位会话或感测会话;确定用于能够反射波形的至少一个反射点对象
(rpo)

rpo
信息,该
rpo
信息至少包括该至少一个
rpo
的位置信息;以及使得该收发机向该
ue
传送该
rpo
信息

[0220]
条款
52.
如条款
51
的网络实体,其中该至少一个
rpo
是被连接到该网络实体所属的无线接入网的可重构智能表面
(ris)。
[0221]
条款
53.
如条款
51
的网络实体,其中该至少一个
rpo
是未被连接到该网络实体所属的无线接入网的
ris、
镜子

玻璃

金属

或其他反射物体

[0222]
条款
54.
如条款
51

53
中任一者的网络实体,其中用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的地理位置

[0223]
条款
55.
如条款
51

53
中任一者的网络实体,其中该至少一个
rpo
的地理位置对于该网络实体是未知的,并且用于该至少一个
rpo
的该位置信息是该至少一个
rpo
的估计位置

[0224]
条款
56.
如条款
51

55
中任一者的网络实体,其中该
rpo
信息进一步包括
rpo
标识符,并且该
prs
资源位置字段包括该至少一个
rpo
的地理位置和该
rpo
标识符

[0225]
条款
57.
一种设备,包括用于执行根据条款1至
28
中任一者的方法的装置

[0226]
条款
58.
一种存储计算机可执行指令的非瞬态计算机可读介质,这些计算机可执行指令包括用于使得计算机或处理器执行根据条款1至
28
中任一者的方法的至少一条指令

[0227]
本领域技术人员将领会,信息和信号可使用各种不同技术和技艺中的任何一种来表示

例如,贯穿上面说明始终可能被述及的数据

指令

命令

信息

信号

比特

码元和码片可由电压

电流

电磁波

磁场或磁粒子

光场或光粒子

或其任何组合来表示

[0228]
此外,本领域技术人员将领会,结合本文中所公开的方面描述的各种解说性逻辑块

模块

电路

和算法步骤可被实现为电子硬件

计算机软件

或两者的组合

为清楚地解说硬件与软件的这一可互换性,各种解说性组件



模块

电路

以及步骤在上面是以其功能性的形式作一般化描述的

此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体系统的设计约束

技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本公开的范围

[0229]
结合本文所公开的各方面描述的各种解说性逻辑块

模块

以及电路可用设计成执行本文中所描述的功能的通用处理器

数字信号处理器
(dsp)、asic、
现场可编程门阵列
(fpga)
或其他可编程逻辑器件

分立的门或晶体管逻辑

分立的硬件组件

或其任何组合来实现或执行

通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器

控制器

微控制器

或状态机

处理器还可被实现为计算设备的组合,例如
dsp
与微处理器的组合

多个微处理器


dsp
核心协作的一个或多个微处理器

或任何其他此类配置

[0230]
结合本文所公开的各方面描述的方法

序列和
/
或算法可直接在硬件中

在由处理
器执行的软件模块中

或在这两者的组合中体现

软件模块可驻留在随机存取存储器
(ram)、
闪存存储器

只读存储器
(rom)、
可擦除可编程
rom(eprom)、
电可擦除可编程
rom(eeprom)、
寄存器

硬盘

可移动盘
、cd-rom
或者本领域中所知的任何其他形式的存储介质中

示例存储介质耦合到处理器以使得该处理器能从
/
向该存储介质读写信息

在替换方案中,存储介质可被整合到处理器

处理器和存储介质可驻留在
asic

。asic
可驻留在用户终端
(
例如,
ue)


在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中

[0231]
在一个或多个示例方面,所描述的功能可在硬件

软件

固件或其任何组合中实现

若在软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送

计算机可读介质包括计算机存储介质和通信介质两者,包括促成计算机程序从一地向另一地转移的任何介质

存储介质可以是能被计算机访问的任何可用介质

作为示例而非限定,此类计算机可读介质可包括
ram、rom、eeprom、cd-rom
或其他光盘存储

磁盘存储或其他磁存储设备

或能用于携带或存储指令或数据结构形式的期望程序代码且能被计算机访问的任何其他介质

同样,任何连接也被正当地称为计算机可读介质

例如,如果软件是使用同轴电缆

光纤电缆

双绞线

数字订户线
(dsl)、
或诸如红外

无线电

以及微波之类的无线技术从网站

服务器

或其他远程源传送的,则该同轴电缆

光纤电缆

双绞线
、dsl、
或诸如红外

无线电

以及微波之类的无线技术就被包括在介质的定义之中

如本文所使用的盘
(disk)
和碟
(disc)
包括压缩碟
(cd)、
激光碟

光碟

数字多用碟
(dvd)、
软盘和蓝光碟,其中盘
(disk)
往往以磁的方式再现数据,而碟
(disc)
用激光以光学方式再现数据

以上的组合应当也被包括在计算机可读介质的范围内

[0232]
虽然前面的公开示出了本公开的解说性方面,但是应当注意,在其中可作出各种变更和修改而不会脱离如所附权利要求定义的本公开的范围

根据本文中所描述的本公开的各方面的方法权利要求中的功能

步骤和
/
或动作不必按任何特定次序来执行

此外,尽管本公开的要素可能是以单数来描述或主张权利的,但是复数也是已料想了的,除非显式地声明了限定于单数

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1