接收机接收信号绝对定相装置的制作方法

文档序号:7581134阅读:158来源:国知局
专利名称:接收机接收信号绝对定相装置的制作方法
技术领域
本发明一般涉及一种接收机接收信号绝对定相装置,具体涉及一种可以使下述信号与发送侧一致的接收机接收信号绝对定相装置通过接收和解调获得的两个系列的接收I和Q基带信号的信号点排列其中由分级发射系统,利用BPSK帧同步信号,至少对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中的8PSK调制数字信号进行时间多路复用,来进行PSK调制的信号;或其中由上述系统,利用BPSK帧同步信号,至少对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中的8PSK调制数字信号和QPSK调制数字信号进行时间多路复用,来进行PSK调制的信号。
背景技术
通过使用彼此所需C/N不同的多个调制系统,诸如用于通过对信号波进行时间多路复用来重复地发射8PSK调制信号波,QPSK调制信号波,BPSK调制信号波的分级发射系统,数字卫星TV广播的越来越接近于实用水平。


图11A所示为某种分级发射系统的帧配置示意图。其中每个帧可以被设计成依次包含有具有32个BPSK调制码元(32个码元中,实际只有后20个被用作帧同步信号)的帧同步信号模式,具有128个BPSK调制码元用于别识发射多路复用配置的TMCC(发射与多路复用配置控制)模式,具有32个码元(32个码元中,实际只有后20个被用作超帧识别信号)的超帧识别信号模式,具有203个8PSK(格子-编码译码-8PSK)调制码元的主信号,通过对伪随机(PN)信号进行BPSK调制所得的4码元脉冲串信号(BS),具有203个8PSK(格子-编码译码-8PSK)调制码元的主信号,通过对伪随机(PN)信号进行BPSK调制所得的4码元脉冲串信号(BS),……,具有203个QPSK调制码元的主信号,通过对伪随机(PN)信号进行BPSK调制所得的4码元脉冲串信号(BS),具有203个QPSK调制码元的主信号,具有4个BSPK调制码元的脉冲串信号(BS)。
对于用于接收根据上述分级发射系统所调制的数字波(PSK调制信号波)的接收机,将利用解调电路对通过接收电路所接收的接收信号的中频信号进行解调,并得到表明了对于每个码元均彼此垂直的I轴和Q轴的瞬时值的、两个系列的I和Q基带信号(下文中,I和Q基带信号也被称作为I和Q码元流数据值)。通过从解调I和Q基带信号中捕获帧同步信号,从所得帧同步信号的信号点排列中求出当前接收信号相位旋转角度,再根据所求出的接收信号相位旋转角度对解调I和Q基带信号进行反相位旋转,便可以通过绝对相位生成电路,来进行用于将I和Q基带信号调节到发射信号相位角的绝对相位生成。
如图12所示,用于接收根据常规的分级发射系统所PSK调制的信号波的接收机的绝对相位生成电路,由配置于解调电路1输出侧上、用作用于捕获帧同步信号的帧同步捕获装置的帧同步检测/再生电路2,用作反相位旋转装置由ROM组成的再映射器7,以及用作接收信号相位旋转角度检测装置的接收信号相位旋转角度检测电路8构成。标号9表示用于识别图11A中所示的发射复用配置、并输出有2比特调制系统识别信号DM的发射配置识别电路。
解调电路1通过对中频信号IF进行正交检测来获得I和Q基带信号。在解调电路1中,标号10表示用于再生其频率和相位与接收载波同步,同时由于其相位彼此相差90°而彼此正交的两个参考载波fc1(=cosωt)和fc2(=sinωt)的载波再生电路,60和61表示用于将中频信号IF乘以fc1和fc2的乘法器,62和63表示用于以比码元速率大两倍的采样率对乘法器60和61的输出进行A/D变换的A/D变换器,64和65表示用于通过数字信号处理,对A/D变换器62和63的输出进行频带限宽的数字滤波器,而66和67则表示用于以1/2采样率对数字滤波器64和65的输出进行稀疏处理,并输出有表明了每个码元的I轴和Q轴瞬时值的两个系列的I和Q基带信号(I和Q码元流数据值)的稀疏电路。稀疏电路66和67发射具有8个量化比特(2的补码)的I和Q基带信号I(8)和Q(8)(括号中的数值表示量化比特的个数,下文中将省略量化比特的个数,而简称为I和Q)。
接下来将参照图13A-13C对发送侧的每种调制系统的映射进行说明。图13A所示为调制系统进行8PSK调制时,I-Q相位平面(也叫做I-Q向量平面或I-Q信号空间图)上的信号点排列的示意图。利用上述8PSK调制系统,其能够利用一个码元来发送3比特的数字信号(abc)。构成一个码元的比特组合包括,诸如(000),(001),(010),(011),(100),(101),(110)和(111)一共8种方式。其中将上述3比特数字信号变换为图13A中所示发送侧I-Q相位平面上的信号点排列“0”到“7”,而此变换处理便叫做8PSK映射。
对于图13A所示实例,比特串(000)被变换为信号点排列“0”,比特串(001)被变换为信号点排列“1”,比特串(011)被变换为信号点排列“2”,比特串(010)被变换为信号点排列“3”,比特串(100)被变换为信号点排列“4”,比特串(101)被变换为信号点排列“5”,比特串(111)被变换为信号点排列“6”,而比特串(110)则被变换为信号点排列“7”。
图13B所示为在调制系统进行QPSK调制时,I-Q相位平面上的信号点排列。利用上述QPSK调制系统,其能够利用一个码元来发射2比特的数字信号(de)。构成该码元的比特组合方式共有4种,即(00),(01),(10),(11)。对于图13B所示的实例,比特串(00)被变换为信号点排列“1”,比特串(01)被变换为信号点排列“3”,比特串(11)被变换为信号点排列“5”,而比特串(10)则被变换为信号点排列“7”。
图13C所示为调制系统进行BPSK调制时的信号点排列。BK调制系统利用一个码元来发射1比特信号(f)。对于上述数字信号(f),比特(0)被变换为信号点排列“0”,而比特(1)则被变换为信号点排列“4”。各调制系统中,信号点排列与排列编号之间的关系彼此相同,均以8PSK调制系统为基础。
上述分级发射系统中QPSK和BPSK的I轴和Q轴与8PSK的I轴和Q轴重合。
当所接收载波的相位与由载波再生电路10再生所得的参考载波fc1和fc2的相位一致时,则在接收对应于发送侧I-Q相位平面上的信号点排列“0”到“7”的数字信号时,接收侧I-Q相位平面上根据I和Q基带信号I(8)和Q(8)的接收信号点的相位,将与发送侧的相位一致。因此,直接利用发送侧的信号点排列与数字信号之间的关系(参见图13A-13C),便可以正确地从接收信号点的信号点排列中识别出所接收的数字信号。
但是,实际上参考载波fc1和fc2对于接收载波可以存在多种相位状态。因此,接收侧的接收信号点通常会位于,从发送侧旋转一定角度θ后所在的相位位置上。另外,当所接收载波的相位波动不定时,θ也将发生波动。而当从发送侧来看,接收信号点的相位随机地旋转时,其便无法识别出所接收的数字信号。例如,当θ等于π/8时,发送侧8PSK调制系统中对应于信号点排列“0”的数字信号(000)的接收信号点,将位于接收侧的信号点排列“0”与“1”之间。因此,当假设在信号点排列“0”处所接收的是数字信号(000)时,其将判定已正确地接收到该信号(000)。然而,当假设在信号点排列1处所接收的是数字信号(000)时,其将错误地判定接收到数字信号(001)。因此,对于某个接收信号点,为了保持与发送侧有一定的旋转角度,载波再生电路10将对参考载波fc1和fc2的相位进行校正,以使其能够正确地识别出数字信号。
具体地说,通过使载波再生电路10的VCO(压控振荡器)11以一定的发射载波频率进行振荡,可以产生参考载波fc1,同时通过利用90°移相器12将VCO11的振荡信号相位超前90°,来产生参考载波fc2。随后,通过改变VCO11的控制电压,便可以分别改变参考载波fc1和fc2的相位。
载波再生电路10配备有分别由ROM所构成的,并利用8PSK,QPSK,BPSK调制系统通过将I和Q基带信号I(8)和Q(8)的各种数据集与具有8个量化比特(2的互补系统)的载波相位误差数据(下文中简称为相位误差数据)△φ(8)(参见图14)之间的关系制成表格来形成的,相位误差表13,14-1和14-2,以及15-1到15-4。I和Q基带信号I(8)和Q(8)并行地被输入到相位误差表13,14-1和14-2,以及15-1到15-4中。其中将利用接下来所要说明的选择器选择性地使能的某个相位误差表,来输出对应于来自解调电路1的I和Q基带信号I(8)和Q(8)输入的相位误差数据△φ8。
相位误差表13用于8PSK,其中I-Q相位平面上由来自解调电路1的I和Q基带信号I(8)和Q(8)所示的接收信号点的相位角φ(参见图15)与相位误差数据△φ(8)之间的关系,被设计成如图17所示的关系。当解调电路1对根据BPSK调制系统(由来自接下来所要说明的发射配置识别电路9提供的调制系统识别信号DM所指定)进行调制的数字波进行解调时,选择器16将根据其码元率与从解调电路1所提供的I和Q基带信号I(8)和Q(8)的输出同步的时钟CLKSYB(参见图11B),只使能相位误差表13(即,只使相位误差表13变为有效状态),而每当解调电路1输出一个码元的I和Q基带信号I(8)和Q(8),其便读取一次对应于I(8)和Q(8)的设置数据的相位误差数据。相位误差数据△φ8由D/A变换器17转换为相位误差电压,其后利用LPF18从中取出低频分量,并将该电压作为控制电压加载到VCO11上。当相位误差数据△φ(8)等于0时,LPF18的输出不变,或者说参考载波fc1和fc2的相位将不变。然而,当相位误差数据△φ(8)为正数时,LPF18的输出将增大,同时参考载波fc1和fc2的相位将被延迟。然而,当相位误差数据△φ(8)为负数时,LPF18的输出将下降,同时参考载波fc1和fc2的相位将被超前。
在相位误差表13中,φ与信号点排列“0”到“7”中最近一个的相位之间的差值,即为相位误差数据△φ(8)。因此,根据8PSK调制系统,其发送侧的信号点排列0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4与7π/4的数字信号的位置,被分别校正到在接收侧I-Q相位平面上旋转有Θ=m×π/4(其中m为0到7之间的任意整数,参见图16)角度后所在的位置上。标号Θ表示接收信号相位旋转角度。由此,因为根据8PSK调制系统的接收信号点将被变换到0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4与7π/4的相位位置上,其将能够将接收侧I-Q相位平面上的信号点排列“0”到“7”指定为与发送侧的相位相同的相位(然而,信号点排列与数字信号之间的关系将随Θ变化而变化)。通过检测Θ并将其反相位旋转-Θ角度,其便可以使信号点排列与数字信号之间的关系与发送侧它们之间的关系相同(绝对相位生成),并由此而能够很容易地识别出所接收的数字信号。
相位误差表14-1和14-2用于QPSK,同时I-Q相位平面上由I和Q基带信号I(8)和Q(8)所示接收信号点的相位角φ与相位误差数据△φ(8)之间的关系,被设计成如图18和19所示的关系。在正常接收的情况下,当接收信号相位旋转角度Θ等于0,π/4,2π/4,4π/4,6π/4,同时解调电路1根据具有某种码元速率的时钟CLKSYB,对根据QPSK调制系统进行调制的数字波进行解调时,选择器16将只使能相位误差表14-1,而每当解调电路1输出I和Q基带信号I(8)和Q(8)时,其便从相位误差表14-1中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表14-1中,φ与信号点排列“1”,“3”,“5”和“7”中最近一个相位之间的差值,即为相位误差数据△φ。因此,根据QPSK调制系统,发送侧上其相位分别等于π/4,3π/4,5π/4,和7π/4的信号点排列“1”,“3”,“5”,“7”的数字信号的位置,将被分别校正到在接收侧I-Q相位平面上旋转Θ后所在的位置上。当Θ等于0,2π/4,4π/4,6π/4时,根据QPSK调制系统的接收信号点将被变换到相位等于π/4,3π/4,5π/4,和7π/4的位置上。通过检测Θ并反相位旋转-Θ角度,其便可以使信号点排列与数字信号之间的关系与发送侧它们之间的关系相同(绝对相位生成),由此而能够很容易地识别出所接收的数字信号。
另外,当接收信号相位旋转角度Θ等于π/4,3π/4,5π/4,和7π/4,同时解调电路1对根据QPSK调制系统进行调制的数字波进行解调时,选择器16只使能相位误差表14-2,而每当解调电路1输出I和Q基带信号I(8)和Q(8)时,其便从相位误差表14-2中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表14-2中,φ与信号点排列“0”,“2”,“4”和“6”中最近一个相位之间的差值,被用作相位误差数据△φ。因此,根据QPSK调制系统,发送侧上其相位分别等于π/4,3π/4,5π/4,和7π/4的信号点排列“1”,“3”,“5”,“7”的数字信号的位置,被分别校正到在接收侧的I-Q相位平面上旋转上述Θ后所在的位置上。当Θ等于π/4,3π/4,5π/4,7/4时,根据QPSK调制系统的接收信号点将被变换到相位等于0,2π/4,4π/4和6π/4的位置上。通过检测Θ并反相位旋转-Θ角度,其便可以获得与发送侧相位相同的相位(绝对相位生成),并能够使信号点排列与数字信号之间的关系与发送侧它们之间的关系相同,从而能够很容易地识别出所接收的数字信号。
相位误差表15-1至15-4用于BPSK,同时I-Q相位平面上由I和Q基带信号I(8)和Q(8)所示接收信号点的相位角φ与相位误差数据△φ(8)之间的关系,被设计成如图20到23所示的关系。当接收信号相位旋转角度Θ等于0或4π/4,同时解调电路1根据具有某种码元率的时钟CLKSYB,对根据BPSK调制系统进行调制的数字波进行解调时,选择器16只使能相位误差表15-1,而每当解调电路1输出I和Q基带信号I(8)和Q(8)时,其便从相位误差表15-1中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表15-1中,φ与信号点排列“0”和“4”中最近一个相位之间的差值,被用作相位误差数据△φ。因此,根据BPSK调制系统,发送侧上其相位等于0和4π/4的信号点排列“0”和“4”的数字信号的位置,将被分别校正到在接收侧I-Q相位平面上旋转Θ后所在的位置上。当Θ等于0或4π/4时,根据BPSK调制系统的接收信号点将被变换到相位等于0或4π/4的位置上。
另外,当接收信号相位旋转角度Θ等于π/4或5π/4,同时其是根据BPSK调制系统来对调制数字波进行解调时,选择器16将只使能相位误差表15-2,而每当解调电路1输出I和Q基带信号I(8)和Q(8)时,其便从相位误差表15-2中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表15-2中,φ与信号点排列“1”和“5”中最近一个相位之间的差值,被用作相位误差数据△φ。因此,根据BPSK调制系统,发送侧上其相位等于0和4π/4的信号点排列“0”和“4”的数字信号的位置,将被分别校正到在接收侧I-Q相位平面上旋转上述Θ后所在的位置上。当Θ等于π/4或5π/4时,根据BPSK调制系统的接收信号点将被变换到相位等于π/4,或5π/4的位置上。
另外,当接收信号相位旋转角度Θ等于2π/4或6π/4,同时其是根据BPSK调制系统来对调制数字波进行解调时,选择器16将只使能相位误差表15-3,而每当解调电路1输出I和Q基带信号I(8)和Q(8)时,其便从相位误差表15-3中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表15-3中,φ与信号点排列“2”和“6”中最近一个相位之间的差值,被用作相位误差数据△φ。因此,根据BPSK调制系统,发送侧上其相位等于0和4π/4的信号点排列“0”和“4”的数字信号的位置,将被分别校正到在接收侧I-Q相位平面上旋转上述Θ后所在的位置上。当Θ等于2π/4或6π/4时,根据BPSK调制系统的接收信号点将被变换到相位等于2π/4,或6π/4的位置上。
另外,当接收信号相位旋转角度Θ等于3π/4或7π/4时,同时其是根据BPSK调制系统来对调制数字波进行解调时,选择器16将只使能相位误差表15-4,而每当解调电路1输出I(8)和Q(8)时,其便从相位误差表15-4中读出对应于用于1个码元输出的I和Q基带信号I(8)和Q(8)的设置数据的相位误差数据△φ(8)。
在相位误差表15-4中,φ与信号点排列“3”和“7”中最近一个相位之间的差值,被用作相位误差数据△φ。因此,根据BPSK调制系统,发送侧上其相位等于0和4π/4的信号点排列“0”和“4”的数字信号的位置,将被分别校正到在接收侧I-Q相位平面上旋转上述Θ后所在的位置上。当Θ等于3π/4或7π/4时,根据BPSK调制系统的接收信号点将被变换到相位等于3π/4,或7π/4的位置上。同样地,在采用BPSK调制方式时,通过检测Θ并反相位旋转-Θ角度,其便能够获得与发送侧相位相同的相位(绝对相位生成),并能够使信号点排列与数字信号之间的关系与发送侧它们之间的关系相同,由此而能够很容易地识别出所接收的数字信号。
如图24所示,帧同步检测/再生电路2由BPSK去映射器3,同步检测电路40到47,帧同步电路5,OR门电路53,以及帧同步信号发生器6构成。接收信号相位旋转角度检测电路8由延迟电路81和82,0°/180°相位旋转电路83,平均电路85和86,以及接收相位判定电路87构成。
将从解调电路1输出的I和Q基带信号I(8)和Q(8)输入到帧同步检测/再生电路2的BPSK去映射器部分3中,以捕获,例如BPSK调制帧同步信号,同时输出BPSK去映射比特流B0。BPSK去映射器部分3由,例如ROM构成。
接下来将对帧同步信号进行说明。对于分级发射系统,帧同步信号是以最低的所需C/N进行BPSK调制并发射的。由20个比特构成的帧同步信号具有以S0开始顺序传送的比特流(S0 S1…S18 S19)=(11101100110100101000)。帧同步信号的比特流也可以被称为“SYNCPAT”。随后,该比特流将通过如图13C所示的发送侧BPSK映射,变换为信号点排列“0”或“4”,并发射变换所得的码元流。
为了捕获上述BPSK调制及发射的20比特,即具有20个码元的帧同步信号,其需要通过图25A所示与发送侧所变换映射相反的BPSK去映射,将所接收的码元转换为比特。因此,如图25A所示,当其在接收侧I-Q相位平面上的阴影区域内接收到信号时,解调信号将被判定为(0),而当其是在非阴影区域内接收到该信号时,其将被判定为(1)。即,其根据输出是在由图25A中由粗线所分成的两个判断区域中的哪个区域中接收到的,来将输出归类为(0)或(1),其中假设执行了BPSK去映射处理。
为了进行BPSK去映射处理,其将I和Q基带信号I(8)和Q(8)输入到BPSK去映射器部分3中,同时输出在BPSK去映射器部分3中通过BPSK去映射所得的比特流B0。本说明书中,去映射器表示用于进行去映射处理的电路。随后,其将比特流B0输入到同步检测电路40中,由其从比特流B0中捕获帧同步信号的比特流。
接下来将参照图26对同步检测电路40进行说明。同步检测电路40具有串联在一起的20个D-触发器(以下简称为D-F/F)D19到D0,并由这些D-F/F D19到D0构成了一个20级移位寄存器。比特流B0被输入到D-F/F D19中,并被连续地移位,一直到达D-F/F D0,与此同时,其将对D-F/F D19到D-F/F D0输出的预定比特进行逻辑反向。随后,其将各输出输入到一个与门51上。在与门51中,当D-F/F D19到D0的输出状态(D0D1…D18D19)被设置为(11101100110100101000)时,与门51的输出SYNA0将变为高电平。即,当获得了SYNCPAT时,SYNA0将变为高电平。
同步检测电路40的输出SYNA0通过OR门电路53被输入到帧同步电路5中。在帧同步电路5中,当其确认OR门电路53的输出SYA每隔一定的帧周期便重复地变为高电平,其将判定实现了帧同步,并在每个帧周期输出一个帧同步脉冲。
通常,在每帧均对分别具有彼此不同的必需C/N的多个调制系统进行时间多路复用和重复传送的分级发射系统,标题数据值表明了其所多路复用的多重配置(图11A中所示的TMCC模式)。在其通过帧同步检测/再生电路2判定实现了帧同步,并由BPSK去映射器从帧同步电路5输入了比特流之后,发射配置识别电路9将从比特流中提取出表明了多重配置的TMCC,并对该TMCC进行解码,最后将表明了通过生成当前I和Q基带信号I和Q所用的调制系统的调制系统识别信号DM输出给选择器16(参见图11B)。另外,在其通过帧同步检测/再生电路2判定实现了帧同步之后,接收信号相位旋转角度检测电路8将根据从帧同步信号发生器6输出的再生帧同步信号,检测出接收信号相位旋转角度Θ,并将3比特接收信号相位旋转角度信号AR(3)输出给载波再生电路10的再映射器7和选择器16。
在从发射配置识别电路9输入了调制系统识别信号DM之后,载波再生电路10的选择器16从对应于某一调制系统和接收信号相位旋转角度Θ的相位误差表中,读出相位误差数据△φ(8),另外,其还将从接收信号相位旋转角度检测电路8输入接收信号相位旋转角度信号AR(3),并将相位误差数据△φ(8)输出给D/A变换器17。然而,直到此时,选择器16才从用于8PSK的相位误差表13中读出相位误差数据△φ(8)。
因此,直到发射配置识别电路9识别出多重配置,同时接收信号相位旋转角度检测电路8检测出接收信号相位旋转角度Θ时,解调电路1将一直作为8PSK解调电路来进行操作。因此,从发送侧来看,根据由解调电路1的载波再生电路10所再生出的参考载波fc1或fc2的相位状态,接收信号点将旋转Θ=m×π/4(m为0到7的整数)。
即,如图13C所示,在发送侧,被BPSK映射到用于比特(0)的信号点排列“0”上,或被映射到用于比特(1)的信号点排列“4”上的帧同步信号的码元流的接收信号点,根据参考载波fc1和fc2的相位状态,将出现下述情况之一信号点排列0或“4”,其中类似于发送侧,Θ等于0;旋转有Θ=π/4相位的信号点排列“1”或“5”,旋转有Θ=2π/4相位的信号点排列“2”或“6”,旋转有Θ=3π/4相位的信号点排列“3”或“7”,旋转有Θ=4π/4相位的信号点排列“4”或“0”,旋转有Θ=5π/4相位的信号点排列“5”或“1”,旋转有Θ=6π/4相位的信号点排列“6”或“2”,和旋转有Θ=7π/4相位的信号点排列“7”或“3”。因此,解调所得的帧同步信号总共可具有8种相位状态。所以,即使当帧同步信号以任意相位来进行解调的,也能获得该信号。
因此,BPSK去映射器部分3由对应于Θ=0(m=0),Θ=π/4(m=1),Θ=2π/4(m=2),Θ=3π/4(m=3)。Θ=4π/4(m=4),Θ=5π/4(m=5),Θ=6π/4(m=6),和Θ=7π/4(m=7)的相位旋转的BPSK去映射器30到37构成。
图25B所示为对应于其中解调帧同步信号的码元流旋转有Θ=π/4,同时比特(0)出现在信号点排列“1”上,而比特(1)出现在信号点排列“5”上的情形的BPSK去映射处理的示意图。在接收与发送侧的相位相同的相位时,图25B中由粗体线所示的BPSK判断界线,从图25A中粗体线所示BPSK去映射的BPSK判断界线逆时针旋转有π/4。利用用于执行图25B所示BPSK去映射处理的BPSK去映射器(参见图27中的标号31),其能够稳定地捕获其相位旋转有Θ=π/4的帧同步信号。由BPSK去映射器31所BPSK去映射的比特流,即成为图24所示BPSK去映射器部分3的输出B1。
类似地,BPSK去映射器32到37分别在从图25A中由粗体线所示的用于BPSK去映射的BPSK判定界线逆时针旋转有2π/4,3π/4,…,和7π/4的多条BPSK判定界线上,执行BPSK去映射,以稳定地捕获相位旋转角度Θ=2π/4,3π/4,…,和7π/4的帧同步信号。由BPSK去映射器32到37通过BPSK去映射处理所得的比特流,即用作图24所示BPSK去映射器部分3的输出B2到B7。BPSK去映射器30在图25A中由粗体线所示的用于BPSK去映射的BPSK判定界线上,执行BPSK去映射,以稳定地捕获Θ=0的帧同步信号。由BPSK去映射器30通过BPSK去映射所得的比特流,即用作图24中所示BPSK去映射器部分3的输出B0。
同步检测电路41到47的配置与同步检测电路40的配置相同。利用同步检测电路40到47,其将由同步检测电路40到47中的某一个,独立于由于解调电路1的载波再生电路10再生所得的参考载波fc1和fc2的相位状态所引起的基带信号的相位旋转,获得一个帧同步信号,同时将从获得上述帧同步信号的同步检测电路,发送一个高电平SYNAn(n=0到7的整数)。
来自同步检测电路40到47的SYNAn输出被输入到OR门电路53中,而OR门电路53则输出SYNAn的逻辑和SYNA。当其确认每隔一定的帧间隔,SYNA便交替地重复变为高电平,帧同步电路5则判定实现了帧同步,同时每个帧周期输出一个帧同步脉冲。帧同步信号发生器6根据帧同步电路5所输出的帧同步脉冲FSYNC,产生与由BPSK去映射器3,同步检测电路40到47,和帧同步电路5,所捕获的帧同步信号的模式SYNCPAT相同的比特流(称之为再生帧同步信号)。
上面所说明的处理中,其利用图24所示的帧同步检测/再生电路2,从来自解调电路1的I和Q码元流数据I(8)和Q(8)输出中获得了帧同步信号,而在一定时间之后,其将从帧同步信号发生器6输出再生所得的帧同步信号。
下面将对由发射配置识别电路9所执行的发射配置识别操作进行详细地说明。
发射配置识别电路9接收由帧同步检测/再生电路2的BPSK去映射器3所输出的比特流B0到B7,由同步检测电路40到47所输出的SYNA0到SYNA7,以及由帧同步电路5所输出的帧同步脉冲FSYNC。当电路9接收到帧同步脉冲FSYNC时,其将捕获SYNA0到SYNA7中某一重复保持高电平的系统的比特流Bn,并利用根据帧同步脉冲FSYNC所产生的预定时序信号,提取出图11A所示的TMCC模式,并对该模式进行解码,最后输出表明当前I和Q基带信号I和Q依赖于哪一种调制系统的调制系统识别信号DM(参见图11B)。
接下来将对通过从所捕获的帧同步信号的信号点排列中获得当前接收信号相位旋转角度,并根据所获得的接收信号相位旋转角度反相位旋转解调I和Q基带信号I(8)和Q(8),而实现的绝对相位生成处理进行详细地说明。
在发送侧被BPSK去映射并由解调电路1解调为I和Q基带信号I(8)和Q(8)的帧同步信号的码元流的每个码元,由BPSK去映射器部分3被去映射为比特(0)或(1)。被去映射为比特(0)的码元与被去映射为比特(1)的码元之间的相位差等于180°。因此,通过将接收码元流的帧同步信号部分中被去映射成比特(1)的各码元旋转180°,则便可以获得被去映射为比特(0)的全部码元流。
另外,通过获得所要全部去映射为比特(0)的码元流的各码元的平均值,将可以获得用于BPSK的比特(0)的接收信号点排列。因此,通过求出所得用于BPSK的比特(0)的接收信号点,与在发送侧被去映射为比特(0)的信号点排列“0”之间的相位差,令该相位差为接收信号相位旋转角度Θ,并对所有的I和Q基带信号进行η=-Θ的相位旋转,便可以生成I和Q基带信号I(8)和Q(8)的绝对相位。
如上所述,通过接收从帧同步电路5所输出的帧同步脉冲,并将该比特流作为再生帧同步信号,提供给接收信号相位旋转角度检测电路8的0°/180°相位旋转电路83,帧同步信号发生器6可以产生与所捕获帧同步脉冲的模式SYNCPAT相同的比特流。当所提供的再生帧同步信号的比特流中的比特是比特(1)时,0°/180°相位旋转电路83会将I和Q基带信号的相位旋转180°,而对于比特(0),电路83则不旋转相位。
由此,利用0°/180°相位旋转电路83输入侧的延迟电路81和82,可以使从帧同步信号发生器6传送来的再生帧同步信号的比特流的定时,与I和Q码元流中的帧同步信号码元流的定时,彼此一致。只有当从帧同步信号发生器6中输出有帧同步信号区段信号时,延迟电路81和82才打开其输出门。因此,从延迟电路81和82中输出帧同步信号部分的I和Q码元流DI(8)和DQ(8)。对于I和Q码元流DI(8)和DQ(8),在0°/180°相位旋转电路83中,再生帧同步信号的比特流中对应于比特(1)的码元部分将被相位旋转180°,而对应于比特(0)的码元部分则不进行任何相位旋转处理,而被作为码元流VI(8)和VQ(8)直接传送给平均电路85和86。因为其判定构成帧同步信号的20个比特均被设置为比特(0),所以码元流VI(8)和VQ(8)即为接收发送侧所BPSK去映射的信号时的码元流。
图28(A)所示为当以Θ=0的接收信号相位角来进行接收时,帧同步信号的I和Q码元流I(8)和Q(8)的信号点排列的示意图,而图28(B)所示为在由0°/180°相位旋转电路83进行完变换后,I和Q轴码元流VI(8)和VQ(8)的信号点排列示意图。I和Q码元流VI(8)和VQ(8)被传送给平均电路85和86,其中,例如可以将该数据流的每个量化比特长度变换为近似16到18比特,随后将对其中的4个帧(16×4=64个码元)进行平均,而上述4个帧的均值将作为根据原始8个比特的量化比特长度的AVI(8)和AVQ(8),来输出。在此情况中,将对I和Q码元流VI(8)和VQ(8)进行平均,以使得即使由于接收C/N恶化而使得,在所接收基带信号出现了轻微的相位变化或幅值波动时,也可以稳定地获得某种信号点排列。
利用平均电路85和86可以获得,通过对比特(1)进行BPSK映射所得信号的接收信号点[AVI(8),AVQ(8)]。随后,上述接收信号点[AVI(8),AVQ(8)]被输入到由ROM构成的相位判断电路87中,由其根据图29所示的AVI-AVQ相位平面上的接收信号相位旋转角度判定表,来求出接收信号相位旋转角度Θ,同时将输出对应于Θ的3个比特(自然二进制数)的3比特相位旋转角度信号AR(3)。图29所示“R=0-7”表示相位旋转角度信号AR(3)的十进制标号。例如,“Θ=0”表示通过根据接收信号相位旋转角度判定表,判定图29中所示某个信号点Z=[AVI(8),AVQ(8)]所得的接收信号相位旋转角度。因此,其可以得到R=0,并将(000)作为接收信号相位旋转角度信号AR(3)进行传送。当接收信号相位旋转角度Θ等于π/4时,R将等于1,而所传送的接收信号相位旋转角度信号AR(3)将为(001)。
当由ROM构成的再映射器7接收到接收信号相位旋转角度信号AR(3),并根据上述接收信号相位旋转角度信号AR(3)来相位旋转I和Q基带信号I(8)和Q(8)时,便可以实现绝对相位生成处理。
下面将对再映射器7的功能进行说明。再映射器7由用于使接收I和Q基带信号I(8)和Q(8)的信号点排列,与发送侧的信号点排列相同的相位变换电路构成。接收信号相位旋转角度检测电路8计算接收信号相位旋转角度Θ,并向再映射器7提供与接收信号相位旋转角度Θ相对应的接收信号相位旋转角度信号AR(3)。在此情况中,接收信号相位旋转角度信号AR(3)的十进制表示R是一个0到7之间的整数,而其与接收信号相位旋转角度Θ之间的关系由如下公式(1)来定义R=Θ/(π/4)…(1)其中Θ=m×(π/4)m0到7的整数通过进行反相位旋转,即,将接收信号相位旋转角度Θ的相位旋转-Θ的角度,可以实现用于I和Q基带信号的绝对相位生成处理。因此,再映射器7根据如下的公式(2)和(3)将输入I和Q基带信号I和Q的相位旋转一定角度η(=-Θ),并输出绝对相位生成处理后的I和Q基带信号I’(8)和Q’(8)(以后将省略量化比特的个数,而只简称为I’和Q’)。
I’=Icos(η)-Qsin(η)…(2)Q’=Isin(η)+Qcos(η)…(3)
然而,对于上述常规类型的接收信号相位旋转角度检测电路,当通过表变换来配置0°/180°相位旋转电路83时,所需的存储器容量将达128千字节(=216×16比特)。另外,当通过表变换来配置相位判断电路86时,其还将需要216×3比特的存储器容量,因此,将会出现电路尺寸增大很多的问题。
因此,本发明的一个目的是提供一种用于产生由接收机所接收的信号的绝对相位,同时仅需要很小的电路尺寸的装置。

发明内容
根据本发明权利要求1的用于生成由接收机所接收信号的绝对相位的装置,包括解调装置,用于利用由载波再生装置所再生的载波(fc1和fc2),对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中,至少有8PSK调制数字信号与BPSK调制帧同步信号被时间多路复用的PSK调制信号进行解调,并输出I和Q码元流数据;帧同步信号捕获装置,用于从上述解调所得的I和Q码元流数据中,捕获帧同步信号;接收信号相位旋转角度检测装置,用于从解调装置所输出的I和Q码元流数据中,检测相对于发送侧的相位旋转角度;以及反相位旋转装置,其用于将从解调装置输出的I和Q码元流数据的相位反相位旋转,由接收信号相位旋转角度检测电路所检测出的相位旋转角度,以由此使解调装置的载波再生装置,需要具有存储有用于每种调制系统的各种解调I和Q码元流数据集的载波相位误差数据的相位误差表,在正常接收情况下当解调装置对一定的调制系统部分进行解调的同时,从对应调制系统的相位误差表读出对应于解调I和Q码元流数据的相位误差数据,并对载波的相位进行校正;其特征在于,接收信号相位旋转角度检测装置,包括用于读取高位比特,以判断在载波再生装置的用于BPSK调制的相位误差表中,对应于解调I和Q码元流数据的各相位误差数据中,相位误差的绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)的相位误差数据读取装置,以及用于根据对应于利用帧同步信号捕获装置,从解调I和Q码元流数据所获得的帧同步信号中对应于比特(0)(或比特(1))部分的I(或Q)码元流数据的符号比特数据,和由相位误差数据读取装置对应于某码元部分所读出的相位误差数据,判断出对应于帧同步信号的比特(0)或比特(1)的码元部分的相位旋转角度,并输出判断结果的判断装置。
接收信号相位旋转角度是根据,用于判定用于BPSK调制的相位误差表中与解调I和Q码元流数据相对应的相位误差数据的,相位误差绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)的高位比特,以及对应于帧同步信号的比特(0)(或比特(1))的I(或Q)码元流数据部分的符号比特数据,来单义地确定的,并可以通过简单的操作来进行识别。因此,其不必使用专用于判断相位旋转角度的大规模ROM,并由此而能够减小电路的尺寸。
根据本发明权利要求2的、用于生成由接收机所接收信号的绝对相位的装置,所采用的接收机包括解调装置,用于利用由载波再生装置所再生的载波(fc1和fc2),对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中,至少有8PSK调制数字信号与BPSK调制帧同步信号被时间多路复用的PSK调制信号进行解调,并输出I和Q码元流数据;帧同步信号捕获装置,用于从解调I和Q码元流数据中捕获帧同步信号;接收信号相位旋转角度检测装置,用于从解调装置所输出的I和Q码元流数据中,检测相对于发送侧的相位旋转角度;以及反相位旋转装置,其用于将解调装置所输出的I和Q码元流数据的相位反相位旋转,由接收信号相位旋转角度检测装置所检测出的相位旋转角度,并输出所得信号,以由此使解调装置的载波再生装置,需要具有存储了用于每种调制系统的各种解调I和Q码元流数据集的载波相位误差,并当解调装置对在正常接收状态下对某一调制系统部分进行解调时,通过参照对应于一定调制系统部分的相位误差表,读出对应于解调I和Q码元流数据的相位误差数据;其特征在于接收信号相位旋转角度检测装置包括用于读取高位比特,以判断在载波再生装置的用于BPSK调制的相位误差表中,对应于解调I和Q码元流数据的各相位误差数据中,相位误差的绝对值是大于还是小于π/8的相位误差数据读取装置,以及用于根据对应于利用帧同步信号捕获装置,从解调I和Q码元流数据中,所获得的帧同步信号中对应于比特(0)(或比特(1))部分的I(或Q)码元流数据的符号比特数据,和由相位误差数据读取装置对应于某码元部分所读出的相位误差数据,判断出对应于帧同步信号的比特(0)或比特(1)的码元部分的相位旋转角度,并输出判断结果的判断装置。
接收信号相位旋转角度是根据,用于判定用于BPSK调制的相位误差表中与解调I和Q码元流数据相对应的相位误差数据的,相位误差绝对值是大于还是小于π/8的高位比特,以及对应于帧同步信号的比特(0)(或比特(1))的I(或Q)码元流数据部分的符号比特数据,来单义地确定的,并可以通过简单的操作来进行识别。因此,其不必使用专用于判断相位旋转角度的大规模ROM,并由此而能够减小电路的尺寸。
附图的简要说明图1所示为根据本发明第一实施例的PSK调制信号波接收机的基本部分的结构方框图;图2A和2B所示为由图1所示的相位旋转角度判断电路所输出的接收信号相位旋转角度信号,与接收信号旋转角度之间关系的示意图;图3所示为图1中的平均电路的结构方框图;图4A和4B所示为二进制代码与格雷码之间的关系示意图;图5所示为根据本发明第二实施例的PSK调制信号波接收机的基本部分的结构方框图;图6所示为图5所示二进制转换器的输入与输出之间的关系示意图
图7所示为根据本发明第三实施例的PSK调制信号波接收机的基本部分的结构方框图;图8所示为根据图7的一种修正型的PSK调制信号波接收机的基本部分的结构方框图;图9所示为根据图7的另一种修正型的PSK调制信号波接收机的基本部分的结构方框图;图10所示为根据图8的一种修正型的PSK调制信号波接收机的基本部分的结构方框图;图11A和11B所示为分级发射系统的帧配置的示意图;图12所示为根据常规分级发射系统的PSK调制信号波接收机的解调电路部分的结构方框图;图13A到13C所示为用于PSK映射的信号点排列的示意图;图14所示为图12中局部部分省略的载波再生电路的方框图;图15所示为如何测量接收信号点的相位的示意图;图16所示为如何测量接收信号相位旋转角度的示意图;图17所示为一种用于8PSK的相位误差表的示意图;图18所示为一种用于QPSK的相位误差表的示意图;图19所示为一种用于QPSK的相位误差表的示意图;图20所示为一种用于BPSK的相位误差表的示意图;图21所示为一种用于BPSK的相位误差表的示意图;图22所示为一种用于BPSK的相位误差表的示意图;图23所示为一种用于BPSK的相位误差表的示意图;图24所示为图12中的同步检测/再生电路的方框图;图25A和25B所示为用于解释BPSK去映射处理的示意图;图26所示为图24中的同步检测电路的电路图;图27所示为图24中的BPSK去映射器的电路图;图28A和28B所示为帧同步信号通过图12所示的0°/180°相位旋转电路之前与之后的信号点排列的示意图;以及图29所示为由图12中所示的相位判定电路所用的接收信号相位旋转角度判断表的示意图。
优选实施例的详细说明接下来,将参照图1对本发明的第一实施例进行说明。
图1所示为根据本发明的PSK调制信号波接收机的基本部分的方框图,其中与图12中相同的部分用相同的标号表示。
在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8A检测出接收信号相位旋转角度Θ之前,在码元时钟CLKSYB被激励(时钟CLKSYB的高电平区;参见图11B)时,载波再生电路10A的选择器16A只使能用于8PSK的相位误差表13(参见图17),随后在时钟CLKSYB被激励的同时,读出对应于从由解调电路1A所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),并将数据△φ(8)输出给D/A变换器17。另外,在上述操作的同时,在码元时钟CLKSYB没有被激励(时钟CLKSYB的低电平区;参见图11B)时,选择器16A只使能用于BPSK的相位误差表15-1(参见图20),读出对应于从由解调电路1A所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3比特(以下简称为相位误差数据△φ(3)),并在时钟CLKSYB没有被激励的同时,将上述高位3个比特输出给接收信号相位旋转角度检测电路8A。从相位误差数据△φ(3)中可以知道,相位误差的绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)。
在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8A检测出接收信号相位旋转角度Θ之后,在时钟CLKSYB被激励的同时,选择器16A从由解调电路1A所解调的接收信号的调制系统中,读出对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以及对应于接收信号相位旋转角度(Θ)的相位误差表,并将数据△φ(8)输出给D/A变换器17,而另外,当时钟CLKSYB没有被激励时,其将从用于BPSK的相位误差表15-1中读出对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3个比特,作为相位误差数据△φ(3)。
标号90表示一个用于将由选择器16A所读出的相位误差数据△φ(3)延迟预定的时间段,而后再输出该数据的延迟电路。延迟电路90调节定时,以使得只有当帧同步检测/再生电路2从I和Q码元流数据I(8)和Q(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出对应于I码元流数据I(8)中的帧同步信号第一部分的相位误差数据△φ(3)。标号91表示一个用于将用作I码元流的MSB的符号比特数据i(1),延迟预定的时间段,而后再输出该数据的延迟电路。延迟电路91调节定时,以使得只有当帧同步检测/再生电路2从I和Q码元流数据I(8)和Q(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出I码元流数据I(8)中的帧同步信号第一部分的符号比特数据i(1)。
标号92表示相位旋转角度判断电路,其用于针对与由解调电路1A所输出的I和Q码元流数据I(8)和Q(8)中的帧同步信号的比特(1)相对应的码元部分,根据对应于该帧同步信号的延迟电路90或91的一部分输出,判断相对于发送侧的相位旋转角度,另外,还判断相对于发送侧的、且对应于帧同步信号比特(0)的码元部分的相位旋转角度,并连续地输出判断结果。相位旋转角度判断电路92中的标号93表示,一个用于加和4比特数据的4比特加法器(然而,并不执行第5比特的进位处理),其中将延迟电路91的输出输入到其一个输入侧的最高有效位上,而将延迟电路90的输出输入到其低位3个比特上。选择器94与加法器93的其它输入侧相连。选择器94输入有从帧同步检测/再生电路2所输出的再生帧同步信号的比特流,并在输入的是比特(0)部分时,输出A(4)=(0101),而在输入的是比特(1)部分时,则输出B(4)=(1101)。加法器93输出上述加和结果的高位3个比特,作为相位旋转角度信号R(3)。
标号95表示用于对相位旋转角度信号R(3)进行平均的平均电路。在此情况中,平均电路95对用于4个帧的帧同步信号进行平均,并将取平均所得的信号作为相位旋转角度信号AR(3),输出给再映射器7和选择器16A。在后面将给出对平均电路95的多种实例。
其它各部分的结构与图12所示完全相同。
接下来,将对上述第一实施例的操作进行说明。
(1)开始接收在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8A在接收处理开始后,检测出接收信号相位旋转角度Θ之前,在码元时钟CLKSYB被激励的同时,载波再生电路10A的选择器16A只使能用于8PSK的相位误差表13,读出对应于由解调电路1A在时钟CLKSYB被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将上述数据输出给D/A变换器17。另外,在上述操作的同时,当码元时钟CLKSYB没有被激励时,选择器16A只使能用于BPSK的相位误差表15-1,读出对应于从由解调电路1A在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(3),以将上述数据输出给延迟电路90。
当选择器16A将从用于8PSK的相位误差表13中读出的相位误差数据△φ(8),输出给D/A变换器17时,其将利用D/A变换器17将该数据变换为相位误差电压,而随后再利用LPF18从上述相位误差电压中,去除掉低频分量,并将所得电压作为控制电压加载到VCO11上。当相位误差数据△φ(8)等于0时,LPF18的输出将不变,或者说参考载波fc1和fc2的相位将不变。然而,当相位误差数据△φ(8)为正数时,LPF18的输出将增大,同时参考载波fc1和fc2的相位将延迟。当相位误差数据△φ(8)为负数时,LPF18的输出将下降,同时参考载波fc1和fc2的相位将超前。由此,可以对参考载波fc1和fc2的相位进行校正,以与所接收载波的相位保持一定的关系。其结果是,解调电路1A将相位分别为0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4和7π/4的信号点排列“0”到“7”的数字信号,校正到接收侧I-Q相位平面上旋转了Θ=m×π/4(m是0到7的任一整数)的位置上。
另外,在相位误差表15-1中,对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)的高位3个比特,即相位误差数据△φ(3),表示用于判断相位误差的绝对值是大于还是小于(/π/8)+s(π/4)(s为0或1)(参见图20)的多个比特。通过对上述相位误差数据△φ(3)与用作I码元流数据I(8)的MSB的符号比特数据i(1)进行组合,并对△φ(3)和I(8)的组合进行简单的运算,其能够识别出接收信号对应于8种信号点排列“0”到“7”中的哪一种信号点排列。因为发送侧帧同步信号的比特(0)(或比特(1))部分的信号点排列被定为“0”(或“4”),则其可以从△φ(3)和用作I码元流数据的MSB的符号比特数据中,单一地确定接收信号相位旋转角度。
当延迟电路90和91对从选择器16A输出的相位误差数据△φ(3),以及从解调电路1的输出中取出的I码元流数据I(8)的符号比特数据i(1)进行延迟,同时帧同步检测/再生电路2从I和Q码元流数据中,获得了帧同步信号,并开始输出再生帧同步信号时,接收信号相位旋转角度检测电路8A首先调节定时以使,延迟电路90中输出的对应于I码元流数据I(8)的帧同步信号部分的标题的相位误差数据△φ(3),同时延迟电路91输出对应于I码元流数据I(8)的帧同步信号部分的标题的符号比特数据i(1)。随后,其将延迟电路90和91的输出分别作为高位比特和低位比特,输入到加法器93的一个输入侧上。
在开始接收操作后的一定时间后,帧同步检测/再生电路2捕获I和Q码元流数据I(8)和Q(8)中的帧同步信号,并输出再生帧同步信号。随后,选择器94在再生帧同步信号的比特(0)部分上选中A(4)=(0101)并进行输出,同时其在比特(1)部分上选中B(4)=(1101)并进行输出。加法器93在20比特再生帧同步信号的每个比特位置上,对其一个输入和另一个输入进行加和,以输出高位3个比特。随后,加法器93输出通过在将接收信号相位旋转角度Θ划分为0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4,和7π/4,并将其分别与十进制标号R=0到7相关(参见图2B)时,利用3比特自然二进制数来进行表示,所获得的相位旋转角度信号R(3)。
平均电路95在其从帧同步检测/再生电路2接收帧同步信号区段信号的同时,捕获加法器93的输出。随后,例如,电路95对4个帧的输出进行平均,并取平均所得的结果作为相位旋转角度信号AR(3)输出给再映射器7,以使再映射器7生成绝对相位。另外,电路95将接收信号相位旋转角度信号AR(3)输出给选择器16A。为了在即使接收基带信号中,由于接收C/N恶化而出现轻微的相位改变和或幅值波动时,也能够稳定地获得接收信号相位旋转角度,其将对相位旋转角度信号R(3)进行平均。
图3所示为平均电路95的一种实例。从加法器93输出的接收信号相位旋转角度信号R(3)由图4A所示的格雷码转换器96转换为3比特格雷码。格雷码的特性在于,在各个相邻代码之间,只有一个比特位置发生变化。对于格雷码转换器96输出侧上的比特位置G0到G2,其配备了择多判断电路97-1到97-3,以在为4个帧而输入帧同步信号区段信号的同时,确定格雷码转换器96所输出的比特(1)或比特(0)哪一种更多。择多判断电路97-1到97-3的输出F0到F2被输入到二进制码转换器98中,其中将根据图4B所示,执行格雷码转换器96所执行变换处理的逆变换处理。随后将二进制码转换器98的输出,作为接收信号相位旋转角度信号AR(3)来进行输出。
其也可以通过省略格雷码转换器96和二进制码转换器98,而直接将加法器93的输出输入到择多判断电路97-1到97-3中,来进行择多判断判断。然而,通过进行格雷码编码处理,即使相位旋转角度信号R(3)所示的相位改变了π/4代码,通常也只会在一个比特位置上发生变化,或即使在所接收基带信号中,由于接收C/N恶化而出现了轻微的相位改变或幅值改变,以及相位旋转角度信号R(3)错误地移动了π/4,其也能够最小化其所造成的不利影响,而由此提高可靠性。
(2)正常接收操作当帧同步检测/再生电路2获得了帧同步信号时,发射配置识别电路9将立即识别出其多重配置,并将表明了从解调电路1A所输出的当前I和Q码元流数据对应于哪一调制系统部分的调制系统识别信号DM,输出给选择器16A或其它元件。
接收来自平均电路95的接收信号相位旋转角度信号AR(3)的选择器16A,在解调电路1A解调8PSK调制系统部分,同时时钟CLKSYB当由接收信号相位旋转角度信号AR(3)所示的接收信号相位旋转角度Θ等于,例如3π/4而被激励时,利用从发射配置识别电路9输入的调制系统识别信号DM,只使能相位误差表13,并读出对应于解调电路1A在时钟CLKSYB被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,可以对参考载波fc1和fc2的相位分别进行校正,以使被8PSK-映射到发送侧信号点排列“0”,“1”,“2”,“3”,“4”,“5”,“6”和“7”上的数字信号(abc),独立于所接收载波的相位变化,出现在接收侧的信号点排列“3”,“4”,“5”,“6”,“7”,“0”,“1”, “2”上。
因为从解调电路1A输出的8PSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,被再映射器7旋转了η=-Θ=-3π/4,所以从再映射器7所输出的I和Q码元流数据I’(8)和Q’(8)的接收信号点,将与发送侧的信号点相一致。
当Θ等于3π/4时,则在解调电路1A解调QPSK调制系统部分,同时时钟CLKSYB被激励时,选择器16A只使能相位误差表14-2,并读出对应于解调电路1A在时钟CLKSYB被激励时,所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,其可以对参考载波fc1和fc2的相位进行校正,从而使得被QPSK映射到发送侧信号点排列“1”,“3”,“5”和“7”上的数字信号(de),出现在接收侧的信号点排列“4”,“6”,“0”和“2”上,并因此将各相位保持在等于用于8PSK的接收信号相位旋转角度的相位旋转角度上。因为,从解调电路1A输出的QPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,被再映射器7旋转了η=-Θ=-3π/4,所以从再映射器7所输出的I和Q码元流数据I’(8)和Q’(8)的接收信号点将与发送侧的信号点相一致。
当Θ等于3π/4时,则在解调电路1A解调BPSK调制系统部分,同时时钟CLKSYB被激励时,选择器16A只使能相位误差表15-3(参见图22),并从相位误差表15-3中读出对应于,在时钟CLKSYB被激励时解调电路1A所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,可以对参考载波fc1和fc2的相位进行校正,从而使得被BPSK映射到发送侧信号点排列“0”和“4”上的数字信号(f),出现在接收侧的信号点排列“3”和“7”上,并因此,将各相位保持在等于用于8PSK的接收信号相位旋转角度的相位旋转角度上。因为,从解调电路1A输出的BPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,也同样被再映射器7旋转了η=-Θ=-3π/4,所以从再映射器7所输出的I和Q码元流数据I’(8)和Q’(8)的接收信号点将与发送侧的信号点相一致。
另外,同样是在正常接收操作的情况下,当码元时钟CLKSYB没有被激励时,选择器16A只使能相位误差表15-1,并从相位误差表15-1中读出对应于,解调电路1A在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。随后,相位旋转角度判断电路92根据延迟电路90或91的输出判断相位旋转角度,并将判断结果以接收信号相位旋转角度信号R(3)的形式进行输出,同时平均电路95对针对4个帧的判断结果进行平均,并将平均信号R(3)作为接收信号相位旋转角度信号AR(3)进行输出。当由AR(3)所表明的接收信号相位旋转角度Θ与以前相同时,则再映射器7的相位旋转角度将不变,或者说由选择器16A所选择的相位误差表将不变。然而,如果接收信号相位旋转角度Θ与先前相比发生了变化,则再映射器7将从新的Θ开始,旋转-Θ。另外,选择器16A也将根据Θ的变化,改变所要选择的相位误差表。
根据本实施例,I和Q码元流数据I(8)和Q(8)中与帧同步信号的比特(1)(比特(0))相对应那一部分的旋转角度是根据,用于判断用于BPSK调制的相位误差表中,对应于I和Q码元流数据与解调帧同步信号的比特(1)(比特(0))相对应那一部分的相位误差数据中的相位误差的绝对值,是大于还是小于(π/8)+s(π/4)(s为0或1)的高位3个比特,以及I码元流数据的符号比特数据,来进行判断的。因此,其能够通过简单的运算来判断接收信号相位旋转角度。所以,其不必再使用大型的专用于判断相位旋转角度的ROM,并由此而能够减小电路的尺寸。
上述实施例使用的是码元流数据I(8)的符号比特数据i(1)。然而,其也可以使用,用作Q码元流数据Q(8)的MSB的符号比特数据。另外,其也允许从相位误差表15-2,15-3和15-4中的一个,而不是从相位误差表15-1中,读出数据△φ(3)。同时其也可以仅仅通过适当地改变由选择器94所选出的A(4)和B(4)的值,来完成上述改变。
另外,尽管上文中同时判断了I和Q码元流数据的帧同步信号的比特(1)和(0)部分的相位旋转角度,但其也可以只判断其中的任一个相位旋转角度。另外,其还可以利用平均电路95来随意地改变平均方法。因此,其也允许针对一个或两个帧,来对判断结果进行平均,或对特定位置上或用于多个帧的帧同步信号的多个位置上的一个比特或多个比特,进行平均。
下面,将参照图5对本发明的第二实施例进行说明。
图5所示为根据本发明的PSK调制信号波接收机的基本部分的方框图,其中与图1中所示相同的组件,其标号也相同。
对于图1所示的实施例,相位误差数据△φ(3)是从用于BPSK的相位误差表15-1中读出的。而对于图5,相位误差数据△φ(3)则是从用于QPSK的相位误差表14-1中读出的(参见图18)。
在发射配置识别电路9识别出帧的多重配置,且接收信号相位旋转角度检测电路8B检测出接收信号相位旋转角度之前,当时钟CLKSYB被激励时,载波再生电路10B的选择器16B只使能用于8PSK的相位误差表13,并读出对应于,解调电路1A在时钟CLKSYB被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。另外,在上述操作的同时,在时钟CLKSYB没有被激励时,选择器16B只使能用于QPSK的相位误差表14-1,并从相位误差表14-1中读出对应于,解调电路1A在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给接收信号相位旋转角度检测电路8B。根据相位误差数据△φ(3),其可以知道相位误差的绝对值是大于还是小于π/8。
在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8B检测出接收信号相位旋转角度Θ之后,选择器16B将读出对应于根据由解调电路1B所解调的接收信号的调制系统、和与接收信号相位旋转角度Θ相对应的相位误差表对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17,同时在时钟CLKSYB没有被激励时,其还从用于QPSK的相位误差表14-1中读出,对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(3),以将数据△φ(3)输出给接收信号相位旋转角度检测电路8B。
标号90表示,用于将由选择器16B所读出的相位误差数据△φ(3)延迟预定的时间段,而后再输出该数据的延迟电路。延迟电路90调节定时,以使得只有当帧同步检测/再生电路2从I和Q码元流数据I(8)和Q(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出对应于I码元流数据I(8)中的帧同步信号第一部分的相位误差数据△φ(3)。标号91表示,用于将用作I码元流I(8)的MSB的符号比特数据i(1)延迟预定的时间段,而后再输出该数据的延迟电路。延迟电路91调节定时,以使得只有当帧同步检测/再生电路2从I和Q码元流数据I(8)和Q(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出I码元流数据I(8)中的帧同步信号第一部分的符号比特数据i(1)。
标号99表示,用于将用作Q码元流数据Q(8)的MSB的符号比特数据q(1)延迟预定的时间段,随后再输出该数据的延迟电路。延迟电路99调节定时,以使得只有当帧同步检测/再生电路2从I和Q码元流数据I(8)和Q(8)中获得了帧同步信号,并开始输出再生帧同步信号时,才输出Q码元流数据Q(8)的帧同步信号第一部分上的符号比特数据q(1)。
标号92B表示一种相位旋转角度判断电路,其用于从延迟电路90,91或99对应于帧同步信号的部分输出中,判断I和Q码元流数据I(8)和Q(8)中,与帧同步信号比特(1)相对应的码元部分,相对于发送侧的相位旋转角度,并另外判断对应于帧同步信号比特(0)的码元部分,相对于发送侧的相位旋转角度,并连续地输出判断结果。在相位旋转角度判断电路92中,标号100表示用于加和3比特数据(但不进行到第4比特的进位)的3比特加法器,其将延迟电路90的输出与C(3)=(110)加在一起,并输出低位两个比特。
标号101表示用于对通过将延迟电路99的输出作为高位比特,与延迟电路99的输出作为低位比特,组合在一起,所得的2比特数据变换为根据图6的二进制代码,并进行输出的二进制码转换器。标号102表示用于加和4比特数据(但不进行到第5比特的进位)的4比特加法器,其中变换器101的输出被输入到其一个输入侧上的高位两个比特上,而加法器100所得的加和结果的低位两个比特,则被输入到该输入侧上的低位两个比特上。选择器103与该加法器102的另一输入侧相连,其用于输入由帧同步检测/再生电路2所输出的再生帧同步信号的比特流,当输入的是比特(0)部分时,输出D(4)=(1111),而当输入的是比特(1)部分时,输出E(4)=(0111)。加法器102将加和结果的高位3个比特,作为相位旋转角度信号R(3)来进行输出。
标号95表示用于对接收信号相位旋转角度信号R(3)进行平均的平均电路。在此情况中,例如,平均电路95对用于4个帧的帧同步信号进行平均,并将平均信号作为接收信号相位旋转角度信号AR(3),输出给再映射器7和选择器16B。其它部分的结构与图1所示完全相同。
接下来将对第二实施例的操作进行说明。
(1)开始接收在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8B在接收处理开始后,检测出接收信号相位旋转角度Θ之前,在码元时钟CLKSYB被激励的同时,载波再生电路10B的选择器16B只使能用于8PSK的相位误差表13,并从相位误差表13中读出对应于解调电路1B在时钟CLKSYB被激励时,所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将上述数据输出给D/A变换器17。另外,在上述操作的同时,当码元时钟CLKSYB没有被激励时,选择器16B只使能用于QPSK的相位误差表14-1,读出对应于从由解调电路1A在时钟CLKSYB没有被激励时,所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)的高比特3比特△φ(3),以将△φ(3)数据输出给延迟电路90。
因为选择器16B是从用于8PSK的相位误差表13中读出相位误差数据△φ(8),并将其输出给D/A变换器17的,所以解调电路1B将可以把发送侧相位分别为0,π/4,2π/4,3π/4,4πc/4,5π/4,6ππ/4和7π/4的信号点排列“0”到“7”的数字信号,校正到接收侧I-Q相位平面上旋转有Θ=m×π/4(m为0到7的任一整数)的位置上。
在相位误差表14-1中,对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)的高位3个比特,即相位误差数据△φ(3),表示用于判断相位误差的绝对值是大于还是小于π/8(参见图18)的多个比特。通过将△φ(3)与用作I和Q码元流数据I(8)和Q(8)的MSB的符号比特数据i(1)和q(1)组合在一起,并对其组合进行简单的运算,其便能够判断出接收信号点对应于8种信号点排列“0”到“7”中的哪一个信号点排列。因为发送侧帧同步信号的比特(0)(或比特(1))部分的信号点排列被定为“0”(或“4”),因此其可以从△φ(3)和I和Q码元流数据I(8)和Q(8)的符号比特数据i(1)和q(1)中单一地求出接收信号相位旋转角度。
当延迟电路90,91和99对从选择器16B输出的相位误差数据△φ(3),以及从解调电路1的输出中取出的码元流数据I(8)的符号比特数据i(1),以及Q码元流数据Q(8)的符号比特数据q(1)进行延迟,同时帧同步检测/再生电路2从I和Q码元流数据中获得了帧同步信号,并开始输出再生帧同步信号时,接收信号相位旋转角度检测电路8B将调节定时以使得,从延迟电路90中输出对应于码元流数据I(8)的帧同步信号部分的标题的相位误差数据△φ(3),同时延迟电路91输出对应于码元流数据I(8)的帧同步信号的标题的符号比特数据i(1),而延迟电路99则输出对应于Q码元流数据Q(8)的帧同步信号的标题的符号比特数据q(1)。随后再对延迟电路99和91的输出进行二进制转换,并作为加法器102一个输入的高位比特进行输入。同时利用加法器100将延迟电路90的输出与(3)=(110)相加,并作为加法器一个输入的低位两个比特进行输入。
在开始接收操作一定时间后,帧同步检测/再生电路2捕获I和Q码元流数据I(8)和Q(8)中的帧同步信号,并输出再生帧同步信号。随后,选择器103在再生帧同步信号的比特(0)的部分上选中D(4)=(1111),并输出其,同时在比特(1)的部分上选中E(4)=(0111),并输出其。加法器102在20比特再生帧同步信号的每个比特位置上,对其一个输入和另一个输入进行加和,以输出高位3个比特。随后,加法器102输出通过在将接收信号相位旋转角度Θ划分为如图2A所示的0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4,和7π/4,并将其分别与十进制标号R=0到7相关(参见图2B)时,利用3比特自然二进制数来表示R所得的相位旋转角度信号R(3)。
平均电路95在其从帧同步检测/再生电路2接收帧同步信号区段信号的同时,捕获加法器102的输出,并类似于图1所示情形,对用于4个帧的信号进行平均,并将平均所得结果作为接收信号相位旋转角度信号AR(3)输出给再映射器7,以使再映射器7产生绝对相位。另外,电路95还将接收信号相位旋转角度信号AR(3)输出给选择器16B。
(2)正常接收操作紧接着帧同步检测/再生电路2获得帧同步信号之后,发射配置识别电路9立即识别出其多重配置,并将表明了由解调电路1B所输出的当前I和Q码元流数据对应于哪一种调制系统部分的调制系统识别信号DM,输出给选择器16B等。
在解调电路1A解调8PSK调制系统部分时,同时时钟CLKSYB被激励时,当由接收信号相位旋转角度信号AR(3)所示的接收信号相位旋转角度Θ等于,例如2π/4时,接收来自平均电路95的接收信号相位旋转角度信号AR(3)的选择器16B,利用从发射配置识别电路9输入的调制系统识别信号DM,只使能相位误差表13,并从相位误差表13中读出对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,可以对参考载波fc1和fc2的相位进行校正,以使被8 PSK映射到发送侧信号点排列“0”,“1”,“2”,“3”,“4”,“5”,“6”和“7”上的数字信号(abc),独立于所接收载波的相位变化,出现在接收侧的信号点排列“2”,“3”,“4”,“5”,“6”,“7”,“0”和“1”上。
因为从解调电路1B输出的8PSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,被再映射器7旋转了η1=-Θ=-2π/4,所以从再映射器7所输出的I和Q码元流数据I(8)和Q(8)的接收信号点与发送侧的相一致。
当Θ等于2π/4时,在解调电路1B解调QPSK调制系统部分,同时时钟CLKSYB被激励时,选择器16B只使能相位误差表14-1,并读出对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,参考载波fc1和fc2的相位将得到校正,从而使得被QPSK映射到发送侧信号点排列“1”,“3”,“5”和“7”上的数字信号(de),将出现在接收侧的信号点排列“3”,“5”,“7”和“1”上。因此,其将各相位保持在等于用于8PSK的接收信号相位旋转角度的相位旋转角度上。另外,因为从解调电路1B输出的QPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,也被再映射器7旋转了η=-Θ=-2π/4,所以从再映射器7所输出的I和Q码元流数据I,(8)和Q’(8)接收信号点将与发送侧相一致。
当Θ等于2π/4时,在解调电路1B解调BPSK调制系统部分,同时时钟CLKSYB被激励时,选择器16B只使能相位误差表15-3,同时其从相位误差表15-3中读出对应于I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,参考载波fc1和fc2的相位将得到校正,从而使得被BPSK映射到发送侧信号点排列“0”和“4”上的数字信号(f),将出现在接收侧的信号点排列“2”和“6”上,由此各相位将被保持在等于用于8PSK的接收信号相位旋转角度的相位旋转角度上。另外,因为从解调电路1B输出的BPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,也同样被再映射器7旋转了η=-Θ=-2π/4,所以从再映射器7所输出的I和Q码元流数据I’(8)和Q’(8)接收信号点将与发送侧的信号点相一致。
另外,同样是在正常接收操作的情况下,当时钟CLKSYB没有被激励时,选择器16B只使能相位误差表14-1,并从相位误差表14-1中读出对应于解调电路1B在时钟CLKSYB没有被激励时,所输出的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。随后,相位旋转角度判断电路92B根据延迟电路90,91或99的输出,来判断相位旋转角度,并将判断结果以相位旋转角度信号R(3)的形式进行输出,同时平均电路95对用于4个帧的信号R(3)进行平均,并将平均信号R(3)作为接收信号相位旋转角度信号AR(3)进行输出。当由AR(3)所表明的接收信号相位旋转角度Θ与以前相同时,则再映射器7的相位旋转角度将不变,或者说由选择器16B所选择的相位误差表将不变。然而,如果接收信号相位旋转角度Θ与先前相比发生了变化,则再映射器7将根据新的Θ,旋转-Θ。另外,选择器16B还将根据Θ的变化,改变所要选择的相位误差表。
根据本实施例,I和Q码元流数据I(8)和Q(8)中与帧同步信号的比特(1)(比特(0))相对应那一部分的旋转角度是根据,用于判断用于QPSK调制的相位误差表中14-1中,对应于I和Q码元流数据与解调帧同步信号的比特(1)(比特(0))相对应那一部分的相位误差数据中的相位误差的绝对值,是大于还是小于π/8的高位3个比特,以及I码元流数据的符号比特,来进行判断的。因此,其能够通过简单的运算来判断接收信号相位旋转角度。所以,其不必再使用大型的专用于判断相位旋转角度的ROM,并由此而能够减小电路的尺寸。
另外,上述实施例是从相位误差表14-1中读取相位误差数据△φ(3)的。然而,其也允许从相位误差表14-2中读取相位误差数据△φ(3)。上述变化可以通过适当地改变,由加法器100所加和所得的C(3)和由选择器103所选出的D(4)和E(4)来完成。
另外,尽管上文中同时判断了I和Q码元流数据的帧同步信号的比特(1)和(0)部分的相位旋转角度,但其也可以只判断其中的任一个相位旋转角度。另外,其还可以利用平均电路95来随意地改变平均方法。因此,其也允许针对一个或两个数据帧,来对判断结果进行平均,或对特定位置上或用于多个数据帧的帧同步信号的多个位置上的一个比特或多个比特,进行平均。
下面,将参照图7对本发明的第三实施例进行说明。
图7所示为根据本发明的PSK调制载波接收机的基本部分的方框图,其中与图1中所示相同的组件的标号也相同。
对于图1所示的第一实施例,在载波再生电路中一共有7个相位误差表13,14-1,14-2,和15-1到15-4,同时所输入的是从解调电路中所输出的I和Q码元流数据I(8)和Q(8)。然而图7中,其只使用了3个相位误差表13,14-1和15-1,同时所输入的是从再映射器7输出的I和Q码元流数据I’(8)和Q’(8)。另外,再映射器7在接收信号相位旋转角度检测电路检测出接收信号相位旋转角度之前,并不检测从解调电路输入的I和Q码元流数据I(8)和Q(8)的相位旋转角度,而是直接输出输入数据的。
在发射配置识别电路9识别出帧的多重配置,以及接收信号相位旋转角度检测电路8C在接收开始后,检测出接收信号相位旋转角度之前,当时钟CLKSYB被激励,载波再生电路10C的选择器16C只使能用于8PSK的相位误差表13,并从相位误差表13中读出在时钟CLKSYB被激励时对应于再映射器7输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),将△φ(8)输出给D/A变换器17。另外,在上述操作的同时,在时钟CLKSYB没有被激励时,选择器16C只使能用于BPSK的相位误差表15-1,并从相位误差表15-1中读出对应于,再映射器7在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给接收信号相位旋转角度检测电路8C的延迟电路90。根据相位误差数据△φ(3),其可以知道相位误差的绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)。
在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8C检测出接收信号相位旋转角度Θ之后,在时钟CLKSYB被激励时,选择器16C将只使能对应于由解调电路1C所解调的接收信号的调制系统的相位误差表13,14-1和15-1中的一个,并读出在时钟CLKSYB被激励的同时,对应于从再映射器7输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。另外,当时钟CLKSYB没有被激励时,选择器16C只使能用于BPSK的相位误差表15-1,并从相位误差表15-1中读出对应于,再映射器7在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。
标号90表示一个用于将由选择器16C所读出的相位误差数据△φ(3)延迟预定时间段,而后再输出该数据的延迟电路。延迟电路90调节定时,以使得只有当帧同步检测/再生电路2从再映射器7输出的I和Q码元流数据I’(8)和Q’(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出对应于I码元流数据I’(8)中的帧同步信号第一部分的相位误差数据△φ(3)。标号91表示一个用于将用作I码元流I’(8)的MSB的符号比特数据i’(1)延迟预定时间段,而后再输出该数据的延迟电路。延迟电路91调节定时,以使得只由当帧同步检测/再生电路2从I和Q码元流数据I’(8)和Q’(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,才输出I码元流数据I’(8)中的帧同步信号第一部分的符号比特数据i’(1)。
标号92表示相位旋转角度判断电路,其用于针对与I和Q码元流数据I(8)和Q(8)中的帧同步信号的比特(1)相对应的码元部分,判断相对于发送侧的相位旋转角度,另外,还判断相对于发送侧的、且对应于帧同步信号比特(0)的码元部分的相位旋转角度,并连续地输出判断结果,作为相位旋转角度信号R(3)。
标号95表示用于对接收信号相位旋转角度信号R(3)进行平均的平均电路。在此情况中,例如,平均电路95可以对用于4个帧的帧同步信号进行平均,并将平均信号作为接收信号相位旋转角度信号AR(3)进行输出。标号110表示用于每当平均电路95输出接收信号相位旋转角度信号AR(3)时,将由寄存器11所保存的前一接收信号相位旋转角度信号OR(3),与当前接收信号相位旋转角度信号AR(3)进行相加(但并不进行第4的进位),以及用于将加和结果作为新的接收信号相位旋转角度信号OR(3),输出给再映射器7和选择器16C的3比特加法器。标号111表示用于保存由加法器110所输出的接收信号相位旋转角度信号OR(3)的寄存器。后面将对加法器110和寄存器111的操作进行说明。
其它组件的结构与图1所示完全相同。
下面描述第三实施例的操作。
在本例中,假设寄存器111最初被清零为(000)。
(1)开始接收在开始接收时,再映射器7并不进行相位旋转,而是直接将从解调电路1C接收来的I和Q码元流数据I(8)和Q(8)作为I’(8)和Q’(8)来进行输出。
在发射配置识别电路9识别出数据帧的多重配置,同时接收信号相位旋转角度检测电路8C在接收处理开始后检测出接收信号相位旋转角度Θ之前,在码元时钟CLKSYB被激励时,载波再生电路10C的选择器16C只使能用于8PSK的相位误差表13,并从相位误差表13中读出对应于,再映射器7在时钟CLKSYB被激励时所输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。另外,在上述操作的同时,在码元时钟CLKSYB没有被激励时,选择器16C只使能用于BPSK的相位误差表15-1,并从相位误差表15-1中读出对应于,再映射器7在时钟CLKSYB没有被激励时所输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8)的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。
因为选择器16C从用于8PSK的相位误差表13中读出相位误差数据△φ(3),并将数据△φ(3)输出给D/A变换器17,所以解调电路1C可以把在发送侧相位分别为0,/4,2π/4,3π/4,4π/4,5/4,6π/4和7π/4的信号点排列“0”到“7”的数字信号,校正到接收侧I-Q相位平面上旋转有Θ=m×π/4(m为0到7的任一整数)的位置上。
另外,在相位误差表15-1中,对应于I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ的高位3个比特,即相位误差数据△φ(3),表示用于判断相位误差的绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)的多个比特。通过对相位误差数据△φ(3)与用作I码元流数据I’(8)的MSB的符号比特数据i’(1)进行组合,并对其进行简单的运算,其能够判断出,从再映射器7的角度看,接收信号点对应于8种信号点排列“0”到“7”中的哪一个信号点排列。因为发送侧帧同步信号的比特(0)(或比特(1))部分的信号点排列被定为“0”(或“4”),所以其可以从△φ(3)和i’(1)中单一地获得,从再映射器7的输出侧所看的接收信号相位旋转角度。
当延迟电路90和91对从选择器16C所输出的相位误差数据△φ(3)和从再映射器7的输出中取出的I码元流数据I’(8)的符号比特数据i’(1)进行延迟,以及帧同步检测/再生电路2从I和Q码元流数据I’(8)和Q’(8)中捕获了帧同步信号,并开始输出再生帧同步信号时,接收信号相位旋转角度检测电路8C首先调节定时以使,从延迟电路90中输出对应于I码元流数据I(8)的帧同步信号部分的标题的相位误差数据△φ(3),同时延迟电路91输出对应于I码元流数据I’(8)的帧同步信号部分的标题的符号比特数据i’(1)。同时,延迟电路91和90的输出作为加法器93一个输入侧的高位比特和低位比特输入加法器93。
在开始接收操作一定时间后,帧同步检测/再生电路2捕获I和Q码元流数据I’(8)和Q’(8)中的帧同步信号,并输出再生帧同步信号。随后,选择器94在再生帧同步信号的比特(0)部分上选中A(4)=(0101)并输出其,同时在选出比特(1)部分上选中B(4)=(1101)并输出其。加法器93在20比特再生帧同步信号的每个比特位置上,对其一个输入和另一个输入进行加和,以输出高位3个比特。随后,加法器93输出通过在将从再映射器7的输出侧看到的接收信号相位旋转角度Θ划分为如图2A所示的0,π/4,2π/4,3π/4,4π/4,5π/4,6π/4,和7π/4,并将其分别与十进制标号R=0到7相关(参见图2B)时,利用3比特自然二进制数来表示R所获得的相位旋转角度信号R(3)。
平均电路95在其从帧同步检测/再生电路2输入帧同步信号区段信号的同时,捕获加法器93的输出,并类似于图1所示情形,对用于4个帧的信号进行平均,并将平均结果作为接收信号相位旋转角度信号AR(3)来进行输出。随后利用加法器110对AR(3)与寄存器111所保存的值进行相加。然而,因为最初所保存的值为(000),平均电路95直接将AR(3)作为从解调电路1C的输出点来看,针对发送侧的接收信号相位旋转角度信号OR(3)输出给再映射器7,而另外其还将AR(3)输出给寄存器111,以使寄存器111保存AR(3)。例如,当由OR(3)所示的接收信号相位旋转角度Θ等于3π/4时,再映射器7将相位旋转-3π/4,以生成绝对相位。同时寄存器111将保存(011)。
(2)正常接收操作紧接着帧同步检测/再生电路2捕获帧同步信号之后,发射配置识别电路9立即识别出其多重配置,并将表明了由解调电路1C所输出的当前I和Q码元流数据I(8)和Q(8)对应于哪一种调制系统部分的调制系统识别信号DM,输出给选择器16C等。
当加法器110输出接收信号相位旋转角度信号OR(3)时,同时再映射器7生成了绝对相位时,在解调电路1C解调8PSK调制系统部分,同时时钟CLKSYB被激励时,选择器16C利用从发射配置识别电路9所输入的调制系统识别信号DM,只使能相位误差表13,并从相位误差表13中读出对应于I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。其结果是,在考虑到与I(8)和Q(8)相比I’(8)和Q’(8)旋转了η=-Θ=-3π/4时,参考载波fc1和fc2的相位将得到校正,由此使被8PSK-映射到发送侧信号点排列“0”,“1”, “2”,“3”,“4”,“5”,“6”和“7”上的数字信号(abc)的接收信号点,将出现在从再映射器7的输入侧来看,相位分别旋转了Θ,所在的信号点排列“3”,“4”,“5”,“6”,“7”, “0”, “1”和“2”上。
此时,在从解调电路1C输出的8PSK调制系统部分上的I和Q码元流数据I(8)和Q(8)的相位,将被再映射器7旋转η1=-Θ=-3π/4,并生成了绝对相位。因此,从再映射器7输出的I和Q码元流数据I’(8)和Q’(8)的各接收信号点,将与发送侧的信号点相一致。
当解调电路1C解调QPSK调制系统部分,且时钟CLKSYB被激励时,选择器16C只使能相位误差表14-1,并从相位误差表14-1中读出对应于I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。由此,考虑到与I(8)和Q(8)对应情况相比,I’(8)和Q’(8)的相位旋转了η=-Θ=-3π/4时,参考载波fc1和fc2的相位将得到校正,由此使得QPSK映射到发送侧信号点排列“1”,“3”,“5”和“7”上的数字信号(de),将出现在从再映射器7的输入侧来看的信号点排列“4”,“6”,“0”和“2”上。因此,数字信号(de)将保持,与进行8PSK调制时的接收信号相位旋转角度Θ相同的旋转角度。因为从解调电路1C输出的QPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,被再映射器7旋转了-Θ=-3π/4,所以从再映射器7所输出的I和Q码元流数据I’(8)和Q’(8)的接收信号点将与发送侧的信号点一致。
当解调电路1C解调BPSK调制系统部分,且时钟CLKSYB被激励时,选择器16C只使能相位误差表15-1,并从相位误差表15-1中读出对应于I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。由此,考虑到与I(8)和Q(8)的对应情况相比,I’(8)和Q’(8)的相位旋转了-Θ=-3π/4时,因此参考载波fc1和fc2的相位将得到校正,由此使得发送侧上被BPSK映射到信号点排列“0”和“4”上的数字信号(f),将出现在从再映射器7的输入侧来看的信号点排列“3”和“7”上。因此,数字信号(f)将保持与进行8PSK调制时的接收信号相位旋转角度Θ相同的旋转角度。因为从解调电路1C输出的BPSK调制系统部分的I和Q码元流数据I(8)和Q(8)的相位,同样被再映射器7旋转了-Θ=-3π/4,所以I和Q码元流数据I’(8)和Q’(8)的接收信号点将与发送侧的信号点一致。
另外,同样是在正常接收操作的情况下,当时钟CLKSYB没有被激励时,选择器16C只使能相位误差表15-1,并从相位误差表15-1中读出对应于再映射器7在时钟CLKSYB没有被激励时,所输出的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。另外,相位旋转角度判断电路92根据延迟电路90,91的输出,判断相位旋转角度,并将判断结果以接收信号相位旋转角度信号R(3)的形式进行输出,同时平均电路95对用于4个帧的信号R(3)进行平均,并将平均结果作为接收信号相位旋转角度信号AR(3)进行输出。
当接收信号相位旋转角度检测电路8C的相位旋转角度判断电路92和平均电路95执行第二次相位旋转角度检测,并输出接收信号相位旋转角度信号AR(3)时,接收信号相位旋转角度信号AR(3)表明了从I’(8)和Q’(8)来看,在由再映射器7生成绝对相位之后,相对于发送侧的相位旋转角度。因此,通过将信号A(3)与寄存器111所保存的前一接收信号相位旋转角度信号OR(3)加在一起,可以获得从再映射器7的输入侧来看,相对于发送侧的接收信号相位旋转角度信号OR(3),同时其将接收信号相位旋转角度信号OR(3)输出给再映射器7,以使再映射器7执行第二次相位旋转(将由OR(3)所示的接收信号相位旋转角度设为Θ,再映射器7将相位旋转-Θ),并使寄存器111保存信号OR(3)。其后,将重复相同的处理,直到接收信号相位旋转角度检测电路8C的发射配置识别电路92和平均电路95检测到一个新的相位旋转角度。
根据本实施例,在再映射器7生成其绝对相位之后,I和Q码元流数据I’(8)和Q’(8)将被输入到载波再生电路10C的相位误差表中。因此,输入到各相位误差表中的I和Q码元流数据I’(8)和Q’(8)的接收信号点将独立于正常接收情况下的接收信号相位旋转角度的值,变得与发送侧的信号点相同。因此,对于每种调制系统,为载波再生电路提供一个相位误差表便已足够。因此,其能够减小所提供给载波再生电路10C的相位误差表的数目,并大大地简化电路结构。
尽管图7所示实施例使用的是I码元流数据I’(8)的符号比特数据i’(1),但其也允许使用作为Q码元流数据Q’(8)的MSB的符号比特数据q’(1)。
可以将图7所示的配置结构修改成图8所示的配置。即,图8所示解调电路1D的载波再生电路10C,被提供有3个相位误差表13,14-1和15-1,以在时钟CLKSYB没有被激励时,从相位误差表14-1中,读出对应于I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(3)。而对于接收信号相位旋转角度检测电路8D,其用图5所示的延迟电路90,91和99与相位旋转角度判断电路92B,代替了图7所示的相位旋转角度检测电路8C的延迟电路90和91以及相位旋转角度判断电路92。当时钟CLKSYB没有被激励时,选择器16D将从相位误差表14-1读出的相位误差数据△φ(3)输入给延迟电路90。另外,选择器16D能够类似于图5所示情形,利用延迟电路90,91和99,相位旋转角度判断电路92B,以及平均电路95,并根据从用于QPSK的相位误差表14-1读出的相位误差数据△φ(3)和I和Q码元流数据I’(8)和Q’(8)的符号比特数据i’(1)和q’(1),来检测从再映射器7的输出侧来看,相对于发送侧的相位旋转角度,并可以通过将从再映射器7输出的I码元流数据I’(8)的MSB输入给延迟电路91,以及将从再映射器7输出的Q码元流数据Q’(8)的MSB输入给延迟电路99,来从加法器110输出,从再映射器7的输入侧来看,相对于发送侧的接收信号相位旋转角度信号OR(3)。
另外,可以将图7所示的配置修改成图9所示的形式。图9中,接收信号相位旋转角度检测电路8C被替换为,图1所示的接收信号相位旋转角度检测电路8A。另外,其将图7所示的解调电路1C改为解调电路1E。其为每个相位误差表13,14-1和15-1的I和Q码元流数据I’(8)和Q’(8)的输入侧提供了一个选择器19,以在时钟CLKSYB被激励时将从再映射器7输出的I和Q码元流数据I’(8)和Q’(8),输入到相位误差表13,14-1和15-1中,而在时钟CLKSYB没有被激励时,则将从解调电路1E输出的I和Q码元流数据I(8)和Q(8)输入到相位误差表13,14-1和15-1中。
在发射配置识别电路9识别出数据帧的多重配置,同时接收信号相位旋转角度检测电路8A在开始接收之后检测出接收信号相位旋转角度之前,在时钟CLKSYB被激励时,载波再生电路10C的选择器16C只使能用于8PSK的相位误差表13,并从相位误差表13中读出对应于,再映射器7通过选择器19,在时钟CLKSYB被激励时所输入的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。
另外,在上述操作的同时,在时钟CLKSYB没有被激励时,选择器16C只使能相位误差表15-1,并从相位误差表15-1中读出对应于,在时钟CLKSYB没有被激励时通过选择器19,所输入的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。
另外,在发射配置识别电路9识别出帧的多重配置,且同时接收信号相位旋转角度检测电路8A检测出接收信号相位旋转角度Θ之后,在时钟CLKSYB没有被激励时,选择器16C将只使能相位误差表13,14-1和15-1中,一个对应于由解调电路1E所解调的接收信号的调制系统的相位误差表,并读出在码元时钟CLKSYB被激励时对应于通过选择器19从再映射器7所输入的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。另外,在时钟CLKSYB没有被激励时,选择器16C只使能用于BPSK的相位误差表15-1,以从相位误差表15-1读出对应于,在时钟CLKSYB没有被激励时通过选择器19所输入的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3)。因此,因为其同样可以类似于图1所示情形,从平均电路95中输出,从再映射器7输入侧来看相对于发送侧的接收信号相位旋转角度信号AR(3),所以其可以省略不用图7中所示的加法器110和寄存器111。
其同样可以将图8所示配置修改成图10所示的配置。图10中,图8中的接收信号相位旋转角度检测电路8D,被替换比特图5所示的接收信号相位旋转角度检测电路8B。另外,图8中的解调电路1D被改为解调电路1F。同时,其针对相位误差表13,14-1和15-1每一个的I和Q码元流数据I’(8)和Q’(8)的输入侧均提供了一个选择器19,以在时钟CLKSYB被激励时,将从再映射器7输出的I和Q码元流数据I’(8)和Q’(8)输入到相位误差表13,14-1和15-1中,而在时钟CLKSYB没有被激励时,将从解调电路1F中输出的I和Q码元流数据I(8)和Q(8)输入到相位误差表13,14-1和15-1中。
另外,在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8B在开始接收后检测出接收信号相位旋转角度之前,在时钟CLKSYB被激励时,载波再生电路10D的选择器16D只使能用于8PSK的相位误差表13,并从相位误差表13读出对应于,在时钟CLKSYB被激励时通过选择器19从再映射器7输入的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。
另外,在上述操作的同时,在时钟CLKSYB没有被激励时,选择器16D只使能用于QPSK的相位误差表14-1,并从相位误差表14-1中读出对应于在时钟CLKSYB没有没激励时通过选择器19所输入的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3),以将数据△φ(3)输出给延迟电路90。
在发射配置识别电路9识别出帧的多重配置,同时接收信号相位旋转角度检测电路8B检测出接收信号相位旋转角度Θ之后,在时钟CLKSYB被激励时,选择器16D只使能相位误差表13,14-1和15-1中,对应于由解调电路1F所解调的接收信号的调制系统的一个相位误差表,并读出对应于通过选择器19,在时钟CLKSYB被激励时从再映射器7所输入的I和Q码元流数据I’(8)和Q’(8)的相位误差数据△φ(8),以将数据△φ(8)输出给D/A变换器17。另外,在时钟CLKSYB没有被激励时,选择器16D则只使能相位误差表14-1,并从相位误差表14-1中读出对应于通过选择器19,在时钟CLKSYB没有被激励时所输入的I和Q码元流数据I(8)和Q(8)的相位误差数据△φ(8)中的高位3个比特,即相位误差数据△φ(3)。因为其同样可以类似于图5所示情形,从平均电路95输出,从再映射器7的输入侧来看,相对于发送侧的接收信号相位旋转角度信号AR(3),所以其能够省略不用图8所示的加法器110和寄存器111。
在上述实施例及其修正型中,多重配置是由发送配置识别电路,在开始接收后来进行识别的,而载波再生电路的选择器则在其利用接收信号相位旋转角度检测电路,检测出接收信号相位旋转角度之前,将从用于8PSK的相位误差表中读出的相位误差数据,输出给D/A变换器。然而,其也允许输出表明了相位误差=0的恒定值。
另外,在上述实施例及其修正型中,不仅使用了BPSK调制帧同步信号,而且还使用了PSK调制信号(PSK调制信号波),其中对根据8PSK,QPSK和BPSK这3种调制系统进行调制的数字信号,进行了时间多路复用处理。然而,也可以应用上述实施例及其变型,来接收和解调,其中只有BPSK调制帧同步信号和8PSK调制数字信号被时间多路复用(分别为8PSK和BPSK各准备一个相位误差表即可)的PSK调制信号;或接收和解调,其中BPSK调制帧同步信号,8PSK调制数字信号,以及QPSK调制数字信号被时间多路复用的PSK调制信号。
另外,也可以上述实施例及其变型应用于,其中解调电路通过半同步检测,而不是通过同步检测来执行解调操作的情形。
工业实用性根据本发明,接收信号相位旋转角度可以根据用于BPSK(QPSK)调制的相位误差表中对应于解调I和Q码元流数据的相位误差数据的高位比特,以及帧同步信号上对应于比特(0)(或比特(1))的信号部分上的I或Q(I和Q)码元流数据的符号比特数据,来单义地确定,并可以通过简单的运算来判断。因此,其不必使用专用于判断接收信号相位旋转角度的大型ROM,并由此而能够减小电路的尺寸。
权利要求
1.一种用于生成由接收机所接收信号的绝对相位的装置,所述接收机包括解调装置,用于利用由载波再生装置所再生的载波(fc1和fc2),对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中,至少有8PSK调制数字信号与BPSK调制帧同步信号被时间多路复用的PSK调制信号进行解调,并输出I和Q码元流数据(I(8)和Q(8));帧同步信号捕获装置(2),用于从上述解调处理所得的I和Q码元流数据中,捕获帧同步信号;接收信号相位旋转角度检测装置,用于从解调装置所输出的I和Q码元流数据中,检测相对于发送侧的相位旋转角度(R(3));以及反相位旋转装置(7),其用于将从解调装置输出的I和Q码元流数据的相位反相位旋转,由接收信号相位旋转角度检测电路所检测出的相位旋转角度,以由此使解调装置的载波再生装置,需要具有存储有用于每种调制系统的各种解调I和Q码元流数据集的载波相位误差数据的相位误差表(13,14-1和15-1到15-4),在正常接收情况下当解调装置对一定的调制系统部分进行解调时,从对应调制系统的相位误差表中读出对应于解调I和Q码元流数据的相位误差数据,并对载波的相位进行校正;其中所述装置特征在于所述接收信号相位旋转角度检测装置(8A,8B,8C或8D),包括用于读取高位比特(△φ(3)和△φ′(3)),以判断在载波再生装置(10A,10B,10C或10C)的用于BPSK调制的相位误差表(15-1到15-4)中,对应于解调I和Q码元流数据的各相位误差数据中,相位误差的绝对值是大于还是小于(π/8)+s(π/4)(s为0或1)的相位误差数据读取装置(16A,16B,16C和16D),以及用于根据对应于利用帧同步信号捕获装置,从解调I和Q码元流数据(I(8)和Q(8))中,所获得的帧同步信号中对应于比特(0)(或比特(1))部分的I(或Q)码元流数据的符号比特数据(i(1)和i’(1)),和由相位误差数据读取装置对应于某码元部分所读出的相位误差数据(△φ(8)和△φ′(8)),判断出解调装置(1A,1B,1C,1D,1E或1F)所输出的I和Q码元流数据中,对应于帧同步信号的比特(0)或比特(1)的码元部分的相对于发送侧的相位旋转角度,并输出判断结果(R(3))的判断装置(92和92B)。
2.一种用于生成由接收机所接收信号的绝对相位的装置,所述接收机包括解调装置,用于利用由载波再生装置所再生的载波(fc1和fc2),对8PSK调制数字信号,QPSK调制数字信号和BPSK调制数字信号中,至少有8PSK调制数字信号和QPSK调制数字信号与BPSK调制帧同步信号被时间多路复用的PSK调制信号进行解调,并输出I和Q码元流数据(I(8)和Q(8));帧同步信号捕获装置(2),用于从上述解调所得的I和Q码元流数据中,捕获帧同步信号;接收信号相位旋转角度检测装置,用于从解调装置所输出的I和Q码元流数据中,检测相对于发送侧的相位旋转角度(R(3));以及反相位旋转装置(7),其用于将从解调装置输出的I和Q码元流数据的相位反相位旋转,由接收信号相位旋转角度检测电路所检测出的相位旋转角度,以由此使解调装置的载波再生装置,需要具有存储有用于每种调制系统的各种解调I和Q码元流数据集的载波相位误差数据的相位误差表(13,14-1和15-1到15-4),在正常接收情况下当解调装置对一定的调制系统部分进行解调时,从对应调制系统的相位误差表中读出对应于解调I和Q码元流数据的相位误差数据,并对载波的相位进行校正;其中所述装置特征在于所述接收信号相位旋转角度检测装置(8A,8B,8C或8D),包括用于读取高位比特(△φ(3)和△φ′(3)),以判断在载波再生装置(10A,10B,10C或10C)的用于BPSK调制的相位误差表(15-1到15-4)中,对应于解调I和Q码元流数据的各相位误差数据(△φ(8)和△φ'(8))中,相位误差的绝对值是大于还是小于π/8的相位误差数据读取装置(16A,16B,16C和16D),以及用于根据对应于利用帧同步信号捕获装置,从解调I和Q码元流数据(I(8)和Q(8))中,所获得的帧同步信号中对应于比特(0)(或比特(1))部分的I(或Q)码元流数据的符号比特数据(i(1)和i’(1)),和由相位误差数据读取装置对应于某码元部分所读出的相位误差数据(△φ(8)和△φ′(8)),判断出解调装置(1A,1B,1C,1D,1E或1F)所输出的I和Q码元流数据中,对应于帧同步信号的比特(0)或比特(1)的码元部分的相对于发送侧的相位旋转角度,并输出判断结果(R(3))的判断装置(92和92B)。
3.一种用于接收由发射机发射的通过对BPSK调制帧同步信号,与由预定调制系统所调制的数字信号进行时间多路复用所得的PSK调制信号的接收机,包括用于解调PSK调制信号,并生成I和Q码元流数据(I(8)和Q(8))的解调装置;用于从I和Q码元流数据中捕获帧同步信号的帧同步信号捕获装置(2);用于检测I和Q码元流数据与发送侧之间的相位差的接收信号相位旋转角度检测装置;以及用于将I和Q码元流数据反相位旋转,由接收信号相位旋转角度检测装置所检测出的相位差(R(3)),以生成其中发送侧相位角与接收侧相位角一致的I和Q码元流数据(I’(8)和Q’(8))的反相位旋转装置(7),其中所述解调装置包括用于再生被用来进行解调的载波的载波再生装置,而所述载波再生装置具有用于存储对应于解调装置所生成的I和Q码元流数据的载波相位误差数据(△φ(8))的相位误差表(13,14-1,和15-1到15-4)并根据载波相位误差数据(△φ(8))生成与发送侧使用的载波同步的载波,其中所述接收信号相位旋转角度检测装置(8A,8B,8C,8D)根据I和Q码元流数据的载波相位误差数据(△φ(8)和△φ′(8))的至少一部分(△φ(3)和△φ′(3)),以及由帧同步信号捕获装置所得的帧同步信号,来检测相位差,并将所得相位差通过给所述反相位旋转装置。
全文摘要
当开始接收以BPSK,QPSK和8PSK方式PSK调制的多路复用信号时,解调电路(1A)的选择器(16A)从为每种调制系统以及每种相位旋转角度所提供的多个相位误差表中,用于BPSK的一个相位误差表(15-1)中,读出对应于Ⅰ和Q码元流的相位误差数据的高位3个比特△Φ(3)。接收信号相位旋转角度检测电路(8A)从△Φ(3)和I码元流的MSB中检测出,对应于所接收码元流的帧同步信号的比特(1)和(0)的部分的相位旋转角度,并将上述相位旋转角度输出给再映射器(7),以使再映射器(7)进行绝对定相。选择器(16A)从对应于某种调制系统的相位误差表中,读出对应于所接收码元流的相位误差数据,以及由发射配置识别电路(9)所识别出的相位旋转角度,将相位差数据输出给D/A变换器(17),校正用于正交检测的参考载波的相位,并使得对于发射信号点,接收信号点变得具有恒定的相位。
文档编号H04L27/22GK1282477SQ98812210
公开日2001年1月31日 申请日期1998年12月11日 优先权日1997年12月17日
发明者白石宪一, 堀井昭浩 申请人:株式会社建伍
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1