用于确定频率同步信号的位置的方法、设备与系统的制作方法

文档序号:7586429阅读:278来源:国知局
专利名称:用于确定频率同步信号的位置的方法、设备与系统的制作方法
技术领域
本发明一般涉及用于确定频率同步信号的位置的方法、设备与系统。更具体地,本发明涉及用于在通信系统中确定频率同步信号在从发射机中发送并由接收机接收的数据之中的位置的方法、设备与系统。
在任何一个通信系统中,重要的是接收机与发射机同步,以便能在此发射机与此接收机之间成功地交换消息。在无线电通信系统中,特别重要的是将接收机调谐到发射机的频率以便最佳接收。
在典型的无线电通信系统中,远程站通过无线电空中接口与一个或多个基站通信。采用各种方案来防止各个基站与远程站之间传输的互相干扰。
在一些无线电通信系统中,给相邻基站每个分配一个不同的载频用于与远程站通信,以使来自一个基站的传输不干扰相邻基站的传输。除了这样的频分多址(FDMA)技术之外,还采用时分多址(TDMA)技术。在使用TDMA的系统中,基站可以给每个远程站分配载波上一个帧内一个特定时隙或间隙。一些远程站能使用同一载频但不同的时隙来与基站通信。
在其他的无线电通信系统中,已采用码分多址(CDMA)方法。根据CDMA方法,给每个远程站分配一个与分配给其他站的码字正交的特定数字码字,相邻基站能使用同一频率但不同的正交数字码字与远程站交换消息来表示此消息预定发送给哪个远程站。
无论一个无线电通信系统是采用FDMA、TDMA、CDMA、这些方案的组合还是某一其他方案,重要的是远程站与服务于它希望从中进行通信的区域的基站进行时间与频率同步。换句话说,此远程站的频率基准必须调谐到此基站的载频,并且此远程站的时间基准必须与此基站的时间基准同步。为此,一般从此基站发送周期性同步信号给此远程站。
在符合欧洲全球移动通信(GSM)标准的系统中,通过利用例如数据的正常脉冲串(NB)调制基站的载波来从基站发送信息给远程站。为了使此移动站与此基站同步,也利用频率校正脉冲串(FCB)与同步脉冲串(SB)随时调制基站的载波,以形成频率同步信号。
基站的载波一般使用高斯最小移频键控(GMSK)利用FCB进行调制。在GSM系统中,FCB是148个码元的一个序列,每个码元为一个零,在调制之后变换为纯正弦信号。所得到的频率同步信号的频率因而等于1/4T Hz,其中T表示码元时长。T一般为48/13微秒(μs),于是此频率同步信号具有近似67.7KHz的频率。此FCB对于前面四次每隔十帧进行重复,并随后对于第五次,在第十一帧上重复此FCB。则无限地重复此帧序列,以保持远程站与基站之间的同步。
从FCB的信息中,此远程站能粗略地将它自己与分配给它的时隙同步。此粗略的时间同步足以定位一般位于FCB之后8个脉冲串的SB,并足以解码此SB传送的信息。随后将通过解码SB获得的信息用于精细地将此远程站的频率基准调谐到此基站的载频并将此远程站的时间基准调整到此基站分配给它的时隙。
在采用CDMA的系统中,每个基站以例如分配给那个特定基站的每个频率上一个导频序列以及有可能在未分配给那个特定基站的一些或所有频率上一个导频序列的形式发送频率同步信号。如果已将此频率分配给此基站,则相应的导频序列可以利用稍大于此基站使用的其他频率的功率进行发送。接收利用此导频序列调制的载波的每个远程站解调此信号。结果,每个远程站能接收预定给它的信号并同时测量使用不同的导频或载波的相邻基站的信号强度。此信息由此远程站用于确定哪个接收的导频序列具有最强的信号强度,并将此远程站的频率基准相应地调整到合适的载频。
在解调的频率同步信号中易于检测远程站的频率基准与基站的载频之间的任何频率差。例如,在符合GSM标准的系统中,已知为67.7KHz的已调频率同步信号的频率与解调为基带的接收的频率同步信号的频率之间的差是远程站的频率基准差错的直接测量。在采用CDMA的系统中,远程站将最强发送的导频序列的公知频率与解调的导频序列的频率之间的差用作此远程站的频率基准差错的测量。
因此为使远程站与基站同步,重要的是准确地检测从基站中发送的频率同步信号和估算此远程站的频率基准与此基站的载频之间的频率差。
已提议许多用于检测频率同步信号的技术。这样的一种技术公开在以Roozbeh Atarius等人的名义于1998年2月20日提交的题为“用于检测频率同步信号的方法与设备”的共同转让的美国专利申请中,将此专利申请引入在此作为参考。此检测方法使用接收信号的同相与正交相位分量之间的相似性来检测频率同步信号。
也提议许多技术来估算远程站的频率基准与基站的载频之间的频率差。在1997年11月17日提交的共同转让的美国专利申请号08/971666中公开一种这样的技术,将此专利申请引入在此作为参考。此估算方法使用检测的频率同步信号的连续样本之间的相位差来估算频偏。
为了准确地估算频偏并因而将远程站调谐到基站的载频,重要的是知道频率同步信号在由远程站接收的数据中的实际位置,例如,FCB出现在一帧中的什么地方。否则,在频偏估算中使用的信号不可能完全对应于此频率同步信号,这可能导致不是最佳的调谐。因而,需要确定检测的频率同步信号在接收机接收的数据之中的位置。
因此,本发明的一个目的是确定频率同步信号的位置。根据本发明的一个示范性实施例,利用确定频率同步信号在从发射机中发送并由接收机接收的数据之中的位置的方法、设备与系统来实现这些与其他目的。计算表示由此接收机检测的信号的峰值,估算此接收机的频率基准与此发射机的载频之间的频偏,并估算表示所估算的频偏的准确度的品质因数。
通过将计算的峰值和估算的品质因数与预定的峰值和质量门限进行比较来确定频率同步信号的位置,例如,确定此峰值是大于还是等于一个峰值门限和此品质因数是小于还是等于一个质量门限。在满足这两个预定门限条件时,存储此峰值、频偏和品质因数。在不满足其中任何一个门限条件时,此频率同步信号的位置对应于存储的最大峰值与存储的最小品质因数的位置。
本发明的特征、目的与优点通过结合附图阅读此描述将变得显而易见,在附图中相同的标号表示相同的部件,其中

图1表示其中能实施本发明的一个通信系统;图2表示用于检测频率同步信号的一个示例性设备;图3表示用于检测频率同步信号的一个示例性方法;图4表示用于估算频偏与品质因数的一个示例性设备;图5A表示用于估算频偏的一个示例性方法;图5B表示用于估算质量因数的一个示例性方法;
图6A表示用于确定频率同步信号的位置的一个示例性设备;图6B是表示峰值、品质因数值和频偏对时间的图表;和图7表示用于确定频率同步信号的位置的一个示例性方法。
为表示的目的,下面的描述涉及符合GSM标准的无线电通信系统。将明白本发明不进行如此限制,而可应用于采用不同标准的其他类型的通信系统。
图1表示其中能实施本发明的一个示例性通信系统。此系统包括至少一个发射机100和至少一个接收机150。虽然发射机100与接收机150在图1中分别描述为基站与移动站,但将认识到此发射机能以许多方式例如实施为地面或卫星转发器,并且此接收机能以许多方式例如实施为固定峰窝终端(无线本地环路)。基站与移动站仅用于示意目的而表示在图1中并在下面进行描述。
基站100与移动站150通过无线电空中接口125进行通信。给每个相邻基站100分配一个特定载频,并且每个基站100给每个移动站150分配特定时隙。
为了与基站100通信,移动站150必须与基站100进行时间与频率同步。换句话说,移动站150的频率基准与时间基准必须分别和分配给基站100的载频与基站分配的时隙同步。在CDMA系统中,移动站150必须和基站的载频与发送的码字同步。
为使移动站150同步,基站100给此移动站发送一个频率同步信号。例如,在采用GSM标准的系统中,基站100利用FCB调制其载频,以形成一个频率同步信号。
移动站150接收并解调从基站100发送的包括此频率同步信号的信号。根据一个示例性实施例,可以利用各种方法之中任何一种方法来检测此频率同步信号,其中一些方法公开在前面提及的题为“用于检测频率同步信号的方法与设备”的美国专利申请中。为示意目的,将描述公开在此专利申请中的一种方法。
接收的频率同步信号的同相与正交相位分量的相似性能用于检测此频率同步信号,例如,FCB。
接收的同步信号y(n)的同相与正交相位分量能表示为yI(n)=Pcos(2πn(ΔFFs+14))+v1(n)...(1)]]>yQ(n)=Psin(2πn(ΔFFs+14))+vQ(n)...(2)]]>其中 、ΔF、yI(n)和yQ(n)分别表示载波幅度、频率基准与载频Fs之间的频偏、同相噪声分量和正交噪声分量。
如果移动站与基站同步,即ΔF=0,则此FCB的正弦的每个周期包含四个样本。而且,此FCB的yI(n)和yQ(n)分量相移π/2并因而相互相差一个样本。因此,对于对应于一个FCB的接收信号,通过将yI(n)延迟一个时标能得到yQ(n)。
如果移动站未与此基站同步,即ΔF≠0,则yQ(n)不等于yI(n-1),这是因为y1(n-1)=Psin(2πn(ΔFFs+14))-2πΔFFs...(3)]]>对于对应于一个FCB的信号,互相关yI(n-1)和yQ(n)产生下面的互相关值rIQ(1)rIQ(1)=P2cos(2πΔFFs)∀nϵΦ...(4)]]>从等式4中能明白,一旦接收的信号对应于一个FCB,互相关yI(n-1)和yQ(n)得到一个峰值。此峰值的大小取决于载波幅度与频偏ΔF。在ΔF增加时,此峰值的大小降低。如果接收到对应于例如NB或噪声的信号,则yI(n-1)与yQ(n)之间没有相关性。因而,通过确定此互相关值是否具有至少与预定检测门限一样大的峰值,能确定从基站中发送的信号是否对应于一个FCB。
在采用互相关性来检测FGB时要考虑几个潜在的问题。一个问题是由于衰落与传播损耗引起的载波幅度的变化,载波幅度的变化影响等式4的峰值并使选择检测门限困难。
为减小载波幅度变化的影响,通过将接收的信号y(n)从直角坐标域转换为极坐标域并随后将此信号重新转换为直角坐标域能归一化输入数据y(n),这能利用两个表来实现,一个表用于从直角坐标域至极坐标域的转换,而另一个表用于从极坐标域至直角坐标域的转换。使用第一表获得对应于接收信号的同相与正交分量的信号相位并使用第二表从此信号相位与单一幅度中获得归一化的同相与正交分量来执行归一化。
为使用上述的互相关技术检测FGB,必须首先确定等式4右侧的数量。确定此值的一种方法是如下估算互相关值rIQ(1)e{rIQ(1)}=1length(ψ)Σnϵψy1(n-1)yQ(n)...(5)]]>其中e{rIQ(1)}表示估算的互相关值,而长度(Ψ)对应于FCB的长度,即此FCB中码元的数量。因而,通过对于对应于一个FCB的长度的接收信号的许多样本之中每一个样本将yI(n-1)乘以yQ(n)并平均这些乘积,能估算等式4的互相关值。
为减少此平均所要求的存储器的数量,等式5中估算的方法能利用转移函数模型化为移动平均(MA)处理B(z)=b0+b1z-1+…+b147z-147(6)其中所有的系数{bk}等于1/148。此MA处理能利用具有148样本长的存储器的滤波器来实施。
此MA处理能改写为具有转移函数的自回归(AR)处理1A(z)=B(z)+R(z)...(7)]]>
其中A(Z)是具有小于B(Z)的阶的一个多项式,而R(Z)是余项。也称为偏置的余项R(Z)的数量取决于1/A(Z)如何接近地近似于B(Z)。理想地,1/A(Z)应不显著偏离B(Z),并且偏置R(Z)应为小的。等式7能近似为如下1A(z)=C1-αz-1...(8)]]>其中0<α<1,且常量C用于将Z=0上的增益调整为单一。α的简单选择是-1/128,这使C等于1/128。使α与2的幂相关的好处是能利用7个比特的简单右移来实现除以128的除法。等式8的近似值是指数平均,这能利用具有近似(1-α)-1=128样本长的存储器的滤波器来实现。
图2表示用于检测频率同步信号的一个示例性设备。此设备包括归一化器210,从基站接收的信号y(n)的同相与正交分量yI(n)与yQ(n)在给定时间n输入此归一化器中。根据诸如授予Critchlow的美国专利号5276706中公开的任何一种合适的技术能获得这些分量。
归一化器210归一化分量yI(n)和yQ(n),从而减少例如衰落的影响。如图2所述并如上所述,归一化器210能利用转换表来实现。归一化的同相分量通过延迟器220并延迟一个样值。延迟的同相分量与归一化的正交分量在消旋器222中进行消旋,即移位到基带,在LP滤波器225中进行低通滤波以除去环绕噪声,并在旋转器227中进行旋转,即移位回到中心频率。随后,这些分量利用乘法器230一起进行相乘,并且例如利用平均器245进行平均,以产生估算的互相关值e{rIQ(1)}。平均器245能利用例如具有转移函数的移动平均器来实现H(Z)=11281-127128Z-1...(9)]]>
这对应于等式8中C=1/128与α=1-1/128的替换。移动平均器能利用LP滤波器来实现,这使此方法比利用FIR滤波器进行平均更简单。如果估算的互相交值具有至少与预定检测门限一样大的峰值,则从此基站中发送的信号对应于一个FCB。
虽然图2所示的频率选择滤波器安排在延迟器220与乘法器230之间,但应明白能在任何合适的地方(例如,在归一化器210之前)安排此频率选择滤波器。
估算的互相关值e{rIQ(1)}能用于代替实际的互相关值rIQ(1)来确定基站的载频与移动站的频率基准之间的频偏。
图3表示用于检测频率同步信号的一个示例性方法。此方法在步骤310开始,在步骤310归一化接收信号的同相(I)与正交(Q)分量。在步骤320,滤波归一化的I与Q分量,以除去环绕噪声。随后,在步骤330,延迟滤波与归一化的I分量。能颠倒步骤320与330的顺序,即,在延迟I分量之后,能滤波归一化的I与Q分量。在步骤340,将延迟、滤波与归一化的I分量乘以归一化与滤波的Q分量。在步骤350,确定对于接收信号的预定数量的样本(例如,对应于此FCB的长度的样本的数量)是否已相乘这些分量。如果否的话,此处理返回到步骤310。当对于预定数量的样本已相乘这些分量时,则在步骤360平滑(例如,平均)这些相乘结果,以产生一个估算的互相关值。在步骤370,确定此结果是否大于一个预定门限。如果否的话,则检测的信号不对应于频率同步信号,并且此方法返回到步骤310。如果此估算的互相关值大于一个预定门限,则此检测的信号对应于频率同步信号,并且此检测处理在步骤380结束。此检测的频率同步信号能用于估算接收的频率同步信号中的频偏,并且能根据估算的频偏将移动站与基站同步。一旦移动站与基站同步,则能重复图3所示的方法,以保持同步。
根据一个示范性实施例,能利用包括前面提及的美国专利申请号08/971666中公开的各种方法之中任何一种方法来估算移动站的频率基准与基站的载频之间的频偏。为示意目的,将描述公开在此申请中的一种方法。
对于等于P/σ2V>>1的信噪比,利用设置为零的初始相位Q,实际接收的同步信号y(n)的相位能表示为ΦY(n)=Φx(n)+Vφ(n),(10)其中VΦ(n)表示零平均白高斯相位噪声。假定实际接收的信号y(n)具有频偏ΔF,则等式10能改写为Φy(n)=2πn(ΔFFs+14)+vΦ(n)...(11)]]>这对应于白噪声具有2π(ΔF/Fs+1/4)的斜率的直线。因而,频偏ΔF的估算与等式11中斜率的估算有关。减去公知因素2π/4,通过最小化下面的平方差之和使用线性回归的方法能估算此斜率^=Σ∀nϵΦ[Φ(n)-2πne{ΔF}Fs]2...(12)]]>其中e{ΔF}表示估算的频偏,而Φ(n)=Φy(n)-2πn/4。如果噪声vΦ(n)是高斯,则此估算是最大似然(ML)估算。
时标Ψ的设置取决于初始时间n0的选择。选择n0以使此时标Ψ的设置是非对称的是合适的,例如,Ψ={-(N0-1)/2,…0,…,(N0-1)/2},其中样本N0的数量是一个奇数。通过采用此时标的设置,能如下估算频偏;e{ΔF0}=(12TsN0(N02-1)Σk=0N0-1(K-N0-12)Φ(K))Fs2π...(13)]]>为了减少估算此频偏所要求的存储器的数量,能将此FCB的N0样本组合为N组,每个组具有M个相位差,并随后计算每组之和。换而言之,能使用检测的频率同步信号的连续收集的样本之间相位差的块总和而不是连续收集的样本之间各个相位差来估算此频偏,这减少频偏估算所要求的计算量。
将FCB的相位样本分成不同的块,等式13中的总和表示为如下Σk=0N0-1(K-N0-12)Φ(K)=Σi=0N-1Σj=0M-1(Mi+j)-N0-12Φ(Mi+j)...(14)]]>其中N与M分别是块的数量和每个块中样本的数量。样本的总数是N0=NM。
等式14的右侧能通过在Mi+j-N0-12]]>中设置j=(M-1)2]]>进行近似。代入块相位总和ΦM(i)=Σj=0Φ(Mi+j)]]>,则等式14能近似为Σk=0N0-1(k-N0-12)Φ(k)≈MΣk=0N-1(k-N-12)ΦM(k)...(15)]]>替换等式13中的此表达式,则频偏ΔFM能估算为e{ΔFM}=(12MTsN0(N02-1)Σk=0N-1(k-N-12)ΦM(k))Fs2π...(16)]]>为了进一步减少所要求的存储器数量,能修改此线性回归方法,以补偿相位变化而不必移位每个样本和跟踪存储器中的相移。此FCB的连续收集的样本之间的相位差能用于此目的。
连续相位总和ΦM(k)如下相互相关ΦM(k)=ΦM(k-1)+Σj=1M(Φ(kM+j)-Φ(kM+j-1))...(17)]]>由于相位样本是等距的,所以ΦM(k)如下涉及其初始值ΦM(k0)和此FCB的连续收集的样本之间的相位差总和ΔΦM(j)ΦM(k)=ΦM(k0)+Σj=k0+1k0+kΔΦM(j)...(18)]]>利用等式19中的结果代替等式16的ΦM(k),频偏e{ΔFM}能估算为e{ΔFM}=(12MTsN0(N02-1)Σk=1N-1(k-N-12)[ΦM(k0)+Σj=k0+1k0+kΔΦM(j)])Fs2π...(19)]]>相位初始值ΦM(k0)在等式19中没有任何影响,这是因为Σk=0N-1(k-N-12)=0.]]>具有影响频偏估算的不同干扰,例如噪声、衰落等。如果估算的频偏不准确,则移动站的频率基准将不能正确地与基站的载频同步。因而,重要的是能确定估算的频偏的准确度,以便在需要时能进行调整。
美国专利申请号08/971666公开了用于估算表示估算的频偏的准确度的品质因数δ的一种技术。通过例如加上M个相位差的N个总和之中每一个总和与估算的频偏e{ΔFM}之间的差的绝对值能计算估算的品质因数e{δ},如下e{δ}=|ΔΦM(j)-Me{ΔFM)|+|ΔΦM(j-1)-Me{ΔFM}|…+|ΔΦM(j-N+2)-Me{ΔFM}|+|ΔΦM(j-N+1)-Me{ΔFM}|(20)理想地,这些差以及因此得到的估算的品质因数e{δ}应为零。任何偏差表示噪声和/或估算差错的存在。因而,估算的品质因数e{δ}的值越低,估算的频偏越准确。
图4表示用于估算频偏与品质因数的一个示例性设备。如图4所示,在限制检测信号的动态范围的归一化器400中归一化检测的频率同步信号y(n)。归一化器400可以以与图2所示的归一化器210相同的方式利用表来实施。为获得最佳的频偏估算,理想地只应使用此FCB的样本。因而,在频率选择滤波器中能预先滤波接收的信号,以选择对应于此FCB的频带来鉴别此FCB与噪声并因而增强信噪比。
利用移相器410能将接收的信号从67.7Kz的中心频率移至基带,并随后此移位的信号能在LP滤波器420中进行低通滤波。移相器410能实施为图2所示的消旋器222。然后,在相位测量电路430中测量滤波信号y(n)的相位ΦyLP(n)。在微分器440中以公知的方式计算接收与解调的频率同步信号的连续收集的样本之间的相位差ΔΦy(n)。例如,能利用高通滤波器常规地实施此微分器440。利用和与速放电路(Sum & Dump Circuit)450将每个相位差加到累计的以前的相位差上。此和与速放电路450能利用加法器与诸如FIR滤波器的滤波器来实施,而将M系数设置为单一。或者,利用其他的设备(例如,积分与速放电路、可复位积分器或低通滤波器)来相加这些相位差。当已加上M个相位差时,此总和“进行速放”,即由此和与速放电路450输出给频偏估算电路460。
频率估算电路460计算检测的频率同步信号的连续收集的样本之间相位差组的加权和来估算频偏,从而补偿此频率同步信号的连续收集的样本之间的相位变化,即执行相位解缠而不要求存储器来跟踪相移。利用具有延迟元件、累加器和系数CK的FIR滤波器能实施频率估算电路460,其中Ck=Σj=kN-1bj,k=0,1,2,...,N-1...(21)]]>和bk=(12MTsN0(N02-1)(k-N-12))Fs2π,K=0,1,2,...,N-1...(22)]]>如图4所示,品质因数估算电路470根据上面的等式22计算品质因数估算e{δ}。如果此估算的品质因素e{δ}表示估算的频偏不够准确,即,估算的品质因数大于一个预定的门限,则能调整(例如,又计算)估算的频偏。
利用N个减法器计算N组M个相位差之中每一个相位差与估算的频偏之间的N个差、利用N个绝对值电路计算这N个差的绝对值并利用加法器相加这N个绝对值以产生估算的品质因数e{δ}能实施品质因数估算电路470。虽然为易于说明与解释表示为与频偏估算电路460分开,但应明白品质因数估算电路470与频偏估算电路460能组合在单个设备中。
图5A表示用于估算频偏的一个示例性方法。此方法在步骤500开始,在步骤500接收的信号预先进行滤波以改善频率同步信号的检测。接着,在步骤510,收集检测的频率同步信号的样本。在步骤520,收集一个后续样本。在步骤530,计算此后续收集的样本之间的相位差。接下来,在步骤540,将此相位差加到其他累积的相位差上。在步骤550,确定是否已加上M个相位差。如果未加上M个相位差,则此处理返回到步骤520。如果已加上M个相位差,则在步骤560速放这M个相位差之和。接下来,在步骤570,确定是否已速放这M个相位差的N个和。如果未速放,此处理返回到步骤510,并收集一个新的样本。如果已速放,则在步骤580相加这N个和。根据一个示例性实施例,通过使用例如线性回归计算这N个和的加权平均值能执行此步骤,并且此结果是估算的频偏。
图5B表示用于估算品质因数的一个示例性方法。此处理在估算频偏之后开始。在步骤590,从M个相位差的N个和之中每一个和中减去利用M加权的估算的频偏以产生N个差。接下来,在步骤600,计算这N个差的绝对值。最后,在步骤610,将这N个绝对值相加以产生估算的品质因数。
诸如上述的技术使用检测的频率同步信号来估算基站的载频与移动站的频率基准之间的频偏。重要的是知道此频率同步信号在移动站上接收的数据之中的位置,于是使用实际的频率同步信号而不是其他的数据来执行此估算。
根据一个示范性实施例,根据和估算的频偏与品质因数同步的检测的频率同步信号能确定此频率同步信号的位置。能在诸如图6A所示的可以包括在接收机(例如,移动站)中的设备中执行此处理。
参见图6A,此设备包括状态存储器620与630。此状态存储器620接收表示检测的频率同步信号的信号,例如由移动平均器245(图2所示)输出的互相关峰值和例如分别由频偏估算器460与品质因数估算器470(图4所示)输出的估算的频偏与品质因数值,将这些值写入状态存储器630。
诸如公开在美国专利申请号08/971666中的频偏估算方法利用M抽取此抽样速率以降低估算要求的参数的数量。因而,估算的频偏与品质因数的速率是计算的互相关峰值的M分之一。为此,根据示例实施例的设备包括用于将估算的频偏与品质因数的速率扩展M倍的滤波器610。另外,诸如上述的频率同步信号检测技术延迟同相分量,导致计算的互相关峰值的延迟。为此,估算的频偏与品质因数在扩展之前在延迟单元600中被延迟时间n0,以使之与此互相关峰值同步。例如,利用缓冲器能实施延迟单元600。
当估算的频偏与品质因数值进行扩展并与此计算的峰值同步时,一种程序用于通过分别查找互相关峰值和品质因数的最大值与最小值来确定频率同步信号的位置。这样的最大值与最小值出现的点对应于频率同步信号的位置,这表示在图6B中。
图6B是表示峰值、品质因数与频偏对时间的图表。在图6B中,峰值是大于或等于峰值门限的最大值,而品质因数是在时间n1小于或等于质量门限的最小值,此时间n1对应于频率同步信号的位置,相应的频偏表示在时间n1上。紧接在此时间点之后,将不满足这些峰值与质量门限条件,即,此峰值将小于峰值门限,而此品质因数将大于质量门限。随后,时间n1上的最大峰值与最小品质因数能用于表示频率同步信号的位置。
再参见图6A,包括本地峰值、频率与质量值的本地极值存储在状态存储器620中。这些本地峰值、频率与质量值对应于计算的互相关峰值、估算的频偏与估算的品质因数。
将存储在状态存储器620中的本地峰值、频率与质量值写入状态存储器630,例如延迟单元635,并随后从状态存储器630中读出。在比较电路625中分别将互相关峰值与品质因数值和预定的峰值与质量门限进行比较。当满足这两个门限条件时,即,互相关峰值大于或等于峰值门限并且品质因数值小于或等于质量门限,例如在比较电路625中确定从延迟单元635中读出的互相关峰值是否小于存储在状态存储器620中的一个后续计算的峰值。如果此互相关峰值小于此后续峰值,则利用相应的后续极值更新这些本地峰值、频率与质量值。
也利用状态存储器620中的计数器627相对估算这些峰值的位置。计数器627计数例如来自移动平均器245(如图2所示)和来自频偏估算器460与品质因数估算器470(如图4所示)的输入值的数量,并在检测到频率同步信号时进行复位。此计数值存储在状态存储器630中,例如,存储在延迟单元635中。
当不满足其中任何一个预定门限条件时,即,互相关峰值小于峰值门限或品质因数值大于质量门限,在比较电路625中确定此本地峰值是否不等于零。如果此本地峰值不等于零,这表示已检测到频率同步信号。因而,这些本地极值作为总体极值写入例如寄存器,并假定检测到具有总体峰值与质量的频率同步信号。此后将这些本地极值复位为零。相应估算的频偏也认为是移动站的频率基准与基站的载频之间的频偏。此频偏用于将移动站的频率调谐到基站的载频。
图7表示用于确定频率同步信号的位置的一个示例性方法。此方法在步骤700开始,在步骤700从状态存储器620中读出峰值、频偏与质量值。在步骤705,从状态存储器630(例如,从延迟单元635)中读出本地峰值、频偏与质量值。在步骤710,从状态存储器630(例如,从延迟单元635)中读出此计数值。在步骤715,通过将计数电路627中的计数值加1来更新此计数值。在步骤720,将总体峰值、频偏与质量值设置为等于零。
在步骤730,确定互相关峰值是大于还是等于预定峰值门限和估算的品质因数值是小于还是等于预定质量门限。如果不满足这些条件之中任何一个条件时,在步骤735确定此本地峰值是否不等于零。如果在步骤735此本地峰值不等于零,这表示此本地峰是最大值。因而,在步骤745将总体极值设置为等于本地值,在步骤750将本地峰值、频率与品质因数值设置为等于零,并在步骤755将这些总体值写入寄存器。这些总体值用于将移动站的频率基准调谐到基站的载频。
如果在步骤730确定此互相关峰值大于或等于峰值门限并且估算的品质因数值小于或等于质量门限,则在步骤760确定从存储器620读出的后一峰值是否大于从状态存储器630中读出的本地峰值。如果是这样的话,在步骤765更新这些本地峰值、品质因数和频偏值,并在步骤775将此计数值设置为零。
此处理从步骤735、755与775前进至步骤780,在步骤780将此计数值写入状态存储器630。在步骤785,将这些本地峰值、延迟、频偏和品质因数值写入状态存储器630中,并且此处理返回到步骤700。
根据本发明,提供用于确定频率同步信号在由发射机发送并由接收机接收的数据之中的位置的方法、设备与系统,这保证接收机最佳调谐到发射机的载频。
虽然以GSM与CTS系统的应用进行描述,但本领域技术人员将认识到本发明能以其他特定形式来实施而不背离其本质特性。例如,本发明可应用于其他的移动通信系统,例如,采用数字峰窝系统(DCS)标准或个人通信业务(PCS)标准的系统,或其中需要检测频率同步信号的任何系统。上述的实施例因此在所有方面应认为是示意性的而不是限制性的。
权利要求
1.在包括至少一个发射机与至少一个接收机的通信系统中,用于确定频率同步信号在从发射机中发送并由接收机接收的数据之中的位置的一种方法,此方法包括以下步骤a)计算表示从此发射机中发送并由此接收机检测的信号的一个峰值;b)估算此发射机的载频与此接收机的频率基准之间的频偏;c)使用估算的频偏估算品质因数;和d)确定此峰值与品质因数是否满足预定的峰值与质量门限条件;e)在满足这两个预定门限条件时,存储此峰值、频偏和品质因数,并重复步骤a)-d);和f)在不满足其中任何一个门限条件时,确定此频率同步信号的位置为存储的峰值与存储的品质因数的位置。
2.如权利要求1的方法,其中此确定步骤包括确定此峰值是大于还是等于此峰值门限和此品质因数是小于还是等于此质量门限。
3.如权利要求1的方法,其中在不满足其中任何一个预定门限条件时,此频率同步信号的位置对应于存储的最大峰值与存储的最小品质因数的位置。
4.如权利要求1的方法,还包括在满足这两个门限条件时,确定一个后续计算的峰值是否超过此存储的峰值,并在此后续峰值超过此存储的峰值时利用这些后续值来更新存储的峰值、频偏和品质因数。
5.如权利要求1的方法,还包括使此频偏和品质因数与此峰值同步的步骤。
6.如权利要求1的方法,其中计算峰值的步骤包括;延迟接收信号的同相分量;计算预定数量的接收信号的样本的同相分量与正交分量的乘积;和平滑延迟的同相分量与正交分量的乘积,以产生一个估算的互相关峰值。
7.如权利要求1的方法,其中估算频偏的步骤包括g)确定从此发射机发送并由此接收机接收的信号的连续收集的样本之间的相位差;h)将此相位差加到累计的相位差上;i)重复步骤g)-i),直至已加上M个累计的相位差;j)速放这M个累计的相位差之和,得到零累计的相位差;k)重复步骤g)-j),直至已速放M个累计的相位差的N个和;和l)累加这M个累计的相位差的N个和,以产生此估算的频偏。
8.如权利要求7的方法,其中估算品质因数的步骤包括计算N个差,每个差是这M个累计的相位差的N个和之一与此估算的频偏之间的差;计算这N个差的绝对值;和累加这些绝对值,以产生此估算的品质因数。
9.如权利要求8的方法,还包括将此频偏与品质因数扩展因素M的步骤。
10.在包括至少一个发射机与至少一个接收机的通信系统中,用于确定频率同步信号在从此发射机中发送并由此接收机接收的数据之中的位置的一种设备,此设备包括比较电路,用于确定计算的蜂值与估算的品质因数是否满足预定的峰值与质量门限条件;和存储器,其中在满足这两个预定门限条件时,将此峰值与品质因数存储在此存储器中,而在不满足其中任何一个门限条件时,此频率同步信号的位置对应于存储的峰值与存储的品质因数的位置。
11.如权利要求10的设备,其中此比较电路确定此峰值是大于还是等于一个峰值门限和此品质因数是小于还是等于一个质量门限。
12.如权利要求10的设备,其中在不满足其中任何一个预定门限条件时,此频率同步信号的位置对应于存储的最大峰值与存储的最小品质因数的位置。
13.如权利要求10的设备,其中在满足这两个门限条件时,此比较电路确定一个后续计算的峰值是否超过此存储的峰值,并在是这样的时候利用这些后续值更新存储在此存储器中的存储的峰值、频偏与品质因数。
14.如权利要求10的设备,还包括用于使此频偏与品质因数和此峰值同步的装置。
15.如权利要求10的设备,其中从一个系统中导出此计算的峰值,此系统包括延迟单元,用于延迟此接收信号的同相分量;乘法器,用于对于此接收信号的预定数量的样本形成延迟的同相分量与正交分量的乘积;和一种电路,用于平滑这些乘积,以产生一个估算的互相关峰值。
16.如权利要求10的设备,其中从一个系统中导出此估算的频偏,此系统包括微分器,用于计算由此发射机发送并由此接收机检测的频率同步信号的连续收集的样本之间的相位差;加法器,用于将此相位差加到累计的相位差上,其中计算连续收集的样本的相位差并将这些相位差加到累计的相位差上,直至已相加M个累计的相位差,此时此加法器速放这M个相位差之和,得到零累计的相位差;和频偏估算电路,用于接收这M个相位差的速放之和,其中此微分器继续计算连续收集的样本的相位差,而且此加法器继续累计和相加相位差并速放这M个相位差之和,直至已速放M个相位差的N个和,此时此频偏估算电路加上这M个相位差的N个和,以生成此估算的频偏。
17.如权利要求16的设备,其中从一个系统中导出此品质因数,此系统包括N个减法器,用于计算N个差,每一个差是M个累计的相位差的N个和之一与此估算的频偏之间的差;N个电路,用于计算这N个差的绝对值;和加法器,用于累加这N个绝对值,以生成此称为估算的因素。
18.如权利要求17的设备,还包括用于将频偏和品质因数扩展一个因数M的装置。
19.用于确定频率同步信号在从发射机中发送并由接收机接收的数据之中的位置的一种系统,包括峰值计算系统;频偏估算系统;品质因数估算系统;用于确定峰值与品质因数是否满足预定的峰值与质量门限条件的装置;和用于在满足这两个预定的门限条件时存储此峰值与品质因数的装置,其中在不满足其中任何一个预定门限条件时,此频率同步信号的位置对应于存储的峰值与存储的品质因数的位置。
20.如权利要求19的系统,其中用于确定的装置确定此峰值是大于还是等于一个峰值门限和此品质因数是大于还是等于一个质量门限。
21.如权利要求19的系统,其中此频率同步信号的位置对应于存储的最大峰值和存储的最小品质因数的位置。
22.如权利要求19的系统,其中在满足这两个门限条件时,此比较电路确定一个后续峰值是否超过此存储的峰值,并在是这样的情况下利用后续值来更新此存储的峰值、频偏与品质因数。
23.如权利要求19的通信系统,还包括用于使频偏与品质因数和此峰值同步的装置。
24.如权利要求19的系统,其中此峰值计算系统包括延迟单元,用于延迟此接收信号的同相分量;乘法器,用于对于此接收信号的预定数量的样本形成延迟的同相分量与正交分量的乘积;和一种电路,用于平滑这些乘积,以产生一个估算的互相关峰值。
25.如权利要求19的通信系统,其中此频偏估算系统包括微分器,用于计算由此发射机发送并由此接收机接收的频率同步信号的连续收集的样本之间的相位差;加法器,用于将此相位差加到累计的相位差上,其中计算连续收集的样本的相位差,并将这些相位差加到累计的相位差上,直至已相加M个累计的相位差,此时此加法器速放这M个相位差之和,得到零累计的相位差;和频偏估算电路,用于接收这M个相位差的速放之和,其中此微分器继续计算连续收集的样本的相位差,而且此加法器继续累计和相加相位差并速放这M个相位差之和,直至已速放这M个相位差的N个和,此时此频偏估算电路累加这M个相位差的N个和,以产生此估算的频偏。
26.如权利要求25的系统,其中此品质因数估算系统包括N个减法器,用于计算N个差,其中每一个差是M个累计的相位差的N个和之一与此估算的频偏之间的差;N个电路,用于计算这N个差的绝对值;和加法器,用于累加这N个绝对值,以产生此称为估算的因素。
27.如权利要求26的设备,还包括用于将频偏与品质因数扩展一个因数M的装置。
全文摘要
在包括至少一个发射机和至少一个接收机的通信系统中,一种方法、设备与系统确定频率同步信号在从发射机中发送并由接收机接收的数据帧中的位置。计算表示从此发射机中发送给此接收机的检测的频率同步信号的峰值。估算此发射机的载频与接收机的频率基准之间的频偏以及此估算的频偏的品质因数。进行有关此峰值是大于还是等于峰值门限和此品质因数是小于还是等于质量门限的确定。在满足这两个预定门限条件时,存储此峰值、频偏和品质因数。在不满足其中任何一个门限条件时,频率同步信号的位置对应于存储的最大峰值与存储的最小品质因数的位置。
文档编号H04B7/26GK1314033SQ9980991
公开日2001年9月19日 申请日期1999年6月22日 优先权日1998年6月29日
发明者R·阿塔里乌斯 申请人:艾利森电话股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1