高强度钢产品和用于制造其的退火过程的制作方法

文档序号:16992375发布日期:2019-03-02 01:04阅读:140来源:国知局
高强度钢产品和用于制造其的退火过程的制作方法
本申请要求2016年5月10日提交的美国临时申请第62/334,189号和2016年9月19日提交的美国临时申请第62/396,602号的优先权,通过引用将这两篇申请并入本文。发明领域本发明涉及具有有利的性能的高强度钢产品,以及制造此类产品的退火过程。背景信息在过去几年里,全球钢铁工业专注于开发用于汽车市场的第三代先进高强度钢(ahss)。这些第3代钢具有拉伸强度和伸长率的有利平衡,典型在约20,000mpa%或更大的utsxte范围内。然而,钢铁工业难以将第3代ahss商业化,因为大多数方法需要高的合金含量,例如典型大于4重量%的锰,这在使用常规钢生产设备制造此类钢时导致困难。另外,目前可用的ahss难以通过诸如点焊的技术进行焊接,难以用锌基电镀涂层进行涂覆,难以制造成大规模应用所需的薄规格片材。发明概述本发明提供了具有受控组成的钢片材产品,其经受两步退火过程以产生具有所需显微组织和有利机械性能(例如高强度和超高成形性)的片材产品。当使用标准的小尺寸astm或全尺寸jis拉伸测试方法测试时,根据本发明处理的钢表现出大于25,000mpa%的组合极限拉伸强度和总伸长率(uts·te)性能。此外,根据本发明生产的钢表现出te和孔扩张的有利组合,即,整体成形性和局部成形性都良好。具有这些性能的钢属于第3代先进高强度钢的类别,并且是包括汽车制造商在内的各行业所高度期望的。本发明的一个方面是提供一种高强度冷轧钢片材产品,其包含0.12至0.5重量%的c,1至3重量%的mn,以及0.8至3重量%的si和al组合,其中所述钢片材产品已经受两步退火过程,包括铁素体和平均纵横比小于3:1的基本上等轴的残余奥氏体晶粒,并且具有大于25,000mpa%的极限拉伸强度和总伸长率的组合uts·te。本发明的另一方面是提供一种生产高强度冷轧钢片材产品的方法,该产品包含0.12至0.5重量%的c,1至3重量%的锰,和0.8至3重量%的si和al组合。该方法包括对钢片材产品进行第一步骤退火过程以实现主要为马氏体的显微组织,和使钢片材产品经受第二步骤过程,包括在720至850℃的温度以临界区状态(intercriticalregime)对片材产品进行均热处理,然后将片材产品保持在370至430℃的温度。从以下描述,本发明的这些和其它方面将更加清楚。附图简述图1包括温度对时间的坐标图,示出了根据本发明实施方案的两步退火过程。图2包括温度对时间的坐标图,示出了根据本发明另一实施方案的两步退火过程。图3是温度对时间的坐标图,示出了两步退火过程,该过程将两步热处理与任选的锌基热浸涂操作结合在单个生产设施中。图4是退火过程的第二步骤的温度对时间的坐标图,其定义了根据本发明实施方案的热循环中的均热区和保持区。图5和6是电子背散射衍射(ebsd)显微照片,显示了根据本发明一个实施方案的高强度钢片材产品的显微组织。图7是经受图1所示热处理的钢片材产品的光学显微照片,示出较暗的铁素体晶粒和较亮的奥氏体晶粒。图8是示出图7中所示奥氏体晶粒的纵横比的柱状图。图9和10是显示根据本发明一个实施方案的奥氏体和铁素体晶粒尺寸分布的高强度钢片材产品的坐标图。图11是ebsd显微照片,示出了按图1所示处理的高强度钢片材产品的显微组织。图12和13是ebsd显微照片,示出了按图2所示处理的钢片材产品。图14是如图3所示处理的钢片材产品的ebsd显微照片。图15是本发明的高强度钢片材产品与在本发明范围之外处理的其它钢片材产品相比的总伸长率与极限拉伸强度的关系图。图16是根据本发明实施方案在生产试验中生产的高强度钢产品的总伸长率与极限拉伸强度的关系图。详细描述本发明的高强度钢片材产品具有受控的组成,该组成与受控的退火过程相结合,产生期望的显微组织和有利的机械性能,包括高强度和超高的成形性。在某些实施方案中,钢组成可包括碳、锰和硅,以及本领域技术人员已知的任何其它合适的合金化添加物。下表1中列出包括c、mn、si、al、ti和nb的范围的钢组成的实例。表1钢组成(重量%)实施例cmnsialsi+altinba0.12-0.51-30-20-20.8-30-0.050-0.05b0.15-0.41.3-2.50.2-1.80-1.50.9-2.50-0.030-0.03c0.17-0.351.5-2.30.4-1.50-11-20-0.020-0.02除了表1中列出的c、mn、si、al、ti和nb的量之外,钢组成可包括少量或杂质量的其它元素,例如最大0.015的s,最大0.03的p,最大0.2的cu,最大0.02的ni,最大0.2的cr,最大0.2的mo,最大0.1的sn,最大0.015的n,最大0.1的v和最大0.004的b。当涉及钢片材产品的组成时,本文中使用的术语“基本上不含”是指特定元素或材料并非有意地添加到组成中,并且仅作为杂质或以痕量存在。在本发明的钢片材产品中,c提供增加的强度并促进残余奥氏体的形成。mn提供硬化并充当固溶强化剂。si在热处理期间抑制碳化铁析出,并且增加奥氏体保留。al在热处理期间抑制碳化铁析出,并增加奥氏体保留。ti和nb可以充当强度增强的晶粒细化剂。在某些实施方案中,al的存在量可以为至少0.1重量%或至少0.2重量%。例如,在某些实施方案中,al的存在量可以为0.5至1.2重量%,或0.7至1.1重量%。作为替代,钢片材产品可基本上不含al。具有上述组成的钢片材产品经受两阶段退火过程,如下面更全面所述。已发现所得片材产品具有有利的机械性能,包括期望的极限拉伸强度、高的伸长率、高的λ值、高的弯曲性和高的屈服比(ys/uts)。在某些实施方案中,钢片材产品的极限拉伸强度(uts)为700至1100mpa或更高。在某些实施方案中,钢片材产品的极限拉伸强度大于700mpa,例如720至1100mpa,或750至1050mpa。在某些实施方案中,钢片材产品的总伸长率(te)典型大于22%,例如大于27%,或大于33%。例如,钢片材产品可具有至少20%的总伸长率,例如22至45%,或25至40%。钢片材产品可具有通过标准孔扩张测试测量的典型大于20%的λ(λ)值,例如,大于25%,或大于30%,或大于35%。整体扩张比率或λ可以大于20%,例如,22至80%,或25至60%。在某些实施方案中,增加的总伸长率(te)和孔扩张(λ)值导致钢片材产品表现出良好的整体成形性和局部成形性。对于本发明的钢片材产品,观察到大于25,000的强度伸长率平衡(uts·te),使得它们落入工业(如汽车工业)非常期望的第3代钢的类别。在某些实施方案中,uts·te值可以大于30000,或大于35000。根据本发明的某些实施方案,钢片材产品的最终显微组织可主要包含铁素体,例如,至少50%直至80%或更高,具有较少量的残余奥氏体,例如,5至25%,和少量初生马氏体,例如0至10%或15%。可以通过标准ebsd技术确定铁素体、奥氏体和马氏体的量。作为替代,可以通过磁饱和方法确定残余奥氏体含量。除非本文另有说明,则通过ebsd技术确定残余奥氏体的体积百分比。在某些实施方案中,残余奥氏体占1至25体积%,例如5至20体积%。初生马氏体的量可以占小于15体积%,或小于10体积%,或小于5体积%。在某些实施方案中,钢片材产品基本上不含初生马氏体。已经发现,当初生马氏体量大于15%时,孔扩张值显著降低,例如,局部成形性显著降低。在加热区段期间(如下所述)通过马氏体的回火和/或再结晶,或者在第二退火过程的冷却和保持区段期间通过奥氏体分解,形成至少一部分铁素体。一些铁素体可以被认为是贝氏体铁素体。铁素体、奥氏体和马氏体相是细晶粒的,例如具有小于10微米的平均晶粒尺寸,例如小于5微米,或小于3微米。例如,铁素体晶粒尺寸可以小于10微米,例如小于8微米,或小于6微米。平均奥氏体晶粒尺寸可以小于2微米,例如小于1微米,或小于0.5微米。当存在时,马氏体晶粒尺寸可以小于10微米,例如小于8微米,或小于6微米。奥氏体晶粒可以是基本上等轴的,例如,具有小于3:1或小于2:1的平均纵横比,例如,约1:1。已发现残余奥氏体的量低于约5%导致显著降低的总伸长率(te)。还发现高于25%的残余奥氏体量只能在极高的碳含量下获得,这导致差的可焊性。在本发明的某些实施方案中,使用两步退火过程来生产具有有利机械性能(例如上述那些)的先进高强度钢产品。在第一和第二退火步骤的每一个中,可以使用用于进行热处理的多种方法。两步退火过程的实例示于图1-3中并且在下面描述。图1表示连续退火线(cal),接着是连续退火线(cal)生产路线。图2表示cal加连续镀锌线(cgl)生产路线。图3表示专门设计的生产线,允许cal+cal或cal+cgl步骤在单个设施中发生。虽然在图3中示出了直接燃烧炉(dff)然后辐射管(rt)炉的实施方案,但是可以使用其他实施方案来实现期望的热循环,诸如全部辐射管、电辐射加热等。步骤1退火过程的第一步骤的目标是实现马氏体显微组织。在第一步骤的第一退火阶段中,可以典型使用高于a3温度的退火温度,例如,可以使用至少820℃的退火温度。在某些实施方案中,第一阶段退火温度可以典型为830至980℃,例如830至940℃,或840至930℃,或860至925℃。在某些实施方案中,峰值退火温度可以典型保持至少20秒,例如20至500秒,或30至200秒。可以通过常规技术完成加热,例如非氧化或氧化直燃炉(dff),富氧dfi,感应,气体辐射管加热,电辐射加热等。可适用于本发明方法的加热系统的实例公开于如下:美国专利us5,798,007;us7,368,689;us8,425,225;和转让给fivesstein的us8,845,324、美国专利申请us2009/0158975和公布的pct申请wo/2015083047。可适用于本发明工艺的加热系统的另外实例包括转让给dreverinternational的美国专利us7,384,489和转让给nipponsteel和sumitomometalcorporation的美国专利us9,096,918。任何其他合适的已知类型的加热系统和工艺可以适用于步骤1和步骤2。在第一阶段中,在达到峰值退火温度并保持期望的时间段之后,使钢淬火至室温,或至高于室温的受控温度,如下面更全面所述。淬火温度可以不一定是室温,但应低于马氏体起始温度(ms),并且优选低于马氏体终止温度(mf),以形成主要为马氏体的显微组织。在某些实施方案中,在第一步过程和第二步过程之间,可将钢片材产品冷却到低于300℃的温度,例如低于200℃。淬火可以通过常规技术完成,例如水淬火,浸没刀式/喷嘴水淬火,气体冷却,使用冷水、温水或热水和气体的组合的快速冷却,水溶液冷却,其它液体或气体流体冷却,冷却辊淬火,水雾喷射,湿闪蒸冷却,非氧化湿闪蒸冷却等。典型可以使用30至2,000℃/秒的淬火速率。本领域技术人员已知的各种类型的冷却和淬火系统和工艺可以适用于本发明的工艺。在商业基础上常规使用的合适的冷却/淬火系统和工艺可包括水淬,水雾冷却,干闪蒸和湿闪蒸,氧化和非氧化冷却,烷烃流体到气体的相变冷却,热水淬火,包括两步水淬火,辊式淬火,高百分比氢气或氦气喷射冷却等。例如,可以使用fivesstein的公布pct申请wo2015/083047中公开的干法闪蒸和/或湿法闪蒸氧化和非氧化冷却/淬火。描述可适用于本发明工艺的冷却/淬火系统和工艺的其它fivesstein专利文献包括美国专利us6,464,808b2;us6,547,898b2;和us8,918,199b2,以及美国专利申请公布us2009/0158975a1;us2009/0315228a1;和us2011/0266725a1。可适用于本发明工艺的冷却/淬火系统和工艺的其它实例包括以下文献中公开的那些:美国专利us8,359,894b2;us8,844,462b2;和us7,384,489b2,以及美国专利申请公布2002/0017747a1和2014/0083572a1。在某些实施方案中,在达到第一阶段峰值退火温度并且对钢淬火以形成马氏体之后,可以任选地对马氏体进行回火以使钢稍微软化从而使得进一步的加工更可行。通过在室温至约500℃的范围内提高钢的温度并保持至多600秒来进行回火。如果使用回火,则回火温度可以保持恒定,或者可以在该优选范围内变化。在回火之后,将温度降至室温。这种降低速率典型可以为1-40℃/秒,例如2-20℃/秒。在单通道设施炉的情形中,如图3所示,回火可以不是必需的。步骤2退火过程的第二步骤可包括在相对高的退火温度下进行的第一阶段,和在相对低的温度下进行的第二阶段。这些阶段被定义为第二次退火的“均热”区和“保持”区,如图4所示。控制温度以促进在最终产品中形成期望的显微组织。在第二步骤的第一退火阶段中,可以使用a1和a3之间的均热区温度,例如,可以使用至少720℃的退火温度。在某些实施方案中,均热区温度可以典型为720至850℃,例如760至825℃。在某些实施方案中,峰值退火温度典型可保持至少15秒,例如20至300秒,或30至150秒。在第二步骤的第一阶段期间,可以通过从低于ms的相对低的温度(例如室温)以0.5至50℃/秒的平均速率加热钢来实现均热区温度,例如,约2至20℃/秒。在某些实施方案中,升温可以耗费25至800秒,例如100至500秒。第二步骤的第一阶段加热可以通过任何合适的加热系统或工艺完成,例如使用辐射加热,感应加热,直接燃烧炉加热等。在达到均热区温度并保持期望的时间段之后,可将钢冷却到高于室温的受控温度至保持区。在某些实施方案中,在第二步骤均热过程和第二步骤保持过程之间,钢片材产品维持在高于300℃的温度。从均热区到保持区的冷却可以通过常规技术完成,例如水冷却,气体冷却等。典型可以使用5至400℃/秒的平均冷却速率。任何合适类型的冷却和淬火系统可适用于从均热温度到保持温度的冷却,包括上文所述那些。根据本发明的实施方案,保持区步骤在360至440℃的典型温度下进行,例如370至430℃。保持区可以保持至多800秒,例如30至600秒。保持区温度可以保持恒定,或者可以在优选的温度范围内稍微变化。在保持之后,可以对钢进行再加热,例如通过感应或其它加热方法,在合适的温度下进入热浸涂覆罐以获得良好的涂覆结果,如果要对钢进行热浸涂覆的话。在某些实施方案中,在保持区温度已经维持期望的时间段之后,温度可以降至室温。这种降温典型可以耗费10到1000秒,例如,约20到500秒。这种降温的速率典型可以为1至1000℃/秒,例如2至20℃/秒。根据某些实施方案,可以在连续退火线(cal)上执行第一步骤和第二步骤退火过程中的一个或两个。在经过cal+cal过程之后,可以对钢进行电镀锌以生产锌基涂覆产品。在某些实施方案中,退火的钢片材在保持区结束时进行热浸镀锌。镀锌温度可以典型为440至480℃,例如450至470℃。在某些实施方案中,镀锌步骤可以作为连续镀锌生产线(cgl)上的第二步退火过程的一部分来执行,例如,如图2所示。该cal+cgl过程可以用于生产锌基或锌合金基的热浸镀锌产品或在涂覆后再加热以产生铁-锌镀锌层退火型涂覆产品。在该过程中,在cal和cgl步骤之间可以进行任选的镍基涂覆步骤,以改善锌涂层性能。在第二步中使用连续镀锌生产线提高了生产涂覆gen3产品的生产效率,相对于使用cal+cal+eg路线而言。也可以在专门设计的cgl上制造镀锌产品或锌基合金热浸涂覆产品,其中两步退火可以在单一生产线中进行,如图3所示。在该情形中镀锌层退火(galvannealing)也可以是一个选项。此外,还可以专门设计和构建单一生产设施以组合两步热处理以生产如本发明中所定义的未涂覆的第3代钢。以下实施例意图说明本发明的各个方面,而并不意图限制本发明的范围。实施例1对具有表2样品号1中列出的组成的冷轧钢片材进行如图1所示的两步退火过程。所得产品的显微组织示于图5和6中。使用商业edax取向成像显微术软件的ebsd技术示出图5中的深色铁素体晶粒和浅色奥氏体晶粒。实施例2对具有表2样品号2中所列组成的冷轧钢片材进行图1所示的两步退火过程。所得产品的显微组织如图11所示。样品号2的机械性能列于表2中。铁素体和奥氏体的晶粒尺寸分布分别示于图9和10中。平均奥氏体晶粒尺寸小于1微米,且平均铁素体晶粒尺寸小于10微米。显微组织包括:约80体积%的铁素体,平均晶粒尺寸为约5微米;约10体积%的残余奥氏体,具有基本上等轴的晶粒和约0.5微米的平均晶粒尺寸;和约10体积%的初生马氏体,平均晶粒尺寸为约5微米。样品号1的机械性能列于下表2中。实施例3对具有表2样品号3中所列组成的冷轧钢片材进行图2所示的两步退火过程。所得产品的显微组织示于图12和13中。在图13中,奥氏体颜色浅而铁素体颜色深。样品号3的机械性能列于表2中。实施例4对具有表2样品号4中所列组成的冷轧钢片材进行图3所示的两步退火过程。所得产品的显微组织示于图14中。在图14中,奥氏体颜色浅而铁素体颜色深。样品号4的机械性能列于表2中。实施例5对具有表2样品号5中所列组成的冷轧钢片材进行图1所示的两步退火过程。样品号5的机械性能列于表2中。实施例6对具有表2样品号6中列出的组成的冷轧钢片材进行如图1所示的两步退火过程。样品号6的机械性能列于表2中。图7是显示表2样品号6中所示的钢的显微组织的光学图像,所述钢经受图1所示的两步退火过程。在图7中,显微照片的深色区域是铁素体晶粒,而浅色区域是奥氏体晶粒。图8是说明图7所示奥氏体晶粒的纵横比的图。使用市售软件利用图像分析,使用图7的光学图像来确定奥氏体晶粒的纵横比。图7显示奥氏体晶粒的平均纵横比小于3:1。实施例7对具有表2样品号7中所列组成的冷轧钢片材进行图2所示的两步退火过程。样品号7的机械性能列于表2中。实施例8对具有表2样品号8中所列组成的冷轧钢片材进行图3所示的两步退火过程。样品号8的机械性能列于表2中。实施例1-8中的钢表现出在700至1100mpa范围内的uts水平。比较例1-4对具有表2样品号c1-c4中列出的组成的冷轧钢片材进行图1所示的两步退火过程。样品号c1-c4的机械性能列于表2中。比较例1-4中的钢表现出小于700mpa的uts水平。比较例5-8对具有表2样品号c5-c8中列出的组成的冷轧钢片材进行图1所示的两步退火过程。样品号c5-c8的机械性能列于表2中。比较例5-8中的钢表现出大于1100mpa的uts水平。比较例9-11对具有表2样品号c9-c11中列出的组成的冷轧钢片材进行类似于图1所示的两步退火过程,区别在于第二次退火中的均热温度或保持温度在本发明的优选范围之外。样品号c9-c11的机械性能列于表2中。比较例12对具有表2样品号c12中列出的组成的冷轧片材进行类似于图2所示的两步退火过程,区别在于第二次退火中的保持区温度在本发明的优选范围之外。样品号c12的机械性能列于表2中。表2表2(续)图15绘制了实施例1-8的样品1-8以及比较例c1-c12的样品c1-c12的总伸长率(te)和极限拉伸强度(uts)。图15中粗略绘出对应于uts·te为25000的线。可以看出,与比较样品相比,根据本发明生产的高强度钢片材样品具有强度和伸长率的优异组合,即对于本发明的实施例观察到高uts水平下的高的总伸长率性能。样品1至样品8的钢属于第3代先进高强度钢的类别,这是汽车工业和其他工业非常期望的。实施例9使用cal+cal或cal+cgl过程对下表3中标记为m1-m5的样品进行生产试验(milltrial)。对于样品m1、m2和m5,使用图1中所示的cal+cal处理时间和温度。对于样品m3和m4,使用图2中所示的cal+cgl处理时间和温度。表3生产试验结果图16显示了生产试验材料的强度-伸长率平衡,全部满足25000的最小uts·te。试验材料表现出大于20%的λ值。本文所用的“包括”、“含有”和类似术语在本申请的上下文中被理解为与“包含”同义,且因此是开放式的并且不排除存在另外的未描述或未提及的元素、材料、相或方法步骤。本文所用的“由…组成”在本申请的上下文中被理解为排除任何未指明的元素、材料、相或方法步骤的存在。本文所用的“基本上由…组成”在本申请的上下文中被理解为包括所指明的元素、材料、相或方法步骤(当适用时),并且还包括不会实质上影响本发明的基本或新颖特征的任何未指明的元素、材料、相或方法步骤。尽管阐述本发明宽广范围的数值范围和参数是近似值,但尽可能精确地报道具体实施例中列出的数字值。然而,任何数字值固有地包含必然由其各自的测试测量中发现的标准差引起的某些误差。此外,应该理解的是,本文提及的任何数字范围意图包括其中包含的所有子范围。例如,“1到10”的范围意图包括所提及的最小值1和所提及的最大值10之间所有子范围(并且包括所述最小值和最大值),即具有等于或大于1的最小值和等于或小于10的最大值。在本申请中,单数的使用包括复数并且复数包括单数,除非另有具体说明。另外,在本申请中,“或”的使用意指“和/或”,除非另有具体说明,尽管在某些情况下可能明确地使用“和/或”。在本申请和所附权利要求书中,冠词“一”,“一个”和“该”包括复数指示物,除非明确且肯定地限于一个指示物。虽然上面为了说明目的描述了本发明的具体实施方案,但是本领域技术人员将清楚,在不脱离本发明的情况下,可以对本发明的细节进行各种改变。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1