一种复合防水透湿面料及其制备方法与流程

文档序号:17069491发布日期:2019-03-08 23:11阅读:241来源:国知局
一种复合防水透湿面料及其制备方法与流程

本发明涉及一种复合防水透湿面料及其制备方法,属于织物整理领域。



背景技术:

防水透湿织物(waterproof&moisturepermeablefabric)通常也叫防水透气织物,国外一般称之为waterproofandbreathablefabric(可呼吸织物)。防水透湿织物是指具有使水滴(或液滴)不能渗入织物,而人体散发的汗气能通过织物扩散传递到外界,不致在衣服和皮肤间积累或冷凝,感觉不到发闷现象的功能性织物。它是人类为抵御大自然的侵害,不断提高自我保护的情况下出现的,集防风、雨、雪,御寒保暖,美观舒适于一身的高技术纺织品。研究表明,只有当靠近皮肤的衣服内“微气候区”的温度在32±1℃,相对湿度在50%±10%时人体才感到舒适,此时人体处于最佳的生理状态。用这种织物做成的服装,不仅能满足严寒雨雪、大风等恶劣天气环境中人们活动时的穿着需要(如冬季军服等),也适用于人们日常生活对雨衣、运动衣等的要求,且穿着舒适美观,无湿冷感,防止冻伤。

水蒸气分子的直径为0.0003-0.0004微米,而雨水中直径最小的轻雾的直径为20微米,毛毛雨的直径已经高达400微米,如果能够制造出孔隙直径在水蒸气和雨水之间的薄膜,那么既防水又透湿就能够实现了。

现有技术往往采用层压法将防水透湿层通过热熔胶与传统织物面料结合,在该层压结合过程中,由于热熔胶的存在会将防水透湿层中的微细孔隙堵塞,使得其透湿功能下降。因此,如能采用防水透湿层原材料直接与传统面料结合,而不使用热熔胶或其他粘合剂,则可以避免以上问题。



技术实现要素:

针对上述问题,本发明提出一种复合防水透湿面料。

本发明提到的面料之所以称为复合防水透湿面料,是因为所述防水透湿层为静电纺丝纤维无纺布。静电纺丝技术是一种可连续制作纳米织物的重要工艺,可以制备单丝直径20-100nm以至更细的纳米纤维和纳米纤维无纺布薄膜。采用憎水性聚合物并通过静电纺丝制备的纳米纤维膜,具有如下特点:1)织物柔软且悬垂性好;2)织物对外界光线反射分散、柔和;3)织物的微纳米结构使得其透水性和吸油性较高;4)通过添加的功能成分可使面料具有抗菌除臭等功能。

本发明所述的复合防水透湿面料不仅仅局限于上述织物特点,织物的微纳米结构使得其能够迅速的将人体汗液吸附并传递到织物的另一面,并通过扩散作用增大水分的蒸发面积,达到透湿功能;而组成纳米纤维无纺布薄膜材料的憎水性则使得其不易在贴近身体的一侧形成液态水的聚集;从而达到防水透湿并保持面料内侧干燥的目的。

为实现上述目的,本发明首先提供了一种复合防水透湿面料的制备方法,所述方法包括以下步骤:

1)将传统面料织物清洗、除油后,烘干备用;

2)配制两种或两种以上不同浓度的憎水材料纺丝液,按照浓度由低到高的顺序依次置于静电纺丝设备的储液管中,其中,低浓度靠近纺丝针头;

3)将静电纺丝设备接通正极电压和负极电压,设置静电纺丝条件参数,将传统织物面料固定在接收滚筒表面,开启电源,进行纺丝,依次在传统织物表面形成憎水材料的纳米微珠和纳米纤维,并最终在表面获得纳米纤维无纺布薄膜;

4)取下覆满纳米纤维无纺布薄膜的复合面料,热压、干燥,即可得到复合防水透湿面料。

在本发明的一种实施方式中,所述传统面料织物为机织或针织的棉、麻、涤纶、锦纶或者其混纺织物。

在本发明的一种实施方式中,所述憎水材料纺丝液的浓度为1-20wt%,其中所述低浓度为1-7wt%,此浓度下的纺丝液在后续的纺丝条件下得到含溶质的液滴或串珠状不连续纤维,而不能够得到连续纤维;较高浓度为7-20wt%,此浓度下的纺丝液在后续的纺丝条件下得到连续纤维。

在本发明的一种实施方式中,相邻的低浓度和较高浓度的浓度之差不超过6wt%。

在本发明的一种实施方式中,所述传统面料织物除油后进行拒水整理。

在本发明的一种实施方式中,所述步骤1)中烘干为70-90℃下烘干1-5h。

在本发明的一种实施方式中,所述憎水材料为聚氨酯、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚酰亚胺以及其混合物或共聚物。

在本发明的一种实施方式中,所述纺丝液的溶剂为丙酮、二甲亚砜、二甲基甲酰胺、二甲基乙酰氨、三氟乙醇、六氟异丙醇中的一种或几种。

在本发明的一种实施方法中,静电纺丝电压为5-20kv;静电纺丝选用的针头内径为0.5-1.5mm;静电纺丝的针头与纺丝纤维收集板之间的距离为5-30cm;静电纺丝的纺丝速度为1.0-5.0ml/h。

在本发明的一种实施方法中,在纺丝液中加入一定量的功能成分进行静电纺丝,达到抗菌、远红外发射和产生负离子的目的。

在本发明的一种实施方式中,所述热压在压烫机上进行,其中热压压强为0.1-0.8mpa;热压温度为80-120℃,热压时间为5-120s。

在本发明的一种实施方式中,步骤(4)中所述干燥为自然晾干或者在70-90℃下烘干。

本发明还提供了由上述方法制备得到的一种复合防水透湿面料。

本发明的取得的有益效果:

(1)采用静电纺丝技术,将传统织物和静电纺丝得到的防水透湿层相结合,既能保面料的舒适,也能实现良好的防水透湿功能;

(2)面料采用传统面料织物,提高了复合防水透湿面料的耐磨性,织物的断裂强度等性能;传统面料经拒水整理后,在几乎不影响透湿性、透气性的情况下,大大提高了面料的防水性;

(3)本发明得到的复合防水透湿面料的里料为静电纺丝纳米纤维无纺布薄膜,由于本发明采用了不同浓度梯度的纺丝溶液,并且低浓度纺丝液先于其他高浓度纺丝溶液被推出储液管,因此,在传统面料上首先接收到的是不成纤的憎水材料微纳米液滴,而后随着高浓度的纺丝液推出,憎水材料才能够成纤并收集在传统面料上,这样,先前憎水材料微纳米液滴就起到了粘合剂的作用将传统面料和静电纺丝纳米纤维结合在一起。该方法不仅简化了复合工艺,节约了时间材料成本,而且避免了粘结过程造成的面料厚度和性能不均一的问题。

附图说明

图1静电纺丝装置;其中,1-推进泵,2-储液管,3-梯度纺丝溶液,4-纳米纤维,5-接收滚筒,6-传统织物面料。

具体实施方式

下面通过附图和具体实施方式对本发明做进一步说明,但并不意味着对本发明保护范围的限制。

面料与防水层是否脱落性能测试方法:将透明胶带贴于纳米纤维一侧表面,放置30min后,以30cm/min的速度将胶带剥离,如纳米纤维层与原传统面料分离,则认为其脱落;如没有出现分离,则认为其未脱落

防水透湿面料的性能检测方法:

防水性能:依据标准aatcc127用yg812c仪器测量纤维膜的耐水压。在标准大气压下,将织物疏水面与水接触,以恒定的升压速率增加水压,当织物背面出现三处慢慢变大的水珠时的压力即为静水压,也就是指液态水通过薄膜时所需要的阻力的大小,其大小表示薄膜的防水性能,薄膜承受的静水压值越大,其耐水性就越高。本实验测试中每个样品随机剪裁3个试样,试样测试面积为225cm2,耐水压的恒定升压速率设定为6kpa/min,直至试样反面区域(压环边缘3mm内出现的水滴不算)出现3个不断增大的水滴时记录此时的静水压值最后取其平均值。

透湿性能:依据astme96标准,通过yg601型电脑式透湿测试仪采用吸湿法测试纤维膜的透湿性能。操作步骤如下:首先将机器设定箱内温度为38℃,箱内湿度为90%让其平衡到设定的温湿度,其次将33g无水氯化钙装到透湿杯内(透湿杯的有效面积为28.26cm2)并把纤维膜试样安装在上面,然后将装好的透湿杯去除盖子正放到已经平衡的透湿箱内,保持水量和气流速度的稳定,0.5h后取出透湿杯盖上盖子放置在干燥皿中平衡0.5h,称量此时的透湿杯的总质量,记为,再次将透湿杯去除盖子重新正放回透湿箱内,1h后取出透湿杯盖上盖子并放到干燥皿中再次平衡0.5h,称量透湿杯的总质量,记为,最后经过下式计算后得到纤维膜的透湿量(wvtr)。

式中,wvtr:每平方米每天的透湿量,单位g/m2/d;t为测试时间,单位为h;m2-m1为同一实验组合的质量之差,单位为g;s为试验面积,单位为m2

实施例1

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为3wt%、7wt%、11wt%和15wt%的纺丝溶液,待用;

将pu纺丝液按照3wt%、7wt%、11wt%、15wt%的浓度梯度依次加入储液管中,其中,浓度为3wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

实施例2

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为2wt%、6wt%、8wt%和10wt%的纺丝溶液,待用;

将pu纺丝液按照2wt%、6wt%、8wt%、10wt%的浓度梯度依次加入储液管中,其中,浓度为2wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

实施例3

传统织物面料选用针织麻织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚偏氟乙烯,溶解于二甲亚砜中,磁力搅拌2个小时,获得浓度分别为3wt%、6wt%、10wt%和15wt%的纺丝溶液,待用;

将聚偏氟乙烯纺丝液按照3wt%、6wt%、10wt%、15wt%的浓度梯度依次加入储液管中,其中,浓度为3wt%的聚偏氟乙烯纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+10kv,开启推进器和滚筒,并使纺丝液以3ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为1.5mm;静电纺丝的针头与纺丝纤维收集板之间的距离为20cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为50s,温度为100℃;

将制得的复合面料自然晾干,最终得到了聚偏氟乙烯/麻织物复合防水透湿面料。

实施例4

传统织物面料选用机织锦纶平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚甲基丙烯酸甲酯,溶解于丙酮中,磁力搅拌2.5个小时,获得浓度分别为1wt%、4wt%、9wt%和16wt%的纺丝溶液,待用;

将聚甲基丙烯酸甲酯纺丝液按照1wt%、4wt%、9wt%、16wt%的浓度梯度依次加入储液管中,其中,浓度为1wt%的聚甲基丙烯酸甲酯纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+15kv,开启推进器和滚筒,并使纺丝液以3ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.5mm;静电纺丝的针头与纺丝纤维收集板之间的距离为10cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为100s,温度为80℃;

将制得的复合面料在70℃烘干3h,最终得到了聚甲基丙烯酸甲酯/锦纶复合防水透湿面料。

实施例5

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为2wt%、7wt%和11wt%的纺丝溶液,待用;

将pu纺丝液按照2wt%、7wt%、11wt%的浓度梯度依次加入储液管中,其中,浓度为2wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

实施例6

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为5wt%和11wt%的纺丝溶液,待用;

将pu纺丝液按照5wt%、11wt%的浓度梯度依次加入储液管中,其中,浓度为5wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到厚度为1.0±0.1mm的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

对比例1浓度梯度跨度较大的情况

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为3wt%和15wt%的纺丝溶液,待用;

将pu纺丝液按照3wt%和15wt%的浓度梯度依次加入储液管中,其中,浓度为3wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到一定厚度(1.0±0.1mm)的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

对比例2浓度梯度跨度较大的情况

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度分别为2wt%和6wt%的纺丝溶液,待用;

将pu纺丝液按照2wt%和6wt%的浓度梯度依次加入储液管中,其中,浓度为2wt%的pu纺丝液靠近纺丝针头;

调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,无法得到静电纺丝纳米纤维无纺布薄膜。

对比例3采用热熔胶粘合机织涤棉平纹织物和静电纺丝pu纤维膜

传统织物面料选用机织涤棉平纹织物,同时面料做过拒水整理,将面料通过双面胶固定于接收滚筒表面;而后,在其表面敷上一层eva热熔胶膜。

称取一定量的聚氨酯(pu),溶解于体积比为1:3的丙酮/n-n二甲基甲酰胺混合溶剂中,磁力搅拌2-3个小时,获得浓度为15wt%的纺丝溶液,待用;

将pu纺丝液加入储液管中,调节静电纺丝装置的正电压达到+18kv,开启推进器和滚筒,并使纺丝液以2ml/h的速度推出储料管;其中,静电纺丝选用的针头内径为0.9mm;静电纺丝的针头与纺丝纤维收集板之间的距离为15cm;

静电纺丝结束后,得到一定厚度(1.0±0.1mm)的静电纺丝纳米纤维无纺布薄膜。

小心揭下覆满纳米纤维复合面料,将其通过压烫机上进行热压,热压时间为20s,温度为110℃;

将制得的复合面料在80℃烘干2h,最终得到了pu/涤棉复合防水透湿面料。

对实施例和对比例得到的防水透湿面料进行防水性能和透湿性能测试,测试结果见下表1。可见,利用本发明方法制备得到的复合防水透湿面料不但具有较高的耐水压,且其透湿量较传统的将防水透湿层通过热熔胶与传统织物面料结合的方法相比,提高了300%以上,具有良好的防水透湿功能。

表1制备得到的防水透湿面料的防水透湿性能测试结果

其中,——表示该样品无法进行耐水压和透湿量测试

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1