一种具有高储能密度的耐高温P(VDF-TrFE)复合双层膜的制备方法与流程

文档序号:17544535发布日期:2019-04-29 15:11阅读:315来源:国知局
一种具有高储能密度的耐高温P(VDF-TrFE)复合双层膜的制备方法与流程

本发明涉及复合材料结构技术领域,具体涉及一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法。



背景技术:

电容元件具有放电功率大、利用效率高、充放电速度快、性能稳定等优良性能,在电力系统、电子器件、脉冲功率电源方面扮演着重要的角色,广泛应用于混合动力汽车、坦克电磁炮、电磁发射平台等国防现代化工业领域。但现在的电容元件存在诸如:储能密度低、放电电流小、寿命短等不利因素,使它的应用受到了限制。而实现电容元件向高储能化的转变,根本在于提高材料的储能密度,降低材料的损耗。

材料储能性能与材料的介电常数、耐击穿强度、损耗密切相关,提高材料的储能性能就是要提高材料的介电常数、耐击穿强度,降低材料的损耗。目前使用最多的高介电铁电陶瓷材料,如:batio3,baxsr1-xtio3,pb(mg,ng)o3等,虽然具有较高的介电常数,但加工过程中耗能较大(高温烧结),耐击穿场强低,可加工性差,难以与有机基板或印刷电路板相兼容。面对产品的小型化、轻型化,单独的铁电陶瓷材料已经很难满足要求,而聚合物材料(如:pvdf)由于具有良好的柔韧性、击穿场强高、质量轻、加工温度低、与有机基板的相容性好、可以大面积成膜等优点,被广泛应用,但介电常数较低(通常小于10),耐高温性能差(室温应用),储能特性及应用受到限制。



技术实现要素:

为解决以上技术问题,本发明提供一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法。

技术方案如下:

一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法,其要点在于包括以下步骤:

步骤s1:制备baxsr1-xtio3纳米颗粒,其中0<x<1;

步骤s2:将聚(偏氟乙烯-三氟乙烯)溶解在n,n-二甲基甲酰胺中形成均匀的第一成膜溶液;

步骤s3:将baxsr1-xtio3纳米颗粒均匀分散在第一成膜溶液中形成稳定的悬浮液;

步骤s4:将悬浮液浇筑在玻璃基底上并烘干处理得到烘干膜,接着将烘干膜在真空条件下,在100-140℃的温度下保温10-14h进行退火处理,退火结束后将其冷却至室温即得到p(vdf-trfe)复合单层膜;

步骤s5:将聚甲基丙烯酸甲酯溶解到乙酸乙酰乙酯形成均匀的第二成膜溶液,以所述p(vdf-trfe)复合单层膜作为底膜,将所述第二成膜溶液浇筑在底膜上,并在60-90℃下烘干形成顶膜,得到具有高储能密度的耐高温p(vdf-trfe)复合双层膜成品。

采用上述技术方案,由于引入了聚(偏氟乙烯-三氟乙烯),聚(偏氟乙烯-三氟乙烯)的大官能团三氟乙烯基,在室温条件下,非常容易诱导聚合物形成铁电相(β相),随着温度的上升,会发生由铁电相向顺电相的转变,顺电态的聚(偏氟乙烯-三氟乙烯)则可在较高温度下获得高能量存储,从而有效保证了p(vdf-trfe)复合单层膜在较高的温度下也能具有高储能密度;并且由于在底膜上覆盖一层聚甲基丙烯酸甲酯,能够有效增大p(vdf-trfe)复合双层膜的击穿场强,从而得到具有高储能密度的,并且耐高温的p(vdf-trfe)复合双层膜。

而传统技术方案采用的聚偏氟乙烯与钛酸锶钡的混合物虽然能在室温条件下获得较高的能量密度,但是随着温度的升高,其能量存储密度急剧降低,不能在高温使用。

作为优选的技术方案:

所述聚(偏氟乙烯-三氟乙烯)中三氟乙烯的摩尔百分含量为20-60%。

步骤s3中,所述悬浮液中所述baxsr1-xtio3纳米颗粒的质量百分含量为1-10%,余量为所述第一成膜溶液。

所述baxsr1-xtio3纳米颗粒的粒径为100-200nm。

步骤s4中,所述烘干处理为在70-100℃下处理8-13h。

所述底膜和顶膜的厚度比为2-20:1。

所述底膜的厚度为10-20μm,所述顶膜的厚度为1-5μm。

附图说明

图1为实施例1制得的baxsr1-xtio3纳米颗粒的xrd图;

图2为实施例1制得的baxsr1-xtio3纳米颗粒的sem图;

图3为p(vdf-trfe)复合单层膜的储能密度随温度的变化规律图;

图4为p(vdf-trfe)复合双层膜的储能密度随温度的变化规律图。

具体实施方式

下面结合实施例和附图对本发明作进一步说明。

实施例1:

一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法,按以下步骤进行:

步骤s1:采用两步水热法制备baxsr1-xtio3纳米颗粒,其中0<x<1,得到粒径为100nm的baxsr1-xtio3纳米颗粒;

步骤s2:将p(vdf-trfe)[即聚(偏氟乙烯-三氟乙烯),其中三氟乙烯的摩尔百分含量为45%]和dmf(n,n-二甲基甲酰胺)按5:95的质量比混合并搅拌10h形成均匀的第一成膜溶液;

步骤s3:将所述baxsr1-xtio3纳米颗粒超声分散在所述第一成膜溶液中形成稳定的悬浮液,该悬浮液中所述baxsr1-xtio3纳米颗粒的质量百分含量为1%,余量为所述第一成膜溶液;

步骤s4:将所述悬浮液浇筑在预先准备好的玻璃基底上并在70℃烘干处理8h得到烘干膜,接着将烘干膜转移至真空烘箱中,在100℃的温度下保温10h进行退火处理,退火结束后将其冷却至室温得到p(vdf-trfe)复合单层膜;

步骤s5:将聚甲基丙烯酸甲酯和乙酸乙酰乙酯按1:99的质量比例混合均匀形成第二成膜溶液,以所述p(vdf-trfe)复合单层膜为底膜,将所述第二成膜溶液浇筑在底膜上,并在60℃条件下烘干形成顶膜,得到具有高储能密度的耐高温p(vdf-trfe)复合双层膜,其中所述底膜的厚度为10μm,所述顶膜的厚度为1μm。

实施例2:

一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法,按以下步骤进行:

步骤s1:采用两步水热法制备baxsr1-xtio3纳米颗粒,其中0<x<1,得到粒径为200nm的baxsr1-xtio3纳米颗粒;

步骤s2:将p(vdf-trfe)[即聚(偏氟乙烯-三氟乙烯),其中三氟乙烯的摩尔百分含量为60%]和dmf(n,n-二甲基甲酰胺)按5:95的质量比混合并搅拌12h形成均匀的第一成膜溶液;

步骤s3:将所述baxsr1-xtio3纳米颗粒超声分散在所述第一成膜溶液中形成稳定的悬浮液,该悬浮液中所述baxsr1-xtio3纳米颗粒的质量百分含量为10%,余量为所述第一成膜溶液;

步骤s4:将所述悬浮液浇筑在预先准备好的玻璃基底上并在100℃烘干处理13h得到烘干膜,接着将烘干膜转移至真空烘箱中,在140℃的温度下保温14h进行退火处理,退火结束后将其冷却至室温得到p(vdf-trfe)复合单层膜;

步骤s5:将聚甲基丙烯酸甲酯和乙酸乙酰乙酯按1:99的质量比例混合均匀形成第二成膜溶液,以所述p(vdf-trfe)复合单层膜为底膜,将所述第二成膜溶液浇筑在底膜上,并在90℃条件下烘干形成顶膜,得到具有高储能密度的耐高温p(vdf-trfe)复合双层膜,其中所述底膜的厚度为20μm,所述顶膜的厚度为5μm。

实施例3:

一种具有高储能密度的耐高温p(vdf-trfe)复合双层膜的制备方法,按以下步骤进行:

步骤s1:采用两步水热法制备baxsr1-xtio3纳米颗粒,其中0<x<1,得到粒径为100nm的baxsr1-xtio3纳米颗粒;

步骤s2:将p(vdf-trfe)[即聚(偏氟乙烯-三氟乙烯),其中三氟乙烯的摩尔百分比为20%]和dmf(n,n-二甲基甲酰胺)按5:95的质量比例混合并搅拌11h形成均匀的第一成膜溶液;

步骤s3:将所述baxsr1-xtio3纳米颗粒超声分散在所述第一成膜溶液中形成稳定的悬浮液,该悬浮液中所述baxsr1-xtio3纳米颗粒的质量百分含量为5%,余量为所述第一成膜溶液;

步骤s4:将所述悬浮液浇筑在预先准备好的玻璃基底上并在85℃烘干处理10h得到烘干膜,接着将烘干膜转移至真空烘箱中,在120℃的温度下保温12h进行退火处理,退火结束后将其冷却至室温得到p(vdf-trfe)复合单层膜;

步骤s5:将聚甲基丙烯酸甲酯和乙酸乙酰乙酯按1:99的质量比例混合均匀形成第二成膜溶液,以所述p(vdf-trfe)复合单层膜为底膜,将所述第二成膜溶液浇筑在底膜上,并在75℃条件下烘干形成顶膜,得到具有高储能密度的耐高温p(vdf-trfe)复合双层膜,其中所述底膜的厚度为15μm,所述顶膜的厚度为3μm。

实施例1中所制得的baxsr1-xtio3纳米颗粒的x射线衍射图谱(xrd)如图1所示,扫描电镜(sem)形貌图谱如图2所示。

分别测试实施例1所制得的p(vdf-trfe)复合单层膜和p(vdf-trfe)复合双层膜在不同温度和电场强度下的能量密度和能量效率,结果如下表所示:

上表中测得的能量密度和能量效率为其在对应温度的最大场强条件下测得,超过最大场强时,膜被击穿。

结合上表和图3可以看出,p(vdf-trfe)复合单层膜在较高温度条件下具有较高的储能密度,但其耐电场性能不足,在80℃条件下,p(vdf-trfe)复合单层膜在200mv/m的电场强度下被击穿。

结合上表和图4可以看出,p(vdf-trfe)复合双层膜在高温度条件下具有更高的储能密度,且其耐电场性能更好;在80℃的高温下,其击穿场强为375mv/m,储能密度可达5.67j/cm3,比目前报道的已有的高温聚合物储能材料都高,且从室温(25℃)到80℃的温度区间内,其储能密度的温度稳定性良好。

从以上内容可以看出采用本发明提供的制备方法,能得到具有储能密度更高、耐高温性能更好、击穿电场更高,储能密度的温度稳定性更好的p(vdf-trfe)复合双层膜,从而使其在电容器领域具有广阔的应用前景。

最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1