一种三维织物叠层针刺复合材料及其制备方法与流程

文档序号:22472353发布日期:2020-10-09 22:05阅读:1464来源:国知局
一种三维织物叠层针刺复合材料及其制备方法与流程

本发明属于纤维增强复合材料领域,具体涉及一种三维织物叠层针刺复合材料及其制备方法。



背景技术:

纤维增强复合材料的比强度高、比模量大、可设计性强、抗疲劳性能好、耐腐蚀性能优越且易于大面积整体成型,在满足性能要求的同时可显著降低结构件重量,这些优点使其具有比传统钢、铝合金结构材料更优越的综合性能,在航空航天领域已获得大量应用。

作为纤维增强复合材料的主要结构形式,层合复合材料主要是用二维织物铺层后固化而成,尽管层合板具有很好的面内机械性能,但其较低的层间性能成为其工程应用瓶颈;同时,二维织物厚度一般在0.1mm~0.5mm,采用二维织物制备的层合复合材料往往包含十几层甚至几十层,尤其是碳基、陶瓷基复合材料的厚度一般大于5mm,过多的层数显著增加了层合复合材料的生产周期和成本。

三维织物在结构上具有卓越的可设计性,其厚度一般大于0.3mm,目前,厚度范围在0.3mm~2mm的三维机织、多轴向织物等三维织物已实现自动化连续生产。因此,将三维织物用于制备复合材料层合板,会显著提升层合复合材料的生产效率,降低其生产成本。

公开号为cn104385612a的中国专利申请文献公开了一种纤维增强防弹复合材料层合板,通过低粘度树脂体系与2.5d织物制作成层合复合材料,但是该2.5d织物层合复合材料层间性能较差。

王盼乐等发表在《科技信息》2011年第22期的《2.5d与2d织物混杂铺设复合材料力学性能实验研究》的文献,其根据不同铺层方式制作了五种2.5d和2d织物混杂铺设复合材料并对比了层间剪切性能。由于结构均为层合复合材料,所以5种复合材料的层间剪切性能相差不大,层合复合材料的层间性能依然没有得到提高。

当前,层合复合材料应用过程中仍存在以下问题:1)单层二维织物结构可设计性差,厚度薄,制备层合复合材料时往往需要多次铺层,因此生产效率较低,成本较高,且制备的层合复合材料层间无纤维连接,层间剪切强度低;2)采用多层三维织物制备层合复合材料虽能减少铺层次数,但是仍不能解决复合材料层间性能差的问题。



技术实现要素:

本发明的目的在于提供一种三维织物叠层针刺复合材料,不仅提高了复合材料的层间性能,还减少了生产过程的铺层次数,提高了生产效率。

为了实现上述发明目的,本发明采用如下技术方案:

一种三维织物叠层针刺复合材料,由三维织物叠层针刺预制体与基体材料复合而成;所述三维织物叠层针刺预制体为三维织物层间铺设短纤维毡后,再利用针刺工艺得到的立体结构材料。

本发明将三维织物与短纤维毡交替铺叠后再进行针刺,形成了具有一定整体性的三维织物叠层针刺预制体,针刺使复合材料层与层之间产生z向纤维,提高了复合材料的层间性能,提高了复合材料的生产效率。

所述的三维织物层数视应用时的需求而定,但三维织物层间铺设至少一层短纤维毡。优选地,所述相邻三维织物的层间仅铺设一层短纤维毡,这是由于短纤维毡层数越少,复合材料的生产效率越高。

所述的针刺工艺为采用带有倒钩的刺针在预制体上下表面进行针刺,针刺密度为5~40针/cm2,在此条件下针刺完成后,得到的预制体会形成不易分层的整体结构,并使三维织物叠层针刺复合材料层与层之间有z向纤维,复合材料的层间剪切强度高,层间性能较好。

所述的三维织物为三维机织物、经编多轴向织物或纬编多轴向织物中的至少一种,三维织物的厚度为0.3~2mm。所述的短纤维毡由连续纤维或/和非连续纤维组成,面密度为10~100g/m2

所述的三维织物和短纤维毡的纤维独立地选自碳纤维、玻璃纤维、玄武岩纤维、芳纶纤维、碳化硅纤维、氧化铝纤维、聚乙烯纤维或涤纶纤维中的至少一种。

所述的三维织物叠层针刺复合材料的纤维体积含量为20%~65%,这是由于纤维体积含量过小,复合材料的性能较差;而纤维体积含量过大,不利于复合材料成型。

所述的基体材料为树脂基体、碳基体或陶瓷基体。其中,树脂基体选自环氧树脂、酚醛树脂、聚氨酯树脂或不饱和聚酯树脂中的至少一种。

基体材料优选为碳基体或陶瓷基体,这是由于碳基、陶瓷基复合材料的厚度较厚,若采用传统的二维织物层合复合材料,会使其铺设的层数过多,生产周期和生产成本较高。

本发明还公开了上述三维织物叠层针刺复合材料的制备方法,包括:将所述三维织物叠层针刺预制体通过成型工艺固化而成,成型工艺为树脂传递模塑成型(rtm)、高压树脂传递模塑成型(hp-rtm)、真空辅助成型(vari)、热固性树脂浸渍碳化、沥青浸渍碳化、化学气相沉积(cvd)或化学气相渗透(cvi)工艺中的任意一种。

本发明与现有技术相比,具有以下有益效果:

(1)与传统层合复合材料相比,本发明的三维织物叠层针刺复合材料的层数较少、铺层次数少,会显著提升层合复合材料的生产效率,降低其生产周期和生产成本,适合大规模的生产应用;

(2)与传统层合复合材料相比,三维织物叠层针刺复合材料层与层之间有z向纤维,复合材料的层间剪切强度高,层间性能较好,有助于层合复合材料的进一步推广和应用。

附图说明

图1为本发明三维织物叠层针刺复合材料的结构示意图,其中,1为三维织物层,2为短纤维毡层,3为针刺产生的z向纤维;

图2为本发明三维织物叠层针刺预制体的制备工艺流程图,其中,1为三维织物层,2为短纤维毡层。

具体实施方式

下面结合附图和具体实施例,对本发明做进一步详细说明。

实施例1

所述的三维织物叠层针刺复合材料,包括10层厚度为0.3mm的碳纤维三维机织物和9层面密度为10g/m2碳纤维短纤维毡。首先将三维机织物和短纤维毡交替叠层,随后在预制体正反面针刺,针刺密度为5针/cm2,采用rtm工艺将三维织物叠层针刺预制体固化即可得到三维织物叠层针刺复合材料。具体制备方法如下:

(1)将10层碳纤维三维机织物和9层碳纤维短纤维毡交替叠层,相邻三维机织物层间铺放一层短纤维毡;

(2)将交替叠层后的三维机织物和短纤维毡放置在双面针刺机上,选择针刺密度为5针/cm2,在预制体正反面同步针刺,使其成为一个整体;

(3)将得到的三维织物叠层针刺预制体放入模具中,闭模密封后抽真空,真空度0.08mpa;

(4)将热固性环氧树脂导入模腔内,充分浸渍预制体以后,放入烘箱内加热固化成型,固化完成后,打开模具,取出三维织物叠层针刺复合材料。

得到的三维织物叠层针刺复合材料的纤维体积含量为65%,厚度为3.1mm,三维织物叠层针刺复合材料层间剪切强度为65~70mpa。

实施例2

所述的三维织物叠层针刺复合材料,包括3层厚度为2mm的玻璃纤维多轴向经编织物和4层面密度为50g/m2玻璃纤维短纤维毡。首先将多轴向经编织物和短纤维毡交替叠层,随后在预制体正反面针刺,针刺密度为20针/cm2,采用vari工艺将三维织物叠层针刺预制体固化即可得到三维织物叠层针刺复合材料。具体制备方法如下:

(1)将3层玻璃纤维多轴向经编织物和4层玻璃纤维短纤维毡交替叠层,相邻三维机织物层间铺放2层短纤维毡;

(2)将交替叠层后的三维机织物和短纤维毡放置在针刺机上,选择针刺密度为40针/cm2,在预制体正反面同步针刺,使其成为一个整体;

(3)将得到的三维织物叠层针刺预制体放入模具中,采用真空袋密封后抽真空,真空度0.08mpa;

(4)再将热固性环氧树脂导入模腔内,充分浸渍预制体以后,放入烘箱内加热固化成型;固化完成后,打开模具,取出三维织物叠层针刺复合材料。

得到的三维织物叠层针刺复合材料的纤维体积含量为45%,厚度为6.2mm;三维织物叠层针刺复合材料层间剪切强度为50~55mpa。

实施例3

所述的三维织物叠层针刺复合材料,包括3层厚度为1.3mm的玻璃纤维三维机织物和2层面密度为80g/m2碳纤维短纤维毡。首先将三维机织物和短纤维毡交替叠层,随后在预制体正反面针刺,针刺密度为30针/cm2,采用rtm工艺将三维织物叠层针刺预制体固化即可得到三维织物叠层针刺复合材料。具体制备方法如下:

(1)将3层玻璃纤维三维机织物和2层碳纤维短纤维毡交替叠层,相邻三维机织物层间铺放1层短纤维毡;

(2)将交替叠层后的三维机织物和短纤维毡放置在针刺机上,选择针刺密度为30针/cm2,先对预制体正面针刺,再对预制体反面针刺,使其成为一个整体;

(3)将得到的三维织物叠层针刺预制体放入模具中,闭模密封后抽真空,真空度0.08mpa;

(4)将热固性环氧树脂导入模腔内,充分浸渍预制体以后,放入烘箱内加热固化成型;固化完成后,打开模具,取出三维织物叠层针刺复合材料。

得到的三维织物叠层针刺复合材料的纤维体积含量为55%,厚度为4mm;三维织物叠层针刺复合材料层间剪切强度为55~60mpa。

实施例4

所述的三维织物叠层针刺复合材料,包括4层厚度为2mm的碳纤维三维机织物和3层面密度为80g/m2碳纤维短纤维毡。首先将三维机织物和短纤维毡交替叠层,随后在预制体正反面针刺,针刺密度为30针/cm2,采用cvi工艺将三维织物叠层针刺预制体致密碳化即可得到三维织物叠层针刺碳纤维增强碳基复合材料。具体制备方法如下:

(1)将4层碳纤维三维机织物和3层碳纤维短纤维毡交替叠层,相邻三维机织物层间铺放一层短纤维毡;

(2)将叠层后的三维机织物和短纤维毡放置在针刺机上,选择针刺密度为30针/cm2,对叠层预制体正反面进行针刺,使其成为一个整体;

(3)采用cvi工艺对三维织物叠层针刺预制体致密碳化至2.3g/cm3

得到的三维织物叠层针刺碳纤维增强碳基复合材料的纤维体积含量为30%,厚度为8.3mm;三维织物叠层针刺碳纤维增强碳基复合材料的层间剪切强度为60~70mpa。

对比例

对比例提供的层合复合材料,包括20层厚度为0.2mm的玻璃纤维二维织物。首先将二维织物叠层,随后采用rtm工艺将二维织物叠层预制体固化即可得到二维层合复合材料,具体制备方法如下:

(1)将20层玻璃纤维二维织物叠层,得到二维织物叠层预制体;

(2)将得到的预制体放入模具中,闭模密封后抽真空,真空度0.08mpa;

(3)将热固性环氧树脂导入模腔内,充分浸渍预制体以后,放入烘箱内加热固化成型,固化完成后,打开模具取出。

得到的层合复合材料的纤维体积含量为52%,厚度为4mm,层合复合材料的层间剪切强度为45~50mpa。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1