芯层微孔发泡PVC/CPVC电缆保护管及制备方法与流程

文档序号:21773377发布日期:2020-08-07 19:23阅读:260来源:国知局
芯层微孔发泡PVC/CPVC电缆保护管及制备方法与流程

本发明涉及一种电缆保护管及制备方法,特别是一种芯层微孔发泡pvc/cpvc电缆保护管及制备方法。



背景技术:

芯层微孔发泡管材由于芯层为蜂窝状、微发泡、封闭孔结构的发泡芯层,较实壁管具有质量轻、成本低、抗冲击性能好、隔音、隔热性能好等优点,因此,将芯层微孔发泡管材应用到电力电缆保护管中成为发展的方向,但是,若让发泡剂在基体内无规的发泡,将影响材料的力学性能,若采用物理发泡法也难确保孔隙的均匀性,因此将发泡剂灌入纳米管中发泡,可以提高材料的各向异性,提高管材的拉伸强度和抗压强度。



技术实现要素:

针对现有技术存在的不足,本发明的目的在于提供一种芯层微孔发泡pvc/cpvc电缆保护管及制备方法,与未发泡的硬质聚氯乙烯相比,密度可降低5%~95%,冲击强度可提高5倍,刚度增加3~5倍,疲劳寿命延长5倍,介电常数和热导率大幅度下降,更适合于电力电缆保护。

为达到上述目的,本发明采用的技术方案是:

一种芯层微孔发泡pvc/cpvc电缆保护管,包括内层、芯层和外层,所述内层、芯层和外层均为环形圆柱体形,内层、芯层和外层纵向同轴由里及外叠层连接,且芯层的外表面与外层的内表面热熔密贴,芯层的内表面与内层的外表面热熔密贴;其特征在于:

所述芯层由下述重量百分比组分组成:

cpvc树脂:45%

pvc树脂:20%

抗老化复合发泡剂:5%

增强材料:13%

抗冲改性剂:13%

热稳定剂:2%

润滑剂:2%

所述内层由下述重量百分比组分组成:

cpvc树脂:20%

pvc树脂:50%

增强材料:20%

抗冲改性剂:6%

热稳定剂:2%

润滑剂:2%

所述外层由下述重量百分比组分组成:

cpvc树脂:50%

pvc树脂:20%

增强材料:6%

抗冲改性剂:20%

热稳定剂:2%

润滑剂:2%

所述抗老化复合发泡剂为tio2/埃洛石/对甲苯磺酰氨基脲混合物,其结构为对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:1~3组成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

芯层微孔发泡pvc/cpvc电缆保护管由下述方法制备:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、抗老化复合发泡剂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述芯层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述内层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述外层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的芯层、内层、外层物料分别通过三台单螺杆挤出机熔融挤出,每层对应一台单螺杆挤出机,然后在模头处通过三个螺旋圈,一个螺旋圈对应于一层物料流,隔开熔融的物料流,物料流在离开模头衬套后互相层叠在一起,形成内层、芯层和外层纵向同轴由里及外叠层热熔密贴连接结构,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得芯层微孔发泡pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

所述tio2/埃洛石/对甲苯磺酰氨基脲混合物由下述方法制备:

步骤a:埃洛石及tio2的干燥处理

分别称取5~10g的tio2和2~5g埃洛石放入真空干燥箱中,在80~100℃温度下恒温干燥直至含水量≤0.2%,制得干燥埃洛石和tio2,备用;

步骤b:表面负载tio2的埃洛石纳米管的制备

将步骤a制得的干燥tio25~10g和干燥埃洛石2~5g加入装有30ml水和170ml丙醇混合溶液的三口烧瓶中,机械搅拌至均匀,超声波处理30min,常温条件下边磁力搅拌边缓慢加入1~2g偶联剂反应12~24h,反应完成后过滤,边真空抽滤边用无水乙醇清洗3~5遍,然后50℃恒温真空干燥制得表面负载tio2的埃洛石纳米管;

所述偶联剂为γ―甲基丙烯酰氧基丙基三甲氧基硅烷和γ―氨丙基三乙氧基硅烷按照重量比1:1~3组成;

步骤c:对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管的制备

称取5~10g的对甲苯磺酰氨基脲,溶于30~50ml溶剂中,磁力搅拌至均匀;称取3~6g步骤b制得的表面负载tio2的埃洛石加入上述溶液中,机械搅拌均匀,超声波处理20min,常温下静置24h,去掉上层清液后微孔过滤器抽滤,60℃烘箱中干燥24h,制得对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管结构的tio2/埃洛石/对甲苯磺酰氨基脲混合物;

所述溶剂为二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺中的至少一种。

所述枝状碳酸钙晶须/鳞片石墨材料由下述方法制备的:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:3~5充分搅拌2~4h使其消解充分,将消解后的料浆室温陈化8~12h;

步骤2:在0.5l去离子水中依次加入5~10g鳞片石墨和10~15g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度80~90℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应0.5~1.5h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束;

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干1~3h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料。

本发明所述的一种芯层微孔发泡pvc/cpvc电缆保护管的制备方法,其特征在于:步骤如下:

芯层由下述重量百分比组分组成:

cpvc树脂:45%

pvc树脂:20%

抗老化复合发泡剂:5%

增强材料:13%

抗冲改性剂:13%

热稳定剂:2%

润滑剂:2%

内层由下述重量百分比组分组成:

cpvc树脂:20%

pvc树脂:50%

增强材料:20%

抗冲改性剂:6%

热稳定剂:2%

润滑剂:2%

外层由下述重量百分比组分组成:

cpvc树脂:50%

pvc树脂:20%

增强材料:6%

抗冲改性剂:20%

热稳定剂:2%

润滑剂:2%

所述抗老化复合发泡剂为tio2/埃洛石/对甲苯磺酰氨基脲混合物,其结构为对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:1~3组成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

制备方法:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、抗老化复合发泡剂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述芯层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述内层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述外层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的芯层、内层、外层物料分别通过三台单螺杆挤出机熔融挤出,每层对应一台单螺杆挤出机,然后在模头处通过三个螺旋圈,一个螺旋圈对应于一层物料流,隔开熔融的物料流,物料流在离开模头衬套后互相层叠在一起,形成内层、芯层和外层纵向同轴由里及外叠层热熔密贴连接结构,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得芯层微孔发泡pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

所述tio2/埃洛石/对甲苯磺酰氨基脲混合物由下述方法制备:

步骤a:埃洛石及tio2的干燥处理

分别称取5~10g的tio2和2~5g埃洛石放入真空干燥箱中,在80~100℃温度下恒温干燥直至含水量≤0.2%,制得干燥埃洛石和tio2,备用;

步骤b:表面负载tio2的埃洛石纳米管的制备

将步骤a制得的干燥tio25~10g和干燥埃洛石2~5g加入装有30ml水和170ml丙醇混合溶液的三口烧瓶中,机械搅拌至均匀,超声波处理30min,常温条件下边磁力搅拌边缓慢加入1~2g偶联剂反应12~24h,反应完成后过滤,边真空抽滤边用无水乙醇清洗3~5遍,然后50℃恒温真空干燥制得表面负载tio2的埃洛石纳米管;

所述偶联剂为γ―甲基丙烯酰氧基丙基三甲氧基硅烷和γ―氨丙基三乙氧基硅烷按照重量比1:1~3组成;

步骤c:对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管的制备

称取5~10g的对甲苯磺酰氨基脲,溶于30~50ml溶剂中,磁力搅拌至均匀;称取3~6g步骤b制得的表面负载tio2的埃洛石加入上述溶液中,机械搅拌均匀,超声波处理20min,常温下静置24h,去掉上层清液后微孔过滤器抽滤,60℃烘箱中干燥24h,制得对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管结构的tio2/埃洛石/对甲苯磺酰氨基脲混合物;

所述溶剂为二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺中的至少一种。

所述枝状碳酸钙晶须/鳞片石墨材料由下述方法制备:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:3~5充分搅拌2~4h使其消解充分,将消解后的料浆室温陈化8~12h;

步骤2:在0.5l去离子水中依次加入5~10g鳞片石墨和10~15g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度80~90℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应0.5~1.5h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束;

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干1~3h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料。

与现有技术相比,本发明具有如下的有益效果:

(1)芯层采用填充发泡剂发泡的埃洛石纳米管结构,降低了管材重量,确保材料结构的各向异性,克服管材因发泡而造成力学性能降低,在埃洛石纳米管表面负载tio2,抗紫外老化的同时,避免了tio2团聚。

(2)内层采用增强改性的实壁管结构,确保穿缆时内壁光滑和管材整体的抗压强度,增强材料采用枝状碳酸钙晶须/鳞片石墨混合材料,通过液相反应方法将碳酸钙晶须附于鳞片石墨表面,形成“枝状”结构增强材料,利用鳞片石墨表面碳酸钙晶须的各向异性及鳞片石墨层间滑移等特点,实现对管材的增强效果。

(3)外层采用增韧改性的实壁管结构,确保管材在运输过程中的抗冲击性和施工过程中的弯拉强度。

附图说明

图1为本发明芯层微孔发泡pvc/cpvc电缆保护管的立体图。

图2为本发明tio2/埃洛石/对甲苯磺酰氨基脲混合物的投射电子显微镜图。

具体实施方式

下面结合具体实施例对本发明进行详细说明。

实施例1:

如图1所示,芯层微孔发泡pvc/cpvc电缆保护管包括内层1、芯层2和外层3,所述内层、芯层和外层均为环形圆柱体形,内层、芯层和外层纵向同轴由里及外叠层连接,且芯层的外表面与外层的内表面热熔密贴,芯层的内表面与内层的外表面热熔密贴;

所述芯层由下述重量百分比组分组成:

cpvc树脂:45%

pvc树脂:20%

抗老化复合发泡剂:5%

增强材料:13%

抗冲改性剂:13%

热稳定剂:2%

润滑剂:2%

所述内层由下述重量百分比组分组成:

cpvc树脂:20%

pvc树脂:50%

增强材料:20%

抗冲改性剂:6%

热稳定剂:2%

润滑剂:2%

所述外层由下述重量百分比组分组成:

cpvc树脂:50%

pvc树脂:20%

增强材料:6%

抗冲改性剂:20%

热稳定剂:2%

润滑剂:2%

所述抗老化复合发泡剂为tio2/埃洛石/对甲苯磺酰氨基脲混合物,其结构为对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

所述tio2/埃洛石/对甲苯磺酰氨基脲混合物由下述方法制备的:

步骤a:埃洛石及tio2的干燥处理

分别称取7.5g的tio2和3.5g埃洛石放入真空干燥箱中,在90℃温度下恒温干燥直至含水量≤0.2%,制得干燥埃洛石和tio2,备用;

步骤b:表面负载tio2的埃洛石纳米管的制备

将步骤a制得的干燥tio27.5g和干燥埃洛石3.5g加入装有30ml水和170ml丙醇混合溶液的三口烧瓶中,机械搅拌至均匀,超声波处理30min,常温条件下边磁力搅拌边缓慢加入1.5g偶联剂反应18h,反应完成后过滤,边真空抽滤边用无水乙醇清洗4遍,然后50℃恒温真空干燥制得表面负载tio2的埃洛石纳米管;

本步骤中所述偶联剂为γ―甲基丙烯酰氧基丙基三甲氧基硅烷和γ―氨丙基三乙氧基硅烷按照重量比1:2组成;

步骤c:对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管的制备

称取7.5g的对甲苯磺酰氨基脲,溶于40ml溶剂中,磁力搅拌至均匀。称取4.5g步骤b制得的表面负载tio2的埃洛石加入上述溶液中,机械搅拌均匀,超声波处理20min,常温下静置24h,去掉上层清液后微孔过滤器抽滤,60℃烘箱中干燥24h,制得对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管结构的对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

本步骤中所述溶剂为二甲基甲酰胺;

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述枝状碳酸钙晶须/鳞片石墨材料通过下述方法制备:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:4充分搅拌3h使其消解充分,将消解后的料浆室温陈化10h;

步骤2:在0.5l去离子水中依次加入7.5g鳞片石墨和12g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度85℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应1h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束。

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干2h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料;

所述cpvc树脂型号为j-700,来自山东高信;

所述pvc树脂型号为sg-5,来自齐鲁石化;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:2组成,其中,氯化聚乙烯(cpe)的型号为135a;丙烯酸酯类聚合物(acr)的型号为acr-401,为由甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯及苯乙烯四种单体共聚而成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成,其中硬脂酸铅为十八烷酸铅;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

芯层微孔发泡pvc/cpvc电缆保护管的制备方法步骤如下:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、抗老化复合发泡剂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述芯层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述内层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述外层重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的芯层、内层、外层物料分别通过三台单螺杆挤出机熔融挤出,每层对应一台单螺杆挤出机,然后在模头处通过三个螺旋圈,一个螺旋圈对应于一层物料流,隔开熔融的物料流,物料流在离开模头衬套后互相层叠在一起,形成内层、芯层和外层纵向同轴由里及外叠层热熔密贴连接结构的,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得芯层微孔发泡pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

经检测,本实施例制备的芯层微孔发泡pvc/cpvc电缆保护管密度为1.45g/cm3,环刚度为17.6kn/m2,落锤冲击韧性(用1.0kg的冲锤下落1m冲击)为11/12试验后无破裂。

对比例1:

微孔发泡pvc/cpvc电缆保护管是一种仅采用芯层材料制成的单层实壁管,由下述重量百分比组分组成:

cpvc树脂:45%

pvc树脂:20%

抗老化复合发泡剂:5%

增强材料:13%

抗冲改性剂:13%

热稳定剂:2%

润滑剂:2%

所述抗老化复合发泡剂为tio2/埃洛石/对甲苯磺酰氨基脲混合物,其结构为对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

所述tio2/埃洛石/对甲苯磺酰氨基脲混合物通过下述方法制备:

步骤a:埃洛石及tio2的干燥处理

分别称取7.5g的tio2和3.5g埃洛石放入真空干燥箱中,在90℃温度下恒温干燥直至含水量≤0.2%,制得干燥埃洛石和tio2,备用;

步骤b:表面负载tio2的埃洛石纳米管的制备

将步骤a制得的干燥tio27.5g和干燥埃洛石3.5g加入装有30ml水和170ml丙醇混合溶液的三口烧瓶中,机械搅拌至均匀,超声波处理30min,常温条件下边磁力搅拌边缓慢加入1.5g偶联剂反应18h,反应完成后过滤,边真空抽滤边用无水乙醇清洗4遍,然后50℃恒温真空干燥制得表面负载tio2的埃洛石纳米管;

本步骤中所述偶联剂为γ―甲基丙烯酰氧基丙基三甲氧基硅烷和γ―氨丙基三乙氧基硅烷按照重量比1:2组成;

步骤c:对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管的制备

称取7.5g的对甲苯磺酰氨基脲,溶于40ml溶剂中,磁力搅拌至均匀。称取4.5g步骤b制得的表面负载tio2的埃洛石加入上述溶液中,机械搅拌均匀,超声波处理20min,常温下静置24h,去掉上层清液后微孔过滤器抽滤,60℃烘箱中干燥24h,制得对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管结构的对甲苯磺酰氨基脲灌入表面负载tio2埃洛石纳米管;

本步骤中所述溶剂为二甲基甲酰胺;

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述枝状碳酸钙晶须/鳞片石墨材料通过下述方法制备:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:4充分搅拌3h使其消解充分,将消解后的料浆室温陈化10h;

步骤2:在0.5l去离子水中依次加入7.5g鳞片石墨和12g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度85℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应1h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束。

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干2h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料;

所述cpvc树脂型号为j-700,来自山东高信;

所述pvc树脂型号为sg-5,来自齐鲁石化;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:2组成,其中,氯化聚乙烯(cpe)的型号为135a;丙烯酸酯类聚合物(acr)的型号为acr-401,为由甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯及苯乙烯四种单体共聚而成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成,其中硬脂酸铅为十八烷酸铅;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

微孔发泡pvc/cpvc电缆保护管的制备方法如下述步骤:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、抗老化复合发泡剂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的物料同通过一台单螺杆挤出机熔融挤出,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得微孔发泡pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

经检测,本实施例制备的微孔发泡pvc/cpvc电缆保护管密度为1.25g/cm3,环刚度为11.2kn/m2,落锤冲击韧性(用1.0kg的冲锤下落1m冲击)为11/12试验后无破裂。

对比例2:

增强型pvc/cpvc电缆保护管是一种仅采用内层材料制成的单层实壁管,由下述重量百分比组分组成:

cpvc树脂:20%

pvc树脂:50%

增强材料:20%

抗冲改性剂:6%

热稳定剂:2%

润滑剂:2%

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述枝状碳酸钙晶须/鳞片石墨材料通过下述方法制备:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:4充分搅拌3h使其消解充分,将消解后的料浆室温陈化10h;

步骤2:在0.5l去离子水中依次加入7.5g鳞片石墨和12g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度85℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应1h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束。

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干2h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料;

所述cpvc树脂型号为j-700,来自山东高信;

所述pvc树脂型号为sg-5,来自齐鲁石化;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:2组成,其中,氯化聚乙烯(cpe)的型号为135a;丙烯酸酯类聚合物(acr)的型号为acr-401,为由甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯及苯乙烯四种单体共聚而成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成,其中硬脂酸铅为十八烷酸铅;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

增强型pvc/cpvc电缆保护管的制备方法如下所示:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的物料通过一台单螺杆挤出机熔融挤出,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得增强型pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

经检测,本实施例制备的增强型pvc/cpvc电缆保护管密度为1.53g/cm3,环刚度为23kn/m2,落锤冲击韧性(用1.0kg的冲锤下落1m冲击)为10/12试验后无破裂。

对比例3:

增韧型pvc/cpvc电缆保护管是一种仅采用外层材料制成的单层实壁管材,其重量百分比组分如下所示:

cpvc树脂:50%

pvc树脂:20%

增强材料:6%

抗冲改性剂:20%

热稳定剂:2%

润滑剂:2%

所述增强材料为枝状碳酸钙晶须/鳞片石墨材料,其结构为枝状碳酸钙晶须附于鳞片石墨表面结构;

所述枝状碳酸钙晶须/鳞片石墨材料通过下述方法制备:

步骤1:在5l的圆底烧瓶中,加入按照氧化钙与去离子水质量比为1:4充分搅拌3h使其消解充分,将消解后的料浆室温陈化10h;

步骤2:在0.5l去离子水中依次加入7.5g鳞片石墨和12g氯化镁,充分搅拌制得鳞片石墨、氯化镁混合液;

步骤3:将步骤1陈化后料浆置于碳化反应器中,控制反应温度85℃,边搅拌边向反应器的里部加入步骤2制得的鳞片石墨、氯化镁混合液,充分反应1h后在反应器底部以一定的流量通入c02气体进行碳酸化反应,同时利用数显ph/mv计检测溶液ph值的变化,当溶液ph值等于7时碳酸化反应结束。

步骤4:将步骤3制得的反应浆料经沉淀过滤、洗涤、在100~120℃下烘干2h即干燥得到枝状碳酸钙晶须附于鳞片石墨表面结构的枝状碳酸钙晶须/鳞片石墨材料;

所述cpvc树脂型号为j-700,来自山东高信;

所述pvc树脂型号为sg-5,来自齐鲁石化;

所述抗冲改性剂为氯化聚乙烯(cpe)和丙烯酸酯类聚合物(acr)中按照重量比1:2组成,其中,氯化聚乙烯(cpe)的型号为135a;丙烯酸酯类聚合物(acr)的型号为acr-401,为由甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯及苯乙烯四种单体共聚而成;

所述热稳定剂为硬脂酸铅和三盐基硫酸铅按照重量比1:1组成,其中硬脂酸铅为十八烷酸铅;

所述润滑剂为聚乙烯蜡和石蜡的至少一种;

增韧型pvc/cpvc电缆保护管的制备方法如下所示:

步骤一:将pvc树脂、cpvc树脂于100℃温度下烘干3~5h,然后将pvc树脂、cpvc树脂、增强材料、抗冲改性剂、润滑剂、热稳定剂按照所述重量百分比组分称取后经高速混合机充分拌合0.5~1小时,备用;

步骤二:将步骤一混合好的物料通过一台单螺杆挤出机熔融挤出,然后通过冷却水冷却成型,通过牵引机连续稳定的牵引出来,切割机定长切割,从而制得增韧型pvc/cpvc电缆保护管,模头真空度控制在0.02~0.05mpa,冷却水的水温控制在30~45℃,牵引力压强控制在0.02~0.05mpa。

经检测,本实施例制备的增韧型pvc/cpvc电缆保护管密度为1.56g/cm3,环刚度为18.5kn/m2,落锤冲击韧性(用1.0kg的冲锤下落1m冲击)为12/12试验后无破裂。

综上所述,实例1和对比1、对比2、对比3性能指标如下表所示:

芯层微孔发泡pvc/cpvc电缆保护管在降低了管材的自重,而环钢度和韧性下降幅度较小,适用于电力电缆保护管道,降低的施工强度,提高了工作效率。

以上对本发明的优选的实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1