中空融合面板和应用的制作方法

文档序号:26002074发布日期:2021-07-23 21:19阅读:79来源:国知局
中空融合面板和应用的制作方法

本发明涉及到塑料领域,尤其涉及到中空融合面板和应用。



背景技术:

用塑料来制造物品是非常常见的,比如说塑料制造的家具、玩具以及运动器材等。

塑料制造有很多其他材料难以企及的优点,比如说质量轻,成本低,易塑形,也有着一些缺点,比如说结构强度较低。为了弥补塑料制品本身结构强度较低的缺点,设计人员一般通过对于塑料制品进行结构设计,比如说设计额外的加强筋或者是采用改进的材料的方式来强化塑料制品的强度。

额外的加强筋通常会增加塑料制品的整体重量,并且加强筋一般被设置在塑料制品的下侧以承重。如果塑料制品是一桌面板的话,加强筋可能会影响到桌腿的安装,因为加强筋可能会占据桌腿的位置。

利用材料性能的改变来强化塑料制品的强度通常需要花费较高的成本,比如说对于尺寸较大的桌面板来说,所需要的材料较多,制造成本较高,从而难以推广使用。另外,目前难以找到一种完美的材料,在克服塑料本身缺点的同时能够具备塑料的优点

目前市场上有一种塑料制品,是上表面和下表面围绕形成的中空结构。下表面和上表面保持间隔,并且下表面朝向上表面延伸以支撑上表面。通过这样的方式来提供一种重量较轻并且结构强度较高的塑料制品。然而由于塑料本身的性能限制,这种塑料制品的结构强度依然较低,在长时间的使用过程中,上表面可能因为承重时间过长而塌陷。另外,这种塑料制品在制造过程中,还需要注意上、下两个相对表面的分离,如果不小心粘到一起,可能会造成上表面的散热不均而产生不良品。



技术实现要素:

为解决上述现有技术现状的技术问题,本发明提供的一技术方案为一种吹塑成型耐冲击性好、重量轻、结构稳定坚固的中空融合面板。

本发明提供的另一技术方案为一种能制成耐冲击性好、结构坚固稳定、但重量轻便的双层吹塑中空融合面板的配料结构。

提供的另一技术方案为一种能制成耐冲击性好、结构坚固稳定的三层中空融合面板的配料结构。

本发明所采用的又一技术方案为提供一种吹塑成型的中空融合面板,包括上层板和下层板,所述上层板与下层板之间吹塑成型有中空结构,其特征在于:所述上层板和下层板均各包括有外层和里层,所述下层板向上层板方向凹陷至下层板的里层与上层板的里层相互融合而形成预定数目的碰合支撑结构。

优选地,所述上层板和下层板均各包括有外层、中间层和里层,所述下层板向上层板方向凹陷至下层板的里层与上层板的里层相互融合而形成预定数目的碰合支撑结构以预设方式分布。

为了提高中空融合面板边缘结构强度,所述上层板的外边沿具有向下折弯的外折弯壁,所述下层板的外边沿具有向下折弯的内折弯壁,所述外折弯壁底部的里层与内折弯壁底部的里层相互一体融合。

为了提高中空融合面板的结构强度,所述碰合支撑结构可以呈点状结构或条状结构。

进一步优选,所述碰合支撑结构内设有至少一根加强筋。

进一步优选,所述碰合支撑结构内设有两根加强筋,对应地,碰合支撑结构内设有三个接触峰点并与加强筋间隔排列。

本发明所采用的又一技术方案为,该双层吹塑成型的中空融合面板的每层原料结构,各所述上层板和下层板的外层均采用高密度聚乙烯,所述上层板和下层板的里层均采用选自高密度聚乙烯、茂金属聚乙烯和碳酸钙的混合物或者均采用选自高密度聚乙烯、茂金属聚乙烯和玻纤的混合物。

优选地,所述里层的茂金属聚乙烯质量百分比为10~15%,所述碳酸钙质量百分比为15~20%,其余为高密度聚乙烯;或者,所述里层的茂金属聚乙烯质量百分比为10~15%,所述玻纤质量百分比为15~25%,其余为高密度聚乙烯。

本发明所采用的又一技术方案为:依据各所述上层板和下层板的该双外单内三层吹塑成型的中空融合面板的配料结构,所述上层板和下层板的外层均采用高密度聚乙烯,所述上层板和下层板的中间层均采用选自高密度聚乙烯和碳酸钙的混合物或者采用高密度聚乙烯和玻纤的混合物,所述上层板和下层板的里层均采用茂金属聚乙烯。

作为中间层的一种优选方案,所述中间层采用的高密度聚乙烯的质量百分比为70~85%,碳酸钙的质量百分比为15~30%。

作为中间层的另一种优选方案,所述中间层采用的高密度聚乙烯的质量百分比为60~85%,玻纤的质量百分比为15~40%。

与现有技术相比,本发明的优点在于:该多层吹塑成型的中空融合面板仅利用上、下两层的吹塑中空结构及构成轻巧坚固耐撞的板状架构,其中下层板向上层板方向凹陷至下层板的里层与上层板的里层相互融合而形成预定数目的碰合支撑结构以预设方式分布,以提高吹塑板的结构强度,外层可以采用表面强度高、抗刮擦、抗油污能力强的材料,里层可以采用热塑收缩性比率低的材料,提供框架支撑的作用,如果还采用高韧性、有一定弹性和吸能的材料的中间层,则能进一步有效缓解冲击和跌落对面板的损坏,从而进一步提高吹塑板的整体结构强度。

本发明的一个目的在于提供一中空融合面板和应用,其中所述中空融合结构能够在厚度被制造的较薄的情况下,具有优良的性能,比如说优良的结构强度性能。

本发明的另一目的在于提供一中空融合面板和应用,其中所述中空融合面板包括相对设置的第一部分面板和第二部分面板,所述第二部分面板能够朝向所述第一部分面板延伸并且和所述第一部分面板的至少部分融合以形成预设数目的支撑结构,所述支撑结构能够有利于增强所述中空融合面板的结构强度。

本发明的另一目的在于提供一中空融合面板和应用,其中由于所述支撑结构和所述第一部分面板的融合,使得整个所述中空融合面板的厚度能够被降低。

本发明的另一目的在于提供一中空融合面板和应用,其中由于所述支撑结构和所述第一部分面板的融合,使得所述支撑结构和所述第一部分面板的连接处的厚度能够低于所述支撑结构的本身厚度和所述第一部分面板本身厚度之和,也就是说,这一位置的厚度相对于未融合的情况时能够被减少,从而有利于在制造过程中的散热。

本发明的另一目的在于提供一中空融合面板和应用,其中所述第一部分面板可以是一双层或者是更多层结构,所述支撑结构能够和所述第一部分面板的至少一层融合,以有利于所述第一部分面板和所述第二部分面板的结合强度。

本发明的另一目的在于提供一中空融合面板和应用,其中在先前技术中,第一部分面板和第二部分面板之间需要被保持一定的距离,以避免所述第一部分面板和所述第二部分面板不正确地相互接触而在所述第一部分面板表面出现不希望的熔塌现象,由于所述第一部分面板可以是双层或者是更多层结构,所述第一部分面板选择不同性能的材料能够尽可能地减少由于所述第一部分面板和所述第二部分面板相互连接带来的熔塌现象。

本发明的另一目的在于提供一中空融合面板和应用,其中在先前技术中,所述第一部分面板和所述第二部面板的接触面积需要被尽可能减少,以减少由于接触位置厚度较厚而导致散热不均带来的熔塌现象,由于所述中空融合面板中的所述第一部分面板和所述第二部分面板在连接处能够融合,从而降低接触位置的厚度,进而减少了熔塌现象产生的可能性。

根据本发明的一方面,本发明提供了一中空融合面板,其包括:

一第一层;

一第二层;

一第一部分面板;以及

一第二部分面板,其中所述第一部分面板之至少部分和所述第二部分面板之至少保持预设距离以形成至少一个空腔,从而围绕形成中空的一体成型结构,其中所述第一层和所述第二层的至少部分重叠复合,所述第一部分面板包括选自组合至少部分所述第一层和至少部分所述第二层中的一种或者两种,所述第二部分面板包括选自组合其他至少部分所述第一层和其他至少部分所述第二层中的一种或者两种,其中所述第二部分面板的多个部分同时朝向所述第一部分面板方向凹陷形成预定数目并且以预设方式分布的支撑结构,各个所述支撑结构分别形成一凹陷腔,其中所述支撑结构和所述第一部分面板的至少部分融合并且所述第一部分面板被单个所述支撑结构融合占据的面积为s,所述第一部分面板和所述第二部分面板相对设置的部分的厚度为t,其中s/t2大于0.1。

根据本发明的一个实施例,各个所述支撑结构被设置有至少一加强筋,所述加强筋位于所述凹陷腔并且一体延伸于所述支撑结构。

根据本发明的一个实施例,所述第二部分面板朝腔内延伸形成有至少一个接触峰点,各个所述接触峰点朝向所述第一部分面板方向凹陷至与所述第一部分面板相接。

根据本发明的一个实施例,所述加强筋是所述支撑结构的至少部分朝所述第一部分面板凸出延伸形成u形的波浪状结构,所述加强筋横跨于所述凹陷腔的底部相对形成至少一接触峰点,所述接触峰点朝向所述第一部分面板凹陷至和所述第一部分面板相接。

根据本发明的另一方面,本发明提供了一中空融合面板,其包括:

一第一层;

一第二层;

一第一部分面板;以及

一第二部分面板,其中所述第一部分面板之至少部分和所述第二部分面板之至少保持预设距离以形成至少一个空腔,从而围绕形成中空的一体成型结构,其中所述第一层和所述第二层的至少部分重叠复合,所述第一部分面板包括选自组合至少部分所述第一层和至少部分所述第二层中的一种或者两种,所述第二部分面板包括选自组合其他至少部分所述第一层和其他至少部分所述第二层中的一种或者两种,其中所述第二部分面板朝腔内延伸至所述第一部分面板的至少部分融合形成至少一接触峰点,其中所述第一部分面板被单个所述接触峰点融合占据的面积为s,所述第一部分面板和所述第二部分面板相对设置的部分的厚度为t,其中s/t2大于0.1。

根据本发明的一个实施例,所述第二部分面板的多个部分同时朝向所述第一部分面板方向凹陷形成预定数目的支撑结构,所述支撑结构以预设方式分布并且分别形成一凹陷腔。

根据本发明的一个实施例,各所述支撑结构被设置有至少一加强筋,位于所述凹陷腔中并且是一体延伸于所述支撑结构。

附图说明

图1为本发明较佳实施例一的结构示意图。

图2为图1中a部分的放大示意图。

图3为图1中b部分的放大示意图。

图4为本发明较佳实施例二的结构示意图。

图5a是根据本发明的另一较佳实施例的一中空融合面板的示意图,

图5b是根据本发明的上述较佳实施例的所述中空融合面板在图5a示意的j位置部分的放大示意图。

图5c是根据本发明的上述较佳实施例的所述中空融合面板在图5a示意的j位置部分的另一视角的放大示意图。

图5d是根据本发明的上述较佳实施例的所述中空融合面板在图5a示意的j位置部分的剖视放大示意图。

图6a是根据本发明的上述较佳实施例的所述中空融合面板的另一视角的示意图。

图6b是根据本发明的上述较佳实施例中的所述中空融合面板沿着图6a中的a-a线剖视示意图。

图6c是根据本发明的上述较佳实施例中的所述中空融合面板沿着图6b中的c-c线剖开的俯视示意图。

图7a是根据本发明的另一较佳实施例的所述中空融合面板的剖视示意和部分放大示意图。

图7b是根据本发明的另一较佳实施例的所述中空融合面板的剖视示意和部分放大示意图。

图7c是根据本发明的另一较佳实施例的所述中空融合面板的剖视示意和部分放大示意图。

图8a是根据本发明的另一较佳实施例的所述中空融合面板的剖视示意和部分放大示意图。

图8b是根据本发明的另一较佳实施例的所述中空融合面板的剖视示意和部分放大示意图。

图9是根据本发明的一较佳实施例的一带有桌面板的桌子的示意图。

具体实施方式

以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。

本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。

可以理解的是,根据本发明揭露的结构可以具有其他合适的形状、尺寸、配置、布置和特征。可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。现对于示例性实施例的详细描述如下。

以下结合附图实施例对本发明作进一步详细描述。

实施例一:

如图1至图3所示,依据本发明的第一较佳实施例,本实施例的多层中空融合面板包括上层板1和下层板2,上层板1与下层板2之间于吹塑成型时构成中空结构。

本实施例的上层板1和下层板2均各为三层结构,即各包括有外层3、中间层5和里层4,并且,下层板2向上,即向上层板1方向,凹陷至下层板的里层4与上层板1的里层4相互融合而形成预定数目的碰合支撑结构6以预设方式分布。

该多层中空融合面板的边缘结构如下,如图3所示,上层板1的外边沿具有向下折弯的外折弯壁11,下层板2的外边沿具有向下折弯的内折弯壁21,外折弯壁11底部的里层4与内折弯壁21底部的里层4相互融合成一体。

本实施例中,碰合支撑结构6呈条状,该碰合支撑结构6内设有两根加强筋61,如图1和图2所示,对应地,该碰合支撑结构61内设有三个接触峰点62并与加强筋61间隔排列。

该双外单内三层多层中空融合面板的原料结构如下:上层板1和下层板2的外层3均采用高密度聚乙烯,上层板1和下层板2的中间层5均采用选自高密度聚乙烯和碳酸钙的混合物或者采用高密度聚乙烯和玻纤的混合物,上层板1和下层板2的里层4均采用茂金属聚乙烯。

这样,外层3具有表面强度高、抗刮擦、抗油污能力强的优点,里层4热塑收缩性比率低,提供框架结构支撑,中间层5有一定弹性和吸能,韧性高,能有效缓解冲击和跌落对面板的损坏。

依据本发明的第一较佳实施例,若中间层5采用高密度聚乙烯和碳酸钙,则高密度聚乙烯的质量百分比为70~85%,碳酸钙的质量百分比为15~30%。

依据本发明的第一较佳实施例,若中间层5采用高密度聚乙烯和玻纤,则高密度聚乙烯的质量百分比为60~85%,玻纤的质量百分比为15~40%。

本实施例的多层多层中空融合面板的上层板1和下层板2均采用上述双外单内三层结构后,在外层3受到强力冲击和跌落的时候,里层4甚至可以主动断裂来化解能量,而由于中间层5的材料有回弹性拉力,仍可将里层4复位,以保证整个面板的完整和使用功能。由此使该中空复合板具有表面高强度、高平整度、整体耐冲击、耐变形、结构更为稳定、性能更高、使用寿命更长的优点。

该多层多层中空融合面板可以应用于多个不同的场合,比如可以应用到桌子和椅子上,作为桌子面板,椅子的座板、背板等,也可以应用到其他面板容易磕破的产品中,也可以应用于壁板、墙板、门板、栏栅板、户外地板、隔热板、隔间板等建材上。

依据本发明的第一较佳实施例,外层3采用的高密度聚乙烯的参数如下:熔脂:1.5g/10min,弯曲强度:900mpa,邵氏d69。

依据本发明的第一较佳实施例,中间层5采用的高密度聚乙烯的参数如下:熔脂:0.35g/10min,弯曲强度:1050mpa,邵氏d63。

依据本发明的第一较佳实施例,里层4采用的茂金属聚乙烯的参数如下:

熔脂:2.0g/10min;

断裂拉伸率:纵向420%,横向830%;

断裂拉伸强度:纵向62mpa,横向25mpa;

落镖冲击强度﹤48g;

艾克曼多夫撕裂强度:纵向21℃,横向430℃。

另外,熟悉技艺的人可以理解,作为简化应用例,外层、中间层和里层可以由同一材料,或是同一材料的不同牌号和等级组成,如统一采用高密度聚乙烯。并且,外侧可以由硬度较高的牌号,颜色鲜艳的全新材料,中间层可以作为混合层,里层可以使用回收材料和一定比例的结构填充材料。这样可以实现节省成本,并实现快速换色。

实施例二:

如图4所示,依据本发明的第二较佳实施例,本实施例的上层板1和下层板2均各为双层结构,即均包括有外层3和里层4,并且,下层板2向上层板1方向凹陷至下层板的里层与上层板1的里层相互融合而形成预定数目的碰合支撑结构6以预设方式分布。

该双层多层中空融合面板的原料结构如下:上层板1和下层板2的外层3均采用高密度聚乙烯,上层板1和下层板2的里层4均采用选自高密度聚乙烯、茂金属聚乙烯和碳酸钙的混合物或者均采用高密度聚乙烯、茂金属聚乙烯和玻纤的混合物。

依据本发明的第二较佳实施例,里层的茂金属聚乙烯质量百分比为10~15%,碳酸钙质量百分比为15~20%,其余为高密度聚乙烯;或者,里层的茂金属聚乙烯质量百分比为10~15%,玻纤质量百分比为15~25%,其余为高密度聚乙烯。

另外,本实施例采用的高密度聚乙烯和茂金属聚乙烯的参数性能可以参考实施例一,在此不再展开描述。

以上所述仅为本发明的优选实施方式,应当指出,对于本领域普通技术人员而言,在不脱离本发明的原理前提下,可以对本发明进行多种改型或改进,比如,上层板的外层、中间层和里层以及下层板的外层、中间层和里层还均可以采用一层以上的结构,这些均被视为本发明的保护范围之内。

参考附图5a至6c所示,根据本发明的一较佳实施例的一中空融合面板1’被示意。

所述中空融合面板1’可以被设计为厚度较薄并且具有优良性能的面板。所述中空融合面板1’可以包括一第一部分面板30’和一第二部分面板40’,其中所述第一部分面板30’的至少部分和所述第二部分面板40’的至少部分保持一预设距离以形成至少一个空腔100’,从而围绕形成一个中空的成型结构。

所述第二部分面板40’的多个部分同时朝向所述第一部分面板30’延伸以形成预设数目和以预设数目排布的支撑结构41’,所述支撑结构41’延伸至所述第一部分面板30’并且和所述第一部分面板30’的至少部分相互融合。

所述第二部分面板40’的至少部分能够被拉伸以形成所述支撑结构41’,也就是说,在不增加所述中空融合面板1’整体重量的基础上,就能够形成对于所述第一部分面板30’起到支撑作用的所述支撑结构41’,以有利于整个所述中空融合面板1’的整体强度。

另外,由于所述第二部分面板40’被拉伸以形成所述支撑结构41’,因此所述第二部分面板40’的至少部分位置的厚度能够变薄,从而整个所述中空融合面板1’的厚度能够被降低。也就是说,相对于先前技术中的面板,所述中空融合面板1’能够以较薄的厚度较好的结构强度。

进一步地,由于所述第二部分面板40’形成的所述支撑结构41’延伸至所述第一部分面板30’并且所述第一部分面板30’内侧和所述第一部分面板30’的至少部分相互融合,这使得所述中空融合面板1’在使用过程中,如果受到了外界的碰撞或者冲击,由于所述第一部分面板30’和所述第二部分面板40’之间的相互接触和融合,所述中空融合面板1’的整体的抗冲击能力有利于被提高。

由于所述支撑结构41’和所述第一部分面板30’的融合,所述支撑结构41’和所述第一部分面板30’的融合位置的厚度能够被降低,以有利于这一位置的散热。详细地说,如果说所述第二部分面板40’形成延伸至所述第一部分面板30’并且刚好接合于所述第一部分面板30’的所述支撑结构41’,那么在所述第一部分面板30’和所述第二部分面板40’的接合位置的厚度等于这一位置对应的第一部分面板30’和所述第二部分面板40’的厚度之和。对于所述第一部分面板30’而言,由于接合位置的厚度大于附近其他位置,因此在制造过程中热量会聚集在这一位置,从而影响到最终获得的产品的质量,比如说由于散热不均导致的收缩不均的问题。

而所述支撑结构41’和所述第一部分面板30’的融合能够改善这一问题,通过所述第二部分面板40’的所述支撑结构41’和所述第一部分面板30’的融合,使得形成所述支撑结构41’的材料进入到所述第一部分面板30’,形成所述第一部分面板30’的材料进入到所述支撑结构41’。可以理解的是,形成所述第一部分面板30’的材料之间相互存在着间隙,形成所述第二部分面板40’的所述支撑结构41’的材料之间相互存在着间隙,由于所述支撑结构41’和所述第一部分面板30’的相互融合,使得所述支撑结构41’的材料进入到所述第一部分面板30’材料形成的间隙中,所述第一部分面板30’形成的材料进入到所述支撑结构41’材料形成的间隙中,从而所述第一部分面板30’和所述支撑结构41’的融合处的厚度能够小于未融合的所述第一部分面板30’的厚度和所述支撑机构的厚度之和,进而散热问题能够被改善。

另外,由于材料之间的相互融合,使得所述支撑结构41’和所述第一部分面板30’之间的结构更加紧密。

更进一步地,所述中空融合面板1’被设计为多层结构。在先前技术中,塑料面板通常是采用同一材料制成的,到达期望的结构强度、耐刮擦性能、抗冲击性能等。性能优良的塑料面板,需要通过同一种材料达到多种优良的性能,这无疑对于材料本身提出了较高的要求,因此往往需要采用较为高昂的改性的材料,或者是需要对于塑料面板的结构进行重新设计,以期望借助材料之外的改进获得性能优良的面板。

在本实施例中,所述中空融合面板1’被设计为多层结构,因此可以采用不同的材料来分别达到不同的性能要求,从而整体上降低了对于材料的要求。

详细地说,在本实施例中,所述中空融合面板1’可以包括一第一层10’和一第二层20’,其中所述第一层10’和所述第二层20’的至少部分重叠复合。所述第一部分面板30’可以包括选自组合至少部分所述第一层10’和至少部分所述第二层20’中的一种或者两种,所述第二部分面板40’可以包括选自组合其他至少部分所述第一层10’和其他至少部分所述第二层20’中的一种或者两种。

所述中空融合面板1’可以被实施为,所述第一部分面板30’包括至少部分所述第一层10’,所述第二部分面板40’包括其他至少部分所述第一层10’和完整的所述第二层20’。

所述中空融合面板1’也可以被实施为,所述第一部分面板30’包括至少部分所述第一层10’和完整的所述第二层20’,所述第二部分面板40’包括其他至少部分所述第一层10’。

所述中空融合面板1’也可以被实施为,所述第一部分面板30’包括至少部分所述第一层10’和至少部分所述第二层20’,所述第二部分面板40’包括其他至少部分所述第一层10’和其他至少部分所述第二层20’。在本实施例中,所述第一层10’和所述第二层20’分别共同形成所述第一部分面板30’和所述第二部分面板40’。

可以理解的是,此处“层”并不是指所述第一层10’或者是所述第二层20’有明显的边界线,所述第一层10’和所述第二层20’可以是同种材料制成的,并且所述第一层10’和所述第二层20’的连接处的边界可以是明显的,也可以是模糊的,如融合、粘合、或叠合的一体复合构造。所述第一层10’和所述第二层20’也可以是由不同材料制成的。进一步地,所述第一部分面板30’包括至少部分所述第一层10’和至少部分所述第二层20’,其中所述第一层10’和所述第二层20’的至少部分可以相互重叠复合以形成所述第一部分面板30’。

在本实施例中,以所述第一层10’和所述第二层20’在连接处相互融合为例进行说明。

进一步地,在本实施例中,所述中空融合面板1’的所述第一层10’和所述第二层20’分别被布置为连续的,并且所述第一层10’和所述第二层20’完全叠合。所述第一层10’位于外侧,所述第二层20’位于内侧,所述第二层20’围绕形成所述空腔100’,所述第一层10’围绕所述第二层20’被布置。

进一步地,所述中空融合面板1’还可以包括一第三层30’,其中所述第二层20’位于所述第一层10’和所述第三层30’之间,所述第三层30’和所述第二层20’的至少部分相互重叠融合。

所述第一部分面板30’可以包括选自组合至少部分所述第一层10’、至少部分所述第二层20’以及至少部分所述第三层30’中的一种或者几种。所述第二部分面板40’可以包括选自组合其他至少部分所述第一层10’、其他至少部分所述第二层20’以及其他至少部分所述第三层30’中的一种或者几种。

可以理解的是,所述第一部分面板30’可以是一单层、双层、三层或者是更多层结构,所述第二部分面板40’可以是一单层、双层、三层或者是更多层结构,比如说参考附图7a至7c所示。

在本实施例中,所述第一部分面板30’包括至少部分所述第一层10’、至少部分所述第二层20’以及至少部分所述第三层30’。所述第二部分面板40’包括其他至少部分所述第一层10’、其他至少部分所述第二层20’以及其他至少部分所述第三层30’。所述第三层30’的内壁界定了所述空腔100’。

所述支撑结构41’可以包括选自组合至少部分所述第一层10’、至少部分所述第二层20’以及至少部分所述第三层30’中的一种或者几种。可以理解的是,所述支撑结构41’和所述第二部分面板40’的其他部分的层数可以是相同的,也可以是不同的。在本实施例中,所述支撑结构41’包括至少部分所述第一层10’、至少部分所述第二层20’以及至少部分所述第三层30’。也就是说,形成所述第二部分面板40’的所述第一层10’部分、所述第二层20’部分以及所述第三层30’部分在预设位置朝内延伸形成预设数目的所述支撑结构41’。

所述中空融合面板1’的所述第一层10’被配置为具有优良的第一性能,所述第二层20’被配置为具有优良的第二性能,所述第三层30’被配置为具有优良的第三性能。所述第一层10’在具有优良的第一性能的同时,在第二性能和第三性能上的要求可以被降低。所述第二层20’在具有优良的第二性能的同时,在第一性能和第三性能上的要求可以被降低。所述第三层30’在具有优良的第三性能的同时,在第一性能和第二性能上的要求可以被降低。

包括所述第一层10’、所述第二层20’以及所述第三层30’的所述中空融合面板1’最后在整体上具备优良的第一性能、第二性能以及第三性能,但是不需要依赖于同时满足第一性能、第二性能以及第三性能要求的材料。

所述中空融合面板1’的各层分别被设计为拥有不同的性能,比如说所述第一层10’被设计为耐刮擦,并且耐刮擦性能优于所述第二层20’和所述第三层30’,比如说所述第二层20’被设计为耐冲击,并且耐冲击性能优于所述第一层10’和所述第三层30’,比如说所述第三层30’被设计为具有较好支撑强度的,并且支撑强度优于所述第一层10’和所述第二层20’。

可选地,所述第一层10’可以是采用高密度聚乙烯制成,所述第二层20’可以是采用高密度聚乙烯加碳酸钙或者是高密度聚乙烯加玻纤制成,所述第三层30’可以是采用茂金属聚乙烯制成。

当所述中空融合面板1’的第一层10’采用高密度聚乙烯制成时,高密度聚乙烯相关的参数可以为熔脂:1.5g/10min,弯曲强度:900mpa,邵氏d69。

当所述中空融合面板1’的所述第二层20’采用高密度聚乙烯加碳酸钙制作时,碳酸钙的质量百分比可以在15~30%,高密度聚乙烯的质量百分比在70~85%,并且高密度聚乙烯相关的参数可以为熔脂:0.35g/10min,弯曲强度1050mpa,邵氏d63。

当所述中空融合面板1’的所述第二层20’采用高密度聚乙烯加玻纤制作时,玻纤的质量百分比可以在15~40%,高密度聚乙烯的质量百分比在60~85%,并且高密度聚乙烯相关的参数可以为熔脂:0.35g/10min,弯曲强度1050mpa,邵氏d63。

当所述中空融合面板1’的所述第三层30’采用茂金属聚乙烯制作时,茂金属聚乙烯的相关参数可以为熔脂:2.0g/10min,断裂拉伸率:纵向420%,横向830%,断裂拉伸强度:纵向62mpa,横向25mpa,落镖冲击强度<48g,艾克曼多夫撕裂强度:纵向21℃,横向430℃。

进一步地,所述第一部分面板30’和所述第二部分面板40’形成所述支撑结构41’能够相互融合,并且能够产生较多的有益效果。详细地说,在本实施例中,所述第一部分面板30’的所述第三层30’部分和所述支撑结构41’的所述第三部分相互融合。可以理解的是,所述第一部分面板30’和所述第二部分面板40’的融合并不一定要求融合前的两个位置的材料是相同的,本领域技术人员能够根据需求选择合适的材料。

在所述第一部分面板30’和所述第二部分面板40’贴近但是并未融合之前,在所述中空融合面板1’中厚度最大的位置就是所述第一部分面板30’和所述支撑结构41’的接触位置,最大厚度为包括所述第一层10’部分、所述第二层20’部分以及所述第三层30’部分的所述第一部分面板30’的厚度和包括另外第一层10’部分、另外第二层20’部分以及另外所述第三层30’部分的所述第二部分面板40’的厚度之和。

在所述第一部分面板30’和所述第二部分面板40’融合之后,比如说相对设置的两个所述第三层30’部分相互融合,那么所述中空融合面板1’最大厚度为小于所述第一部分面板30’厚度和所述第二部分面板40’厚度之和,大于或者是等于所述第一部分面板30’的所述第一层10’部分厚度、所述第二层20’部分厚度以及所述第三层30’部分厚度加上所述第二部分面板40’的所述第一层10’部分厚度和所述第二层20’部分厚度。原因在于所述第二部分面板40’的所述第三层30’部分可能完全融合于所述第一部分面板30’的所述第三层30’部分。

通过这样的方式,所述中空融合面板1’的最大厚度位置的厚度能够被降低,从而有利于这一位置的散热。

另外,由于所述第二层20’和所述第三层30’可以采用不同的材料,因此虽然所述第一部分面板30’和所述支撑结构41’融合使得所述第一部分面板30’的所述第三层30’部分在某些位置的散热相对于未和所述支撑结构41’融合位置的散热更为困难,从而可能使得所述第一部分面板30’的所述第三层30’部分在各个位置的收缩率不同,进而可能影响到所述第一部分面板30’的所述第二层20’部分和所述第一层10’部分,使得所述第一部分面板30’的表面不平整,但是由于所述第一部分面板30’的多层设计,所述第一层10’、所述第二层20’以及所述第三层30’的热传导效率和收缩率可以是不同的,散热可能对于所述第三层30’带去一定的影响,但是通过对于所述第一层10’或者是所述第二层20’制作材料的选择,可以尽可能地降低这一影响。

进一步地,在先前的技术中,相关技术人员会尽可能避免所述第二部分面板40’和所述第一部分面板30’之间的接触,以减少产品的不良率,因此如果在先前技术的框架下,需要尽可能多的布置所述支撑结构41’,以在接触面积较小的前提下尽可能支撑所述第一部分面板30’。在本实施例中,由于所述支撑结构41’可以和所述第一部分面板30’保持一定的接触面积,在不影响产品良率的同时有利于所述中空融合面板1’的结构强度,因此所述支撑结构41’的数目不需要被布置的很多,也就是说,所述支撑结构41’的数目可以被减少。相邻的所述支撑结构41’的距离可以被扩大,从而有利于制造,比如说方便脱模,也减少了制造过程中相邻的所述支撑结构41’相互影响的可能性。

进一步地,在先前技术中,相关技术人员会尽可能避免所述第二部分面板40’和所述第一部分面板30’之间的接触,以减少产品的不良率,尤其是在所述第一部分面板30’较薄的情况下,在所述第一部分面板30’内侧增加厚度会对于所述第一部分面板30’的散热造成较大的影响,因此面板厚度越小,对于所述第一部分面板30’和所述第二部分面板40’的接触面积要求越小。在本实施例中,所述第一部分面板30’和所述第二部分面板40’的接触面积能够被设置的较大,尤其是在所述第一部分面板30’较薄的情况下,一方面有利于对于所述第一部分面板30’的支撑,另一方面所述第一部分面板30’和所述第二部分面板40’结合的牢固程度。在先前技术中,所述第一部分面板30’和所述第二部分面板40’的接触面积较小,甚至需要避免所述第一部分面板30’和所述第二部分面板40’在边缘连接位置接触之外的接触。在本实施例中,所述第一部分面板30’和所述第二部分面板40’的所述支撑结构41’的接触面积较大,当所述第一部分面板30’受到冲击时,冲击力能够被快速传递自所述第二部分面板40’,形成于所述第一部分面板30’和所述第二部分面板40’之间的所述空腔100’能够起到缓冲和减震的作用。

根据本发明的一个实施例,所述中空融合面板1’的所述第一部分面板30’的厚度可以是t,这一数值可以是所述第一面板的厚度均值。所述中空融合面板1’的所述第一部分面板30’和单个所述支撑结构41’的接触面积为s,这一数值可以是多个所述支撑结构41’和所述第一部分面板30’接触面积的均值。所述中空融合面板1’的所述第一部分面板30’的厚度和接触面积的比值x=s/t2。根据本发明的一个实施例,t可以是2mm,s可以是0.5mm2。x是0.5/4=0.125。根据本发明的一个实施例,x可以大于0.1。

根据本发明的一个实施例,所述中空融合面板1’的所述第一部分面板30’的厚度可以是t,所述第一部分面板30’被单个所述接触峰点43’所占据的面积为s。t可以是3mm,s可以是6mm2。x=s/t2=6/9,大于0.1。

更进一步地,所述支撑结构41’能够朝向所述第一部分面板30’形成剖面呈w形的凹陷腔400’,所述凹陷腔400’是呈长椭圆形,具有两圆弧端,其周缘向上向内倾斜延伸而构成具有加强所述第二部分面板40’作用的所述支撑结构41’。每一所述支撑结构41’被设置有至少一个加强筋42’,在本实施例中,每一所述支撑结构41’被设置有一对所述加强筋42’,横向平均跨于所述凹陷腔400’的底部,也就是所述支撑结构41’的相对顶部。值得注意的是,浪形结构是理想的补强结构,所以波浪形的该对所述加强筋42’构形了上述三峰状的波浪支撑结构41’,大大强化了所述第二部分面板40’的耐冲击性和坚固性。

所述支撑结构41’能够朝向所述第一部分面板30’延伸形成至少一个接触峰点43’,其中所述第一部分面板30’在所述接触峰点43’位置和所述第二部分面板40’融合。在本示例中,单个所述支撑结构41’形成三个所述接触峰点43’,当所述第一部分面板30’受到冲击时,结合于所述第一部分面板30’的各所述接触峰点43’对于所述第一部分面板30’起到补强作用。所述第一部分面板30’受到的冲击力被较为均匀地传递至所述第二部分面板40’,所述第一部分面板30’和所述第二部分面板40’形成的所述空腔100’能够起到缓冲和避震的效果。

进一步地,所述中空融合面板1’可以通过吹塑的工艺制造。用于制造所述第一层10’、所述第二层20’以及所述第三层30’的材料可以通过一模头共挤出以形成一模胚,所述模胚包括相互融合所述第一层10’、所述第二层20’以及所述第三层30’,同时所述第一层10’、所述第二层20’以及所述第三层30’围绕形成一腔。藉由一模具从外侧挤压所述模胚,藉由气流通入所述腔以从内侧挤压所述模胚,所述模胚被吹塑成型以获得所述中空融合面板1’。本领域技术人员可以理解的是,这是所述中空融合面板1’可以选择的制造方式中的一种。

在制造过程中,用于形成所述第二部分面板40’的所述第一层10’部分、所述第二层20’部分以及所述第三层30’部分被拉伸以朝向所述第一部分面板30’凸出形成所述支撑结构41’。所述第二部分面板40’同时形成对应于所述支撑结构41’的所述凹陷。

所述第二部分面板40’的至少部分由于被拉伸,因此所述第二部部分面板的至少部分的厚度小于所述第一部分面板30’的厚度,比如说形成所述支撑结构41’的所述第一层10’部分的厚度一般小于形成所述第一部分面板30’的所述第一层10’部分。

参考附图7a所示,是根据本发明的上述较佳实施例的所述中空融合面板1’的另一种实施方式被阐明。在本实施例中,所述第一部分面板30’包括至少部分所述第一层10’和至少部分所述第二层20’部分,所述第二层20’部分包括至少部分所述第一层10’、至少部分所述第二层20’以及第三层30’,也就是说,所述第一部分面板30’被布置为双层结构,所述第二部分面板40’被布置为三层结构。

参考附图7b所示,是根据本发明的上述较佳实施例的所述中空融合面板1’的另一种实施方式被阐明。在本实施例中,所述第一部分面板30’包括至少部分所述第一层10’和至少部分所述第二层20’,所述第二部分面板40’包括其他部分所述第一层10’和其他部分所述第二层20’,也就是说,所述第一部分面板30’被布置为双层结构,所述第二部分面板40’被布置为双层结构。

参考附图7c所示,是根据本发明的上述较佳实施例的所述中空融合面板1’的另一种实施方式被阐明。在本实施例中,所述第一部分面板30’包括全部的所述第一层10’和至少部分所述第二层20’,所述第二部分面板40’包括其他部分所述第二层20’,也就是说,所述第一部分面板30’被布置为双层结构,所述第二部分面板40’被布置为单层结构。

本领域技术人员应当可以理解的是,所述第一部分面板30’和所述第二部分面板40’的层数可以是相同的,也可以是不同的,可以根据需求选择布置所述第一部分面板30’和所述第二部分面板40’。

参考附图8a所示,是根据本发明的另一较佳实施例的所述中空融合面板1’的部分示意图。

在本实施例中,单个所述支撑结构41’形成有两个所述接触峰点43’并且被布置有一个所述加强筋42’。

单个所述支撑结构41’和所述第一部分面板30’的接触面积可以是4*3mm2,所述第一部分面板30’的厚度可以是3mm,那么x可以是12/9,大于0.1。

参考附图8b所示,是根据本发明的另一较佳实施例的所述中空融合面板1’的部分示意图。

在本实施例中,单个所述支撑结构41’形成有单个所述接触峰点43’。

单个所述支撑结构41’和所述第一部分面板30’的接触面积可以是4*4mm2,所述第一部分面板30’的厚度可以是4mm,那么x可以是16/16,大于0.1。

参考附图9所示,是根据本发明的另一较佳实施例的所述中空融合面板1’的部分示意图。

所述中空融合面板1’可以被应用于一桌子1000’。所述桌子1000’包括一桌面板1001’和至少一桌腿装置1002’,其中所述桌面板1001’被支撑于所述桌腿装置1002’,其中所述桌腿装置1002’的数目可以是二或者是更多。

所述桌面板1001’可以通过所述多层面板1’制备而成,所述多层面板1’可以被制备成圆形、矩形等各种形状以满足不同的需求。

所述桌面板1001’的所述第一部分面板30’的至少部分和所述第二部分面板40’的至少部分被面对面设置并且可以是相互平行的。

本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1