结构性连接长形模块式中空支柱或杆的方法及获得的产品的制作方法

文档序号:83678阅读:699来源:国知局
专利名称:结构性连接长形模块式中空支柱或杆的方法及获得的产品的制作方法
技术领域
本发明涉及利用(采用或者不采用纤维增强的)聚合物材料来制造中空的支柱或杆,其用于例如但非专门地需要支承柱作为电线、照明装置、高架台的支承件的任何应用场合,并且更具体地说,本发明涉及利用纤维增强树脂来制造用于帆船的桅杆。本发明专利申请说明了适用于结构性连接长形模块的方法,所述模块仅构成支柱或者杆的全长的一部分并因而易于运输。所述模块可以彼此相同或者不同,并且它们可以被连续制造,同时保持整个支柱或者杆的适应性以满足任何特定支承的需要。可以采用任何用于制造纤维增强树脂产品的公知技术来制造所述模块,即使由于整个支柱或者杆的总尺寸使得所述技术可能不适用于整个支柱或者杆。
背景技术
许多物体由包括热固性树脂的复合材料制成,该热固性树脂通常为纤维增强的环氧树脂,而该纤维通常为碳纤维或者玻璃纤维或者aramidic纤维。
手工浸渍或者预浸渍了树脂的纤维层布置在模具的内侧表面上。然后对树脂进行热聚合处理,采用这种方式来获得外形与模具的内侧表面相同的固体。为了获得具有优良机械性能的复合材料,基本的要求是去除任何可能包含在各层纤维之间的空气,并且使这些纤维层彼此牢固地附着在一起。
为了达到这个目的,将具有纤维和树脂的层叠层的模具包封在一袋内,然后将该袋放在高压釜内。
接着,将包含模具和层叠件的袋与真空泵连接,同时将高压釜内的压力设定为适当的值。
因此,纤维和树脂的层叠件被压在模具上,同时任何可能滞留于纤维和树脂之间的空气被抽出。
为了获得具有优良机械性能的材料,基本的要求是在层叠期间去除滞留于各增强层之间的空气。
另外的基本要求是使各层纤维彼此紧密地接触。
通过施加高达6~7巴的高压来获得这些结果。
此外,许多树脂需要利用高温来进行适当的聚合。
在结构很长的情形下,例如帆船的桅杆,实现最佳压力和温度所必需的高压釜的成本非常高。此外,制造帆船的桅杆所必需的模具既大又重,且因此既昂贵又难以处理。表现出的另一个问题是,在层叠特长件的过程中需要检验纤维和定位任何内部元件。

发明内容为了克服所有这些缺陷,研究出了以模块制造中空杆的新方法。
新方法的目的是通常在高压釜中,在高压和高温处理/固化纤维增强树脂而获得长形的中空物体。
新方法的另一个目的是由较短的模块获得较长物体,该模块利用各种不同的技术和材料而制成,并且利用不影响所需结构特性的可靠方法连接该模块。
所述方法的另一个目的是获得具有内部横向加强件的长形中空物体,其中该加强件用于增强中空物体的壁的稳定性。
所述方法的另一个目的是可以由短模块获得长物体,并且该短模块易于运输和可以被连接,而不需采用昂贵且笨重的设备,即使远离单模块所制造的地方。
所述方法的另一个目的是获得可以容易和经济地运输到任何地方以组成较长物体的模块,如果不利用特定的设备该物体将难以运输。
所述方法的另一个目的是获得可以连续制造且根据不同的组合来组装的模块,从而允许定制支柱或者杆,例如通过改变支柱或者杆的长度、或者其端部形状,或者在不同位置安装连接件或者支承件,而无需使用特别用于该目的的任何工具或者设备。
通过用于制造模块式支柱或者杆的新方法可以实现这些和其它的直接目的和附加目的。
此处所述的具体应用适于制造用于帆船的桅杆,但是也可以用来制造用于路灯和电源的柱子、平台支承件、支柱以及大体任何长形中空结构件,这些物体可以具有任何横截面(圆形、椭圆形、呈流线型的轮廓等)和任何长度。不像其它要求构造单个结构件的方法,本发明可以通过独立的模块来制造和运输这种类型的结构件。本发明的特点在于,与传统的方法相比,本发明确保更精密地控制不同模块之间的连接质量。由于所建议的连接方法,粘合区构成了用于支柱整体的局部增强区,从而消除了潜在的结构弱区。
新方法可以利用纤维增强和在高压下聚合的树脂来制造模块式长形中空结构件。这种方法的优势表现在如下事实上,即其允许利用可控的方式连接长度缩短的部件以获得具有预期长度的杆,同时不减弱组件的结构特性。在高压釜中高压处理/固化由复合材料制成的桅杆与在大气压下或者在真空下仅利用袋进行处理/固化相比,具有显著优势,并且此处所述的方法允许在有限长度的高压釜内执行所述处理/固化方法,并不特别意味着用于处理/固化桅杆,所述方法也得益于用于连接模块的方法,其中已经完成的桅杆的结构强度不仅没有减弱反而获得了局部增强,这降低了壁的不稳定性。
事实上,在此处所述的改型中,除了存在在压力下粘合优选连接的表面的优势与横向隔板(transversal diaphragms)的存在结合,其中所述横向隔板限制垂直于壁的表面的变形,从而降低了壁自身局部不稳定的危险性。在单个筒形结构中不能采用这些隔板,它们在任何情形下均难以插入即使是由两个单元在中央连接所构成的普通筒形结构内。然而,采用所建议的方法,如果完成模块在一端具有外围肋,则将自动存在这些隔板。
利用新方法可以制造独立的模块,可以根据待利用的高压釜的长度和根据连接模块而获得的支柱的特性来选择该模块的长度。这些模块可以彼此相同,在这种情形下,在将其连接之后,它们将构成为具有基本恒定的横截面的筒形形状,但是也可以具有不同的特征,例如用于桅杆端部的锥形部分、用于安装附件的不同类型的插入件和连接件、用于桅杆的底部和顶部的末端单元。也可以不费力地制造全部或者部分密封严密的模块,或者为了实现有利于防止帆船倾翻的储备浮力而制造包含泡沫材料的模块。
为了部分连续地制造用于帆船的桅杆,可以制备尺寸缩小、价格便宜的少量模具,根据使用者的需要利用这些模具可以获得具有不同长度和特性的桅杆,并且该桅杆配备有所有通常应当以后安装的部件。
可以确保连接具有结构和经济上的优势的基本特征是模块的末端部的形状。
模块的末端部必须是截头锥形,其尺寸适用于将一个末端部引入另一个末端部。采用这种方式,轴向压力转变为与截头锥形末端部的相邻表面垂直的压力,可以通过滑入桅杆内的具有螺纹端的牵引索缆或者杆容易地获得所述轴向压力。
可以通过控制对内索缆的牵引来容易地控制所述压力,例如利用转矩扳手使螺母螺合至索缆的螺纹端且作用在位于桅杆端部的适当的支承板上。
因此,可以根据用于连接模块的粘合剂的特性来调整模块的截头锥形末端部的壁上压力,从而允许所述粘合剂被完好地处理/固化。
压力也可以去除任何过多的粘合剂或者任何气泡。粘合剂过厚和粘合剂内存在气泡是粘合连接中的两个主要缺陷源,通常通过在所连接的表面上施加高压来避免。此处建议的方法可以确保易于将压力施加在将要粘合的表面上,而不必使用昂贵的设备或者采用复杂的方案。
在模块的截头锥形末端部上的压力的另一个作用在于,由于锥形末端部的自对中特性,它们被强制定位于公共轴线上,从而桅杆将必然为直线型。
采用这种类型的连接,每个模块的截头锥形“凹入”末端部必须没有阻挡下一个模块的“凸出”末端部插入的突起,因此呈完全开口的形式。
实际上,“凸出”末端部可以设置有沿与其垂直的方向使其壁变硬和加强的环或者肋。所述加强环或者肋使壁沿垂直方向获得了有效的加强,从而降低了壁的局部不稳定性。在薄壳类结构中比较常见的这种现象是构成帆船的桅杆破损和装置的安全性不能提高的主要原因之一。
在该实例中构造模块可以但并非必须按照通常用于在高压釜中处理/固化复合材料来制造产品的方法,并且需要使用沿模块的其中一条经线纵向分成两部分而获得的模具。
模具的两个半模的每一个(也称其为半模)使得模块外侧表面的其中一半不用进行重新加工。
两个已经连接的半模重新完成模块的整个外侧表面。
两个半模均设置有用于相互连接的凸缘。
将浸渍有树脂的纤维层铺在待制备物体的模具的凹槽内,为了便于分离所述纤维对其进行适当的处理。在其中一个半模内,纤维和树脂层一直铺到用于与另一半模相连接的边缘,同时,在相反的半模内,纤维和树脂层突出于所述连接边缘之外。
优选地但非必须两端有开口的筒形袋放在具有突出层的半模内,也就是放在纤维和树脂层顶部和将要获得的模型内部。所述筒形袋的开口端布置为从模具的末端孔伸出。每个筒形袋的直径等于或者大于模块的内横截面的最大直径,采用这种方式以确保筒形袋完全充满中空的内部空间。
所述纤维和树脂层的突出部分被折叠和铺在所述筒形袋的顶部上。
两个半模连接在一起,并且整个模具包封入一外袋内,利用特殊的密封剂位于模具内的筒形袋的自由端与所述外袋相连接。
采用这种方式,筒形袋和外袋形成连续封闭的尼龙袋,其内含有将要聚合的纤维和树脂的模具。
根据可能的改型,可以采用单个筒形袋,其直径超过模具的最大外部横向长度,且其长度比模具长度的两倍还大。这种袋部分插入上述模具内,并且使该袋的一大半从模具的其中一个末端孔伸出。在模具已经闭合后,使伸出部分的内部翻向外,采用这种方式来包住模具自身的外侧表面。在该操作结束时,该袋的两个末端开口正好在其中一个模具开口外重叠,因此可以将它们连接和密封在一起。
这种改型允许对该袋执行单个密封操作,而不用执行两个密封操作,但是在这种情形下,对该袋的处理更多,这导致袋自身损坏的危险性将提高。
由该袋形成的封闭空间放在抽吸泵产生的真空下,该抽吸泵连接于沿模具外侧表面的适当位置处且在模具内形成真空,使内袋压在纤维层上,而纤维层反过来压在模具的内壁上。
然后,将采用这种方式相连接且包含在袋中的两个半模的组件放在高压釜内,在高压釜内压力将升高,通常高达6~7巴,纤维和树脂层在该压力下被压紧。
具体地说,放在其中一个半模内的纤维和树脂层的突出部分压在另一个半模中的纤维和树脂层上,从而获得两个半模的纤维和树脂层的连续的连接。与袋连接的泵抽出存在于袋内的空气以及在层叠期间可能滞留在纤维和树脂层之间或者在所述层和半模内部之间的空气。
可以使用具有可以密封在一起的连接边缘的半模,从而通过靠着模具的外壁密封内袋来避免使用外袋。这种方案虽然要求构造更复杂的模具,但是在生产过程中可以节省时间和成本。
在聚合过程结束时,当泵已经关闭且模具打开以后,将模块从模具取出。
所获得的模块没有连接线,对应于两个半模的纤维和树脂层被完好地连接和沿整个内侧表面压紧,并且模块的外侧表面看不到接合处。
可以利用已选择的方法来制造获得完整桅杆的所有必需模块,不取决于这些模块是彼此相同还是不同。在后一种情形下,必须使用不同的模具,或者作为选择,可移除的插入件必须放在模具内,从而可以获得具有不同特征的模块。
在任何情形下,每个模块必须具有一个(如果模块将构成桅杆两端中的一端)或者两个截头锥形末端部,该末端部必须与相邻模块的末端部相配。为了允许通过以单一操作连接模块来获得桅杆,每个末端部的锥形必须相同,从而确保每个连接面上的压力相同。
在已经获得所有必需模块之后,为了进行粘合操作必须对其连接面进行适当的处理,即去除任何可能阻碍完好粘合的杂质和化学物质。通常通过表面打磨来完成这种处理。
这时应该使所有的模块对正,让截头锥形末端部相互靠近,但不必把末端部连接起来。可以在这个阶段容易地插入牵引索缆或者杆,使牵引索缆或者杆在不产生任何张力的情形下从一个模块穿过另一个模块。
接着,将粘合剂应用于将要粘合的每个末端部的表面,并且用手把一个末端部插入另一个末端部内而使这些末端部进行初步的连接。
在已经插入了所有的末端部之后,使内索缆或者杆的螺纹部分穿过坐靠在桅杆端部的两块板的中央孔,这时可以用两个螺母拉紧该内索缆。
施加在连接表面上的压力必须足以去除任何过多的粘合剂和气泡,并且足以确保粘合剂的厚度与其制造者所要求的厚度相同。适当的压力通常由所用的粘合剂的制造者建议。
公用三角方程式可以用来计算为了获得待粘合的表面上的所需压力而必需的恰当索缆张力。而用于螺纹连接的公用公式可以用来计算为了获得所需张力而必须施加在螺母上的驱动力矩。
应用计算出的张力允许模块相互牢固地挤压。末端部的锥形也将使模块沿桅杆的纵向轴线对正,从而确保桅杆为直线型。
最后,在已经达到必需的压力之后,可以将末端部加热到处理/固化粘合剂所必需的温度。因此,没有必要对宽区域执行复杂的温度控制,如果要沿纵向连接从两个半模获得的两个半桅杆(在用复合材料制造船艇桅杆中,这是通常的情形),则上述温度控制必不可少。
图1示出了具有内凹槽(S1)的两个半模(Sa、Sb),该内凹槽允许不用重新加工通用模块的外侧表面。
图2示出了半模的剖视图。
图3示意性地表示了所述筒形袋(G1)的位置。
图4只通过实例示出了具有下述模块的可能的排列,即只设置有凸出末端部(S3)的底模块(R3)、每个均设置有凸出末端部(S3)和凹入末端部(S6)的两个相同模块(R1),和设置有用于桅杆支撑索缆的连接件的模块(R2),该模块(R2)也设置有凹入末端部(S6)和凸出末端部(S3),但因为缺少用于连接的其它模块使得该凸出末端部(S3)未被利用,所以图中未将其示出。
图5示出了不同的模块彼此相接触。
具体实施方式参看附图,阅读下面的详细说明,可以更好地理解用于制造模块式中空支柱或者杆的新方法和由此获得的产品的特性,所述附图仅仅作为非限制性的示例,并且涉及采用纤维增强和在高压下聚合的树脂来制造模块。
虽然下面的说明是关于制造帆船的桅杆,但是所考虑的事项适用于制造任何其它的直线型中空物体,其形状基本为管状且不必由纤维增强和在高压下聚合的树脂制成。
图1示出了具有内凹槽(S1)的两个半模(Sa、Sb),该内凹槽允许不用重新加工通用模块的外侧表面。
每个半模(Sa、Sb)设置有用于与另一个半模(Sb、Sa)连接的凸缘或者边缘(S2)。
用于截头锥形末端部的支座在每个半模上均可见。具有肋(S4)和中央开口(S5)的凸出末端部(S3)位于一端,同时凹入末端部(S6)位于另一端,且该凹入末端部向外完全敞开。
模具(Sa、Sb)均涂覆有分离剂,也就是说,便于下述物体从所述半模本身分离的产品,即用半模(Sa、Sb)制造且材料为纤维和树脂的物体。
纤维和树脂层(M)铺在两个半模(Sa、Sb)的凹槽(S1)内,并且布置成在将要制造的物体的壁上获得预期的纤维厚度和布局。
具体地说,在一个半模(Sa)内,纤维和树脂层(M)一直铺到将与相配的另一半模(Sb)连接的该半模(Sa)的表面,同时在该另一半模(Sb)内也铺有纤维和树脂层(M),从而该纤维和树脂层以合适的量突出于半模(Sb)的连接表面之外,这一点可以从图2所示的剖视图中看出。
接着,将由耐高温的塑料(通常用聚酰胺或者尼龙)制成的筒形袋(G1)放在具有突出的纤维和树脂层(M)的半模(Sb)内,所述袋在两端部是敞开的,并且所述端部布置为从设置在模具(Sb)内的开口(S5、S6)伸出。
所述筒形袋(G1)的形状为柱形,且其直径等于或者大于待制造物体的最大内横截面,该筒形袋采用如下方式定位,即占据待制造物体内的所有空间。
图3示意性地表示了所述筒形袋(G1)的位置。
纤维和树脂层(M)的突出部分铺在筒形袋(G1)的顶部上,并且两个半模(Sa、Sb)连接和闭合在一起。
由两个相连接的半模(Sa、Sb)构成的模具(S)装入一筒形袋内(为简化起见,下文称之为外袋),使得从模具(S)的开口(S5、S6)伸出的筒形袋(G1)的两个袋口与外袋的袋口对正。
将内袋(G1)和外袋的所述袋口连接,并且用特殊的密封剂密封。
适用于与真空泵连接的一个或者多个阀安置在外袋上。
由模具(S)、内袋(G1)和外袋组成的组件放在高压釜内,并且袋(G1、G2)通过所述阀与抽吸泵相连接,从而从袋组件(G1、G2)抽出空气。
此外,高压釜的气压作用于模具(S)内的袋(G1)上以及纤维和树脂层(M)上,从而所有纤维和树脂层(M)压向两个半模(Sa、Sb)的内凹槽(S1)的壁。具体地说,内袋(G1)的所述扩张也会使得铺在半模(Sb)内的纤维和树脂层(M)的突出部分向另一半模(Sa)的纤维和树脂层(M)上压紧,利用这种方式来获得两个半模(Sa、Sb)的纤维和树脂层(M)之间的连续连接。抽吸泵从外袋的内部抽出空气。存在于模具(S)内的空气以及纤维和树脂层(M)之间的空气过滤于模具(S)本身之外,并由所述抽吸泵抽吸。
为防止刚开始从外袋分离的内袋(G1)继而又通过如上所述应用于两端的密封剂又被连接到外袋上,可以利用单个袋(G),其具有足以完全包围模具(S)的外部的横截面和比模具(S)长两倍多的长度。在这种情形下,该袋(G)的大约一半将被引入半模(Sb)内,以所述用于内袋(G1)的相同方式,使另一端从模具(S)的两个开口之一(S5或者S6)伸出。在两个半模(Sa、Sb)已经连接和闭合后,袋(G)的伸出部分的内部将被翻向外,采用这种方式来包住模具(S)的外部。在这种情形下,该袋仅有一端被密封,另一端通过该袋(G)自身折叠而成。至于其它方面,该方法与已经建议的方法相同。一种等效方案涉及使用可以密封到一起的半模(Sa、Sb)来避免使用外袋。从模具(S)的两个开口(S5、S6)伸出的内袋(G1)变宽,并且在模具的开口(S5、S6)周围密封该内袋的边缘。
沿着两个半模(Sa、Sb)的连接线密封它们,以形成与模具(S)相对应的封闭腔,并且通过将泵与内袋(G1)的一个或者两个伸出端相连接而将空气从模具(S)抽出。
虽然所述第二方案保留了内袋(G1),但是避免了外袋的使用。
铺在两个半模(Sa、Sb)内的纤维和树脂层(M)将优选地沿着模具的整个内侧表面被连接和压紧。
内袋(G1)确保各个纤维和树脂层(M)之间的压紧和附着,同时确保半模(Sa)的层(M)的边缘和相配的半模(Sb)的层(M)的边缘之间的压紧和附着。
上述构造方法使用下述公知技术,即通过在高压釜中处理/固化树脂来制造复合材料产品,并且该方法可以获得具有最佳结构特性的模块,该结构特性可以利用纤维增强树脂的复合材料获得。
该方法必须重复对应于获得期望的桅杆所必需的模块的数量的多次。
然而,也可以利用与所述技术不同的技术来制造单模块,例如可以利用公知作为纤维缠绕的方法或者通过人工浸渍纤维或者利用热塑性树脂代替热固性树脂来制造该单模块。可以通过施加或者不施加压力完成树脂的聚合。可以在与所述温度不同的温度下甚至在真空下不利用袋来获得聚合。
不必用相同的模具(S)制造模块,事实上可以利用不同的模具来制造下述模块,例如桅杆的底模块或者顶模块,或者任何设置有用于桅杆支撑索缆或者用于航行设备的连接件的模块,如图1所示。在此所述的本发明的申请允许获得许多不同特征的单模块。仅需要注意的情形是,所有的模块必须设置有截头锥形末端部(S3、S6),它们对于将这些模块与相邻模块连接是必不可少的。如果可能的话,底模块只需构造为具有顶端(S3)即可,并且如果可能的话,顶模块只需构造为具有底端(S6)即可。
在利用此处所述的方法获得构成桅杆的必要模块之后,这些模块的截头锥形末端部(S3、S6)必须按照推荐用于所用粘合剂的步骤进行粘合。在“凸出”末端部(S3)必须制备外侧表面,同时在“凹入”末端部(S6)必须制备内侧表面。
在每个模块用于粘合的末端部(S3、S6)准备好之后,必须将模块对正,例如按照如下既定的顺序将它们搁在架子上,例如底模块放在一侧、顶模块放在相反侧、中间模块放在中央,并且任何设置有用于支撑索缆或者用于航行设备的连接件的模块放在待制造桅杆的结构所要求的位置上。
图4只通过实例示出了具有下述模块的可能的排列,即只设置有凸出末端部(S3)的底模块(R3)、每个均设置有凸出末端部(S3)和凹入末端部(S6)的两个相同模块(R1),和设置有用于桅杆支撑索缆的连接件的模块(R2),该模块(R2)也设置有凹入末端部(S6)和凸出末端部(S3),但因为缺少用于连接的其它模块使得该凸出末端部(S3)未被利用,所以图中未将其示出。
将模块以正确顺序排列之后,必须将粘合剂应用于所有截头锥形末端部(S3、S6),并且牵引索缆或者杆(A)将滑入每个模块内,当模块彼此相邻但未被连接时,所述牵引索缆或者杆的长度足以贯穿桅杆的整个内腔。
所述牵引索缆或者杆(A)必须设置有适于将可控张力施加于桅杆端部的装置,从而桅杆端部将相应地被压紧。一种合适的装置(此处建议的并不是唯一方案)由应用于牵引索缆端部的两个具有螺纹的杆构成,或者由整个杆或者杆端部的螺纹构成。在使所述牵引索缆或者杆滑入多个对正模块内之后,螺纹端必须穿过两块板(P1、P2),每块板设置有中央孔并且具有足以搁在桅杆两端的整个外围上的尺寸,和/或设置有专为此目的而特别构造的支座。然而,所述板必须以下述方式定位,即便于将与桅杆自身的纵向轴线平行的压力传递给桅杆的方式。
接着,可以用手使不同的模块彼此相接触,即将 “凸出”截头锥形末端部(S3)插入相邻的“凹入”末端部(S6)且尽可能地使这些末端部朝向彼此挤压(图5)。
在完成所有模块的初步连接之后,两个螺母必须插入牵引索缆或者杆(A)的螺纹端。将所述螺母压在两块板(P1、P2)上且拧紧,这样便增大了牵引索缆或者杆的张力。通过利用转矩扳手调整螺母的驱动力矩,可以容易地控制所述张力。
通过两块板(P1、P2)将作为对桅杆的轴向压力的牵引索缆或者杆的张力传递给多个前后放置的模块。
一种内部索缆或者杆应用的可能的改型是利用在支柱外面的装置,该装置适于将可控轴向压力施加给支柱自身。
末端部(S3、S6)的锥形使轴向压力作为与壁垂直且成径向的压力作用在连接区。该压力使凸出末端部(S3)的壁的外侧压在凹入末端部(S6)的壁的内侧上。
如果对于所有截头锥形末端部来说锥形相同,则垂直于壁的压力在每个连接区也相同。采用这种方式,通过给末端部分配适当的锥角,例如2°,可以计算出通过牵引索缆或者杆(A)施加给桅杆的轴向压力与同末端部的壁垂直且成径向的压力之间的数学关系。
将要粘合的壁之间的压力对于确保下列各项是必不可少的1)壁自身之间并且因此层叠件的纤维之间进行接触,而不用加入过厚的粘合剂层;2)去除在连接区端部的过多的粘合剂;3)去除任何存在于末端部的壁之间的气泡;4)使各个模块轴向居中。
要点1)、2)和3)表示为了确保下述目的而需满足的一些基本因素,即粘合而成的部件的连接达到采用所用的粘合剂可以获得的最佳机械性能。如果考虑了这些情况并且如果所采用的粘合剂具有足够的机械性能,则可以确保粘合而成的末端部的机械强度等于或者高于被连接的模块的机械强度。
适于实现目的1)、2)和3)的压力必须由粘合剂的制造者进行验证,但是通过控制模块的末端部(S3、S6)的锥角和螺母驱动力矩,并且通过利用上述简单设备,本发明可以使所述压力被容易地施加。
利用此处所述的截头锥形末端部也可以实现目的4),而不必使用复杂的支承件来使模块在粘合期间保持完好对正。由于末端部的锥形,各个模块沿桅杆的轴线自动对正,而没有任何向侧向或者竖直向上弯曲的趋势。
为了消除模块静载的影响以及确保对桅杆进行直线型组装,利用简单的架子来支撑已对正的模块或者将这些模块搁在地面上就足够了。
由于锥形末端部具有这种特性,所以可以避免使用任何类型的模板或者支承件来正确地组装支柱,并且没有必要检验支柱的各个单元是否对正,在另一方面,如果沿着与支柱的轴线平行的方向把单元分开则上述操作必不可少。
在完成所述连接和用计算力矩拧紧螺母之后,如果需要的话,可以使粘合剂经受热处理。
为了这个目的,没有必要加热整根桅杆,这是因为将要处理的部分只是模块之间的末端部(S3、S6)。在复合材料的制作中所采用的普通树脂和纤维的不足热传导性(scarce heat conductivity)将限制施加在末端部的热量的扩散,也因此限制为了达到所需温度而必要的能量。
为了在粘合剂的处理/固化期间使末端部的温度升高,在另外的方法中,可以使用加热毯,如果必要的话,采用多层热绝缘材料包裹末端部。
因此,参考上面的说明和附图,说明权利要求
书。
权利要求
1.一种以聚合物制造中空结构的支柱或者杆的方法,其通过组装具有较短长度的模块实现,其特征在于,所述中空结构的支柱或者杆包括两个或者多个长形模块,每个模块设置有相应的凸出截头锥形末端部和凹入截头锥形末端部,其中,所述凹入末端部的内侧表面的锥角与所述凸出末端部的外侧表面的锥角相同,并且所述方法包括下述步骤对正所述中空模块;制备所述凹入末端部和所述凸出末端部,其中利用粘合剂以便进行粘合并且插入相邻的、对正的模块的相应末端部中;应用轴向压力装置,优选在端部应用,以使得在由所述模块构成的杆的端部被压紧后,在末端部的结构连接和粘合、以及粘合剂的聚合的过程中,每个外侧凸出锥形表面粘附于和施加适当的压力于相邻模块的内侧凹入锥形表面。
2.根据权利要求
1所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述凸出锥形末端部和所述凹入锥形末端部的重叠区足够宽以确保胶粘剂或者结构粘合剂适于传递工程载荷。
3.根据权利要求
1或2所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述末端部的锥形把所述支柱上的轴向压力转变为相对于所述末端部的壁垂直且成径向的局部压力。
4.根据权利要求
1至3中任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述末端部的锥形确保在组装和粘合步骤中所述各模块自动对正。
5.根据权利要求
1至4中任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述凸出末端部设置有垂直的壁或者分隔部,其用作为适于限制壁的不稳定性的局部加强件。
6.根据前述权利要求
任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述模块在两端设置有开口,所述开口用于所述轴向压力装置的通道。
7.根据权利要求
1至6中任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述轴向压力装置包括沿轴向方位穿过所有所述模块的杆,并且设置有位于第一个模块和最后一个模块的端部处的板或者连接元件。
8.根据权利要求
7所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述轴向压力装置允许控制施加在所述装置上的张力。
9.根据前述权利要求
任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述轴向压力装置位于所述杆或者所述支柱外部。
10.根据前述权利要求
任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,一些模块可以设置有横向元件、连接件、支承件、接头、支架等。
11.根据前述权利要求
任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,一个或者多个模块设置有密封腔。
12.根据前述权利要求
任一所述的以聚合物制造中空结构的支柱或者杆的方法,其特征在于,所述聚合物与任何适当类型的纤维结合,所述纤维例如为碳纤维、玻璃纤维、aramidic纤维、硼纤维或者其它金属的纤维,或者陶瓷纤维。
13.一种由聚合物制成的中空结构的支柱或者杆,其特征在于,所述中空结构的支柱或者杆通过组装具有较短长度的模块而构成,并且所述中空结构的支柱或者杆包括两个或者多个对正的长形中空模块,每个所述中空模块设置有相应的凹入截头锥形末端部和凸出截头锥形末端部,利用粘合剂处理所述末端部,其中,凹入末端部的内侧表面的锥角与凸出末端部的外侧表面的锥角相同,并且在末端部的结构连接和粘合、以及粘合剂的聚合的过程中,位于杆端部之间的轴向压力装置将适当的压力施加在所述各模块之间的接触面上。
专利摘要
本发明涉及以聚合物制造中空结构的支柱或者杆的新方法,其通过组装具有更短长度的模块获得,所述支柱或者杆包括两个或者多个长形模块,每个模块设置有凸出-凹入截头锥形末端部(S3、S6),其中,“凹入”末端部(S6)的内侧表面的锥角与“凸出”末端部(S3)的外侧表面的锥角相同,所述新方法包括下述步骤对正所述中空模块;将所述凹入和凸出末端部插入相邻的对正模块,并且用粘合剂将所述凹入和凸出末端部粘合;优选地在端部应用轴向压力装置,以至因为由所述模块构成的杆的端部被压紧,所以在末端部的结构连接和粘合,以及粘合剂的聚合的过程中,每个外侧凸出锥形表面粘附于和施加适当的压力于相邻模块的内侧凹入锥形表面。
文档编号B63B15/00GK1993218SQ20058002267
公开日2007年7月4日 申请日期2005年6月23日
发明者朱塞佩·博塔奇恩 申请人:埃克塞特工程责任有限公司, 朱塞佩·博塔奇恩导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1