温室大棚的控制方法、控制装置和服务器与流程

文档序号:11464473阅读:240来源:国知局
温室大棚的控制方法、控制装置和服务器与流程

本发明涉及温室大棚控制技术领域,具体而言,涉及温室大棚的控制方法、温室大棚的控制装置和服务器。



背景技术:

目前,在对温室大棚进行种植管理时,需要种植工作人员参与,例如,浇水、施肥、喷洒农药,对温室大棚进行种植管理时不仅会占用大量的人力资源,而且参与管理的种植工作人员需要有一定的工作经验,例如,具有判断何时浇水、何时施肥和何时喷洒农药的能力。

因此,如何对温室大棚进行自动化控制,减少种植工作人员的参与成为亟待解决的技术问题。



技术实现要素:

本发明正是基于上述问题,提出了一种新的技术方案,可以对温室大棚进行自动化控制,减少种植工作人员的参与。

有鉴于此,本发明的第一方面提出了一种温室大棚的控制方法,用于服务器,所述温室大棚的控制方法包括:采集温室大棚中植物的生长参数;获取所述温室大棚中植物的名称,根据所述名称从云端数据库获取所述温室大棚中植物的最佳生长环境条件;检测所述生长参数是否满足所述最佳生长环境条件;若所述生长参数不满足所述最佳生长环境条件,则对所述温室大棚进行控制,直到所述生长参数满足所述最佳生长环境条件时为止。

在该技术方案中,通过检测温室大棚中植物的生长参数是否符合该植物的最佳生长环境条件,来确定植物当前的生长环境是否适宜,当检测当前的生长环境不适宜植物生长时,自动对温室大棚进行控制,以使植物生长在一个适宜的环境中,从而减少了种植工作人员的种植工作量。而且本方案不需要依靠专业的种植工作人员,避免了对种植工作人员进行专业工作的培训。另外,由于植物种类比较多,存储各种植物的最佳生长环境条件的相关数据会占用较大的空间,因此,通过将各种植物的最佳生长环境条件存储在云端数据库中,可以有效缓解服务器存储数据的压力。

在上述技术方案中,优选地,所述生长参数包括以下之一或多种的组合:土壤湿度、土壤成分、植物叶片成分,以及所述对所述温室大棚进行控制,具体包括:若所述土壤湿度不满足所述最佳生长环境条件,则控制所述温室大棚自动进行灌溉;若所述土壤成分不满足所述最佳生长环境条件,则控制所述温室大棚自动进行施肥;若所述植物叶片成分不满足所述最佳生长环境条件,则控制所述温室大棚自动喷洒农药。

在该技术方案中,可以自动对温室大棚进行灌溉、施肥和喷洒农药,实现温室大棚的自动化控制,从而有效地减少了种植工作人员的工作量。

在上述任一技术方案中,优选地,还包括:在控制所述温室大棚自动进行灌溉之后,记录灌溉所述温室大棚时使用的水量、灌溉时间和灌溉区域;在控制所述温室大棚自动进行施肥之后,记录肥料的名称、施肥时间和施肥区域;在控制所述温室大棚自动喷洒农药之后,记录喷洒的农药的名称、喷洒农药的时间和喷洒农药的区域。

在该技术方案中,每当对温室大棚进行灌溉、施肥和喷洒农药后,记录灌溉、施肥和喷洒农药的相关信息,以便于工作人员查看温室大棚的自动控制情况。

在上述任一技术方案中,优选地,所述获取所述温室大棚中植物的名称,具体包括:获取所述温室大棚的编号;根据所述温室大棚的编号获取所述温室大棚中植物的名称。

在该技术方案中,每个温室大棚都有一个编号,根据该编号获取温室大棚中植物的名称,避免了通过对植物拍照并进行图像识别的方式来识别出植物的名称,从而保证了植物名称获取的准确性和便捷性。

在上述任一技术方案中,优选地,还包括:存储所述生长参数;根据存储的所述生长参数,生成参数变化曲线。

在该技术方案中,通过生成植物的生长曲线,以便于种植工作人员查看植物的生长过程以及在每个过程下的生长状态,也便于种植工作人员追踪植物在种植过程中出现的问题。

本发明的第二方面提出了一种温室大棚的控制装置,用于服务器,所述温室大棚的控制装置包括:采集单元,用于采集温室大棚中植物的生长参数;获取单元,用于获取所述温室大棚中植物的名称,根据所述名称从云端数据库获取所述温室大棚中植物的最佳生长环境条件;检测单元,用于检测所述生长参数是否满足所述最佳生长环境条件;控制单元,用于若所述生长参数不满足所述最佳生长环境条件,则对所述温室大棚进行控制,直到所述生长参数满足所述最佳生长环境条件时为止。

在该技术方案中,通过检测单元检测温室大棚中植物的生长参数是否符合该植物的最佳生长环境条件,来确定植物当前的生长环境是否适宜,当检测单元检测到当前的生长环境不适宜植物生长时,通过控制单元自动对温室大棚进行控制,以使植物生长在一个适宜的环境中,从而减少了种植工作人员的种植工作量。而且本方案不需要依靠专业的种植工作人员,避免了对种植工作人员进行专业工作的培训。另外,由于植物种类比较多,存储各种植物的最佳生长环境条件的相关数据会占用较大的空间,因此,通过将各种植物的最佳生长环境条件存储在云端数据库中,可以有效缓解服务器存储数据的压力。

在上述技术方案中,优选地,所述生长参数包括以下之一或多种的组合:土壤湿度、土壤成分、植物叶片成分,以及所述控制单元具体用于,若所述土壤湿度不满足所述最佳生长环境条件,则控制所述温室大棚自动进行灌溉;若所述土壤成分不满足所述最佳生长环境条件,则控制所述温室大棚自动进行施肥;若所述植物叶片成分不满足所述最佳生长环境条件,则控制所述温室大棚自动喷洒农药。

在该技术方案中,可以通过控制单元自动对温室大棚进行灌溉、施肥和喷洒农药,实现温室大棚的自动化控制,从而有效地减少了种植工作人员的工作量。

在上述任一技术方案中,优选地,还包括:记录单元,用于在所述控制单元控制所述温室大棚自动进行灌溉之后,记录灌溉所述温室大棚时使用的水量、灌溉时间和灌溉区域;所述记录单元还用于,在所述控制单元控制所述温室大棚自动进行施肥之后,记录肥料的名称、施肥时间和施肥区域;所述记录单元还用于,在所述控制单元控制所述温室大棚自动喷洒农药之后,记录喷洒的农药的名称、喷洒农药的时间和喷洒农药的区域。

在该技术方案中,每当对温室大棚进行灌溉、施肥和喷洒农药后,通过记录单元记录灌溉、施肥和喷洒农药的相关信息,以便于工作人员查看温室大棚的自动控制情况。

在上述任一技术方案中,优选地,所述获取单元具体用于,获取所述温室大棚的编号;根据所述温室大棚的编号获取所述温室大棚中植物的名称。

在该技术方案中,每个温室大棚都有一个编号,获取单元根据该编号获取温室大棚中植物的名称,避免了通过对植物拍照并进行图像识别的方式来识别出植物的名称,从而保证了植物名称获取的准确性和便捷性。

在上述任一技术方案中,优选地,还包括:存储单元,用于存储所述生长参数;生成单元,用于根据存储的所述生长参数,生成参数变化曲线。

在该技术方案中,通过生成单元生成植物的生长曲线,以便于种植工作人员查看植物的生长过程以及在每个过程下的生长状态,也便于种植工作人员追踪植物在种植过程中出现的问题。

本发明的第三方面提出了一种服务器,包括上述技术方案中任一项所述的温室大棚的控制装置,因此,该服务器具有和上述技术方案中任一项所述的温室大棚的控制装置相同的技术效果,在此不再赘述。

通过本发明的技术方案,可以对温室大棚进行自动化控制,减少种植工作人员的参与。

附图说明

图1示出了根据本发明的一个实施例的温室大棚的控制方法的流程示意图;

图2示出了根据本发明的一个实施例的植物的生长参数的采集方法的流程示意图;

图3示出了根据本发明的一个实施例的检测植物的生长参数是否符合条件的方法的流程示意图;

图4示出了根据本发明的一个实施例的温室大棚执行控制指令的方法的流程示意图;

图5示出了根据本发明的一个实施例的温室大棚的控制装置的框图;

图6示出了根据本发明的一个实施例的服务器的框图;

图7示出了根据本发明的一个实施例的服务器的原理示意图。

具体实施方式

为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。

图1示出了根据本发明的一个实施例的温室大棚的控制方法的流程示意图。

如图1所示,根据本发明的一个实施例的温室大棚的控制方法,用于服务器,温室大棚的控制方法包括:

步骤102,采集温室大棚中植物的生长参数。

步骤104,获取温室大棚中植物的名称,根据名称从云端数据库获取温室大棚中植物的最佳生长环境条件。

步骤106,检测生长参数是否满足最佳生长环境条件。

步骤108,若生长参数不满足最佳生长环境条件,则对温室大棚进行控制,直到生长参数满足最佳生长环境条件时为止。

在该技术方案中,通过检测温室大棚中植物的生长参数是否符合该植物的最佳生长环境条件,来确定植物当前的生长环境是否适宜,当检测当前的生长环境不适宜植物生长时,自动对温室大棚进行控制,以使植物生长在一个适宜的环境中,从而减少了种植工作人员的种植工作量。而且本方案不需要依靠专业的种植工作人员,避免了对种植工作人员进行专业工作的培训。另外,由于植物种类比较多,存储各种植物的最佳生长环境条件的相关数据会占用较大的空间,因此,通过将各种植物的最佳生长环境条件存储在云端数据库中,可以有效缓解服务器存储数据的压力。

可以理解的是,生长参数包括以下之一或多种的组合:土壤湿度、土壤成分、植物叶片成分,以及对温室大棚进行控制,具体包括:若土壤湿度不满足最佳生长环境条件,则控制温室大棚自动进行灌溉;若土壤成分不满足最佳生长环境条件,则控制温室大棚自动进行施肥;若植物叶片成分不满足最佳生长环境条件,则控制温室大棚自动喷洒农药。

根据供植物生长的土壤数据来确定是否自动灌溉和施肥。当植物叶片上有害虫时,害虫会在植物叶片上留下分泌物,或者植物叶片成分(例如叶绿素)会出现异常,因此,可以根据植物叶片成分来确定植物上是否有害虫。通过本方案,可以自动对温室大棚进行灌溉、施肥和喷洒农药,实现温室大棚的自动化控制,从而有效地减少了种植工作人员的工作量。

当然,生长参数包括但不限于以下之一或多种的组合:土壤湿度、土壤成分、植物叶片成分,例如,生长参数还可以是环境温度和空气湿度,若环境温度不满足最佳生长环境条件,则控制温室大棚自动调节温度;若空气湿度不满足最佳生长环境条件,则控制温室大棚自动向空气中喷洒水雾,以调节空气湿度。

可以理解的是,温室大棚的控制方法还包括:在控制温室大棚自动进行灌溉之后,记录灌溉温室大棚时使用的水量、灌溉时间和灌溉区域;在控制温室大棚自动进行施肥之后,记录肥料的名称、施肥时间和施肥区域;在控制温室大棚自动喷洒农药之后,记录喷洒的农药的名称、喷洒农药的时间和喷洒农药的区域。

每当对温室大棚进行灌溉、施肥和喷洒农药后,记录灌溉、施肥和喷洒农药的相关信息,以便于工作人员查看温室大棚的自动控制情况。

可以理解的是,获取温室大棚中植物的名称,具体包括:获取温室大棚的编号;根据温室大棚的编号获取温室大棚中植物的名称。

每个温室大棚都有一个编号,根据该编号获取温室大棚中植物的名称,避免了通过对植物拍照并进行图像识别的方式来识别出植物的名称,从而保证了植物名称获取的准确性和便捷性。

可以理解的是,温室大棚的控制方法还包括:存储生长参数;根据存储的生长参数,生成参数变化曲线。

通过生成植物的生长曲线,例如,生成植物从发芽到摘取果实的过程中土壤湿度的变化曲线、土壤成分的变化曲线、植物叶片成分的变化曲线,以便于种植工作人员查看植物的生长过程以及在每个过程下的生长状态,也便于种植工作人员追踪植物在种植过程中出现的问题。

下面结合图2至图4进一步地说明上述技术方案。

如图2所示,根据本发明的一个实施例的植物的生长参数的采集方法,包括:

步骤202,设定采集周期,定时器计时。

步骤204,判断是否到达采集时刻,在判定到达采集时刻时,执行步骤206,在判定未到达采集时刻时,重新执行步骤204。

步骤206,土壤采集,根据采集的土壤,分析土壤湿度和土壤成分。

步骤208,环境温度。

步骤210,采集空气湿度。

步骤212,汇总采集到的各类数据。

在执行步骤212之后,执行以下的步骤302-步骤312。

步骤302,获取温室大棚的编号,根据该编号获取温室大棚中植物的名称。

步骤304,查询云端信息库,获取植物的最佳生长环境条件。

步骤306,判断植物生长参数是否满足最佳生长环境条件,在判定植物生长参数满足最佳生长环境条件时,执行步骤310,在判定植物生长参数不满足最佳生长环境条件时,执行步骤308。

步骤308,生成调整方案。

步骤310,存储植物的生长参数。

步骤312,向温室大棚下发控制指令。

在执行步骤312之后,温室大棚执行以下的步骤402-步骤414。

步骤402,解析控制指令。

步骤404,判断控制指令中是否有“灌溉”指令,在判定控制指令中有“灌溉”指令时,执行步骤406,在判定控制指令中没有“灌溉”指令时,执行步骤408。

步骤406,记录灌溉数据,可以在温室大棚执行“灌溉”指令时或者在执行“灌溉”指令之后记录灌溉数据。

步骤408,判断控制指令中是否有“施肥”指令,当判定控制指令中有“施肥”指令时,执行步骤410,当判定控制指令中没有“施肥”指令时,执行步骤412。

步骤410,记录施肥数据,可以在温室大棚执行“施肥”指令时或者在执行“施肥”指令之后记录施肥数据。

步骤412,判断控制指令中是否有“喷洒农药”指令,当判定控制指令中有“喷洒农药”指令时,执行步骤414,当判定控制指令中没有“喷洒农药”指令时,结束本次流程。

步骤414,记录喷洒农药的数据,可以在温室大棚执行“喷洒农药”指令时或者在执行“喷洒农药”指令之后记录喷洒农药的数据。

图5示出了根据本发明的一个实施例的温室大棚的控制装置的框图。

如图5所示,根据本发明的一个实施例的温室大棚的控制装置500,用于服务器,温室大棚的控制装置500包括:采集单元502、获取单元504、检测单元506和控制单元508。

采集单元502,用于采集温室大棚中植物的生长参数;获取单元504,用于获取温室大棚中植物的名称,根据名称从云端数据库获取温室大棚中植物的最佳生长环境条件;检测单元506,用于检测生长参数是否满足最佳生长环境条件;控制单元508,用于若生长参数不满足最佳生长环境条件,则对温室大棚进行控制,直到生长参数满足最佳生长环境条件时为止。

在该技术方案中,通过检测单元506检测温室大棚中植物的生长参数是否符合该植物的最佳生长环境条件,来确定植物当前的生长环境是否适宜,当检测单元506检测到当前的生长环境不适宜植物生长时,自动对温室大棚进行控制,以使植物生长在一个适宜的环境中,从而减少了种植工作人员的种植工作量。而且本方案不需要依靠专业的种植工作人员,避免了对种植工作人员进行专业工作的培训。另外,由于植物种类比较多,存储各种植物的最佳生长环境条件的相关数据会占用较大的空间,因此,通过将各种植物的最佳生长环境条件存储在云端数据库中,可以有效缓解服务器存储数据的压力。

可以理解的是,生长参数包括以下之一或多种的组合:土壤湿度、土壤成分、植物叶片成分,以及控制单元508具体用于,若土壤湿度不满足最佳生长环境条件,则控制温室大棚自动进行灌溉;若土壤成分不满足最佳生长环境条件,则控制温室大棚自动进行施肥;若植物叶片成分不满足最佳生长环境条件,则控制温室大棚自动喷洒农药。

根据供植物生长的土壤数据来确定是否自动灌溉和施肥。当植物叶片上有害虫时,害虫会在植物叶片上留下分泌物,或者植物叶片成分(例如叶绿素)会出现异常,因此,可以根据植物叶片成分来确定植物上是否有害虫。通过本方案,控制单元508可以自动对温室大棚进行灌溉、施肥和喷洒农药,实现温室大棚的自动化控制,从而有效地减少了种植工作人员的工作量。

可以理解的是,温室大棚的控制装置500还包括:记录单元510,用于在控制单元508控制温室大棚自动进行灌溉之后,记录灌溉温室大棚时使用的水量、灌溉时间和灌溉区域;记录单元510还用于,在控制单元508控制温室大棚自动进行施肥之后,记录肥料的名称、施肥时间和施肥区域;记录单元510还用于,在控制单元508控制温室大棚自动喷洒农药之后,记录喷洒的农药的名称、喷洒农药的时间和喷洒农药的区域。

每当对温室大棚进行灌溉、施肥和喷洒农药后,记录单元510记录灌溉、施肥和喷洒农药的相关信息,以便于工作人员查看温室大棚的自动控制情况。

可以理解的是,获取单元504具体用于,获取温室大棚的编号;根据温室大棚的编号获取温室大棚中植物的名称。

每个温室大棚都有一个编号,获取单元504根据该编号获取温室大棚中植物的名称,避免了通过对植物拍照并进行图像识别的方式来识别出植物的名称,从而保证了植物名称获取的准确性和便捷性。

可以理解的是,温室大棚的控制装置500还包括:存储单元512,用于存储生长参数;生成单元514,用于根据存储的生长参数,生成参数变化曲线。

通过生成单元514生成植物的生长曲线,例如,生成植物从发芽到摘取果实的过程中土壤湿度的变化曲线、土壤成分的变化曲线、植物叶片成分的变化曲线,以便于种植工作人员查看植物的生长过程以及在每个过程下的生长状态,也便于种植工作人员追踪植物在种植过程中出现的问题。

图6示出了根据本发明的一个实施例的服务器的框图。

如图6所示,根据本发明的一个实施例的服务器600,包括上述技术方案中任一项的温室大棚的控制装置500,因此,该服务器600具有和上述技术方案中任一项的温室大棚的控制装置500相同的技术效果,在此不再赘述。

图7示出了根据本发明的一个实施例的服务器的原理示意图。

如图7所示,服务器采集温室大棚中植物的生长参数,该生长参数包括土壤湿度、土壤成分、环境温度和空气湿度;获取温室大棚中植物的名称,根据名称从云端数据库获取温室大棚中植物的最佳生长环境条件;检测生长参数是否满足最佳生长环境条件;若生长参数不满足最佳生长环境条件,则对温室大棚进行控制,直到生长参数满足最佳生长环境条件时为止。例如,若土壤湿度不满足最佳生长环境条件,则控制温室大棚自动进行灌溉;若土壤成分不满足最佳生长环境条件,则控制温室大棚自动进行施肥;若植物叶片成分不满足最佳生长环境条件,则控制温室大棚自动喷洒农药。

以上结合附图详细说明了本发明的技术方案,通过本发明的技术方案,可以对温室大棚进行自动化控制,减少种植工作人员的参与。

在本发明中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”表示两个或两个以上;术语“相连”、“连接”等均应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1