具有σ-δ调制的多位adc的制作方法

文档序号:1107836阅读:224来源:国知局
专利名称:具有σ-δ调制的多位adc的制作方法
技术领域
本发明涉及血氧计,且具体而言涉及结合脉冲血氧计中的模拟到数字转换使用的∑-Δ调制器。
背景技术
脉冲血氧定量法通常用于测量各种血液化学特征,所述血液化学特征包括(但不限于)动脉血中血红蛋白的血氧饱和度、供应给组织的个体血液脉动的体积,和对应于患者的每一次心跳的血液脉动率。这些特征的测量已通过使用非侵入性传感器来完成,所述传感器将光散射过患者组织中有血液灌流组织的一部分,且其光电地感测此组织中不同波长的光的吸收。所吸收的光的量接着用来计算被测量的血液成分的量。
选择散射过组织的光,使其具有由血液吸收的、数量表示血液中的血液成分的量的一个或一个以上波长。所传输的散射过组织的光的量将根据组织中血液成分的变化量和相关的光吸收而改变。为测量血氧含量,根据用于测量血氧饱和度的已知技术,所述传感器通常已具有适于产生至少两种不同波长的光的光源,且具有对这两种波长敏感的光电检测器。
已知的非侵入性传感器包括固定到身体一部分(如手指、耳朵或头皮)的设备。在动物和人类中,这些身体部分的组织有血液灌流,且组织表面容易接近传感器。
通常,在信号被解调成独立的红光信号和IR信号后,使用用于模拟到数字转换的∑-Δ调制器来进行脉冲血氧计中的模拟到数字转换。使用∑-Δ调制器的脉冲血氧计电路的一实例阐述于美国第5,921,921号专利中。此专利展示两个∑-Δ调制器的使用,一个用于红光通道,且一个用于IR(红外)通道。∑-Δ调制器提供1位的数字分辨率,其中∑-Δ调制器的输出经滤波以产生更高分辨率的信号。此通过使用快速的过取样率(通常为1200Hz),并接着进行滤波以产生缓慢的高分辨率信号来完成。此专利中的∑-Δ调制器的增益通过改变反馈脉冲的宽度来控制。

发明内容
本发明将解调器移到软件域中,在模拟到数字转换器(ADC)之后。将一∑-Δ调制器与一简易ADC一起使用。此允许使用一单个信号路径用于光电流信号,而不是如在需要两个ADC的现有技术中解调成红光和IR分量。红光和IR信号随后在数字域中使用一软件或韧件程序来分离。通过使用同一硬件用于红光和IR两者,不存在引入一个信号而未引入另一信号中的增益误差。由于红光和IR将具有相同频率响应误差,所以血氧处理的计算将消除此误差。在软件中解调还允许使用更复杂的解调方案。
本发明能够通过使用多位反馈数字到模拟转换器(DAC)来提供一独特的脉冲宽度调制(PWM)反馈,从而使用所述∑-Δ调制器产生一准确的多位ADC转换,而非现有技术的单个位转换。所述反馈DAC由一稳定的时钟计时,以提供控制两个参考电压之间的切换的控制输出,所述两个参考电压向回加到输入信号中。添加高参考电压的时间量比上添加低参考电压的时间量,来提供一PWM信号,以得到一准确的模拟反馈。由于所述反馈为一稳定时钟信号的函数,所以本发明降低线性度误差。
在本发明的另一方面中,积分器的输入端处用于所述∑-Δ调制器的开关提供一取样和保持电路。一模拟开关用于在所述积分器的运算放大器的非反相输入端与反相输入端之间切换。与运算放大器的另一输入端的连接使得到开关的输入端电压维持在同一电压电平下。一参考电压连接到此第二输入端(例如,所述非反相输入端)以视需要提供过量电流的来源或吸收体。
在本发明的另一方面中,多联电容器用于所述∑-Δ调制器的所述积分器。不同电容器视所接收的输入信号被接通。此由于一不同电容器可专用于每一待解调的信号而允许一单个∑-Δ调制器和ADC。举例而言,一第一电容器可用于一红光信号,且一第二电容器用于红外信号。另外,第三和第四电容器可用于所述红光与所述红外之间的一第一暗信号,或所述红外与所述红光之间的一第二暗信号。因此,每一电容器存储一特定时隙的量化误差,其允许所述∑-Δ调制器ADC在解调之前对所述信号进行操作。
为了进一步理解本发明的性质和优点,可参考结合附图所说明的以下实施方式。


图1为并入本发明的血氧计的方框图。
图2为根据本发明一实施例的二阶∑-Δ调制器的电路图。
图3为典型∑-Δ调制器的输出的图。
图4为根据本发明一实施例的∑-Δ调制器的电路图,所述实施例使用∑-Δ调制器用于具有模拟开关的取样和保持电路,以避免电荷注射。
图5为说明图4的电路的不同信号的时序图。
图6为根据本发明的∑-Δ调制器的一实施例的电路图,所述实施例在积分器中利用多联电容器。
图7为说明图6的电路的不同信号的时序图。
具体实施例方式
整个系统图1说明并入本发明的血氧定量系统的一实施例。传感器10包括红光LED和红外LED以及一光电检测器。这些器件通过电缆12而连接到电路板14。LED驱动接口16提供LED驱动电流。自传感器所接收的光电流提供到I-V接口18。IR电压和红光电压接着提供到并入本发明的∑-Δ接口20。∑-Δ接口20的输出提供到包括一10位A/D转换器的微控制器22。微控制器22包括用于程序的闪存和用于数据的RAM存储器。血氧计还包括连接到闪存26的微处理器芯片24。最后,使用时钟28,并对传感器10中的数字校准提供接口30。独立主机32接收经处理的信息,还接收线34上的模拟信号以提供模拟显示。
通过使用本发明的具有独特的PWM反馈的∑-Δ调制器,可使用简易且在微控制器22内部的ADC,且其还提供所期望的多位精度。此实施例中的ADC为10位逐次逼近ADC。经精确控制的PWM反馈经由开关58和60连接到参考电压,它们接着在求和节点中与积分器的输入端处的输入信号求和。正负参考电压之间的平均求和值提供期望的反馈。任何误差反馈到随后脉冲周期中。
∑-Δ调制器图2为根据本发明一实施例的∑-Δ调制器的电路图,其包括图1的∑-Δ接口20和微控制器22的部分。具体而言,线40上的模拟输入经由电阻器42提供到运算放大器44的反相输入端,所述运算放大器44与反馈电容器46一起配置为积分器51。非反相输入端连接到参考电压(Ref)。此运算放大器44其后经由连接电阻器48而接有第二运算放大器50,所述第二运算放大器50与反馈电容器52一起作为积分器53进行连接。运算放大器50的输出端连接到模拟到数字转换器54,所述模拟到数字转换器54为图1的微控制器22中的10位A/D转换器。
数字输出经由作为反馈电路的“数字到模拟转换器”56经过第一开关电路58和第二开关电路60被反馈。DAC 56在微控制器22内部,且其产生图5中所示的PWM输出信号。响应于PWM控制信号,开关电路58交替地连接线62和64上的正参考或负参考,从而经由电阻器66与输入信号一起连接到运算放大器44的反相输入端。类似地,第二开关电路60连接与关于开关电路58所示的连接反相的负参考和正参考。这些参考为经由电阻器72连接到运算放大器50的反相输入端的参考电压68和70。
来自数字到模拟转换器56的反馈信号为∑-Δ调制器的脉冲宽度调制(PWM)信号,例如图3中所示的典型信号,其显示一正弦波形。通过使用PWM信号和仅两个电压之间的切换,反馈的线性度为时钟信号的函数。由于时钟信号是稳定的,且与模拟电压相比可更为准确地分割,所以线性度误差被最小化。多位模拟到数字转换器在较低取样率的情况下提供更准确的结果,而不是现有技术设备的单个位转换器。如此便减轻在软件中进行分样滤波的要求。
取样和保持图4为本发明一实施例的电路图,其说明控制到∑-Δ调制器中的积分器的输入的开关,其中所述开关用于取样和保持电路。图4展示许多与图2相同的电路方框,例如模拟到数字转换器54、反馈数字到模拟转换器56、开关电路58、输入电阻器42和66,以及与电容器46一起配置为积分器的运算放大器44。为简易起见仅展示一单阶,且应理解,也可添加如图2中的额外积分器53,及一用于所述第二积分器的用于取样和保持的类似开关。
图4添加D触发器74和开关电路76。开关76将输入端40与运算放大器44的输入端断开,以用于保持操作。当输入端在样本被保持后重新连接时,由于输入端处的电压可由于反馈电路经过开关58和电阻器66而急剧改变,所以会引起问题。由于此反馈在正负电压之间切换,所以可出现输入电压的显著改变。举例而言,所述反馈可能在约0-3伏特之间改变,而输入在1伏特左右。此将导致1.5伏特的摆动。此摆动将在重新连接到运算放大器44的反相输入端后使电荷注射入电容器46中,而此为不合需要的。
本发明通过将节点73连接到运算放大器44的非反相输入端而避免此电荷注射。此非反相输入端进一步连接到参考电压。此得到将建置有供流动的地方的电流。电压差将导致电流流向参考电压75或远离参考电压75流动。因此在重新连接后,将存在最小的电荷注射。此结构的结果为来自开关的电荷注射将实质上为恒定的(只要有),且此电荷注射稍后可通过使用软件或韧件程序在数字域中进行处理而消除。
图5说明图4的电路的波形中的若干个。首先展示在数字到模拟转换器56的输出端处线76上的脉冲宽度调制(PWM)信号。箭头表示脉冲宽度将视信号而改变。其次,展示在D触发器74的非反相输出端处线78上的取样/保持信号。最后,展示在运算放大器44和电容器46的积分器的输出端处线80上的电压输出(VO)信号。如图可见,VO信号在PWM信号为高时衰减,而在PWM信号为低时增加或积分,只要取样/保持信号为高。在取样/保持信号为低时,VO信号保持恒定以使其可被取样。尽管图5中每次均在同一电平下进行说明,但所述电平将随着积分的量和来自PWM反馈信号的脉冲的宽度而改变。
多联电容器∑-Δ调制器图6说明图4的电路的修改,其中图4的电容器46被四个电容器C1、C2、C3和C4中的一者所取代,所述四个电容器C1、C2、C3和C4由开关电路82来选择。
在典型的现有脉冲血氧计中,两个独立的积分器将需要与模拟域中的两个独立信号路径和解调一起使用,以使得两个不同的积分器可使用两个不同电容器用于红光和IR信号。替代接通和切断电容器,可使用单个积分器,且可消除模拟域解调电路。替代地,红光和IR信号经由同一积分器进行时间复用,其中不同电容器被接通以用于红光和IR信号。另外,可添加两个额外的电容器以用于红光信号与IR信号之间的暗周期。由于暗信号可取决于其是在IR信号之后还是在红光信号之后而改变,所以可提供两个不同的电容器以与暗1信号和暗2信号对应。因此,本发明允许信号的解调移到数字域中且由软件或韧件中的程序来执行,而不是使用硬件执行。如此允许硬件电路通过仅使用单个信号路径而减小尺寸,从而不仅节省了空间和成本,而且节省了功率。
图7说明图6的不同信号,有如图5中的PWM、取样/保持和VO信号,另外展示输入线40上的电压输入(Vi)信号。
随着输入线从IR到暗1到红光到暗2地变化,开关电路82在不同电容器C1-C4之间切换。因为控制器知道其何时接通和切断红光和IR LED,且因此可在相同时刻开关电容器,所以所述切换由来自控制器的信号控制。
在一个实施例中,组合图2、4和6的特征,以提供具有PWM反馈的二阶积分器、用于每一积分器以充当积分器的取样和保持的开关电路,和被接通以用于每一积分器的多联电容器。因此,本发明允许在模拟硬件电路中使用单个路径用于红光和IR信号两者,从而节省组件、成本、电路尺寸和功率消耗。通过将解调从硬件移到数字域中以在软件/韧件中进行,无需考虑用于红光和IR信号的滤波器的失配,因为是使用相同的滤波器。由于硬件中滤波的准确度取决于组件公差,使用同一信号路径允许使用同一硬件,因此消除引入一个信号而未引入另一信号中的增益误差。如果红光信号和IR信号具有相同频率响应,那么由软件用于计算氧饱和度的比中之比(rat-rat)等式将消除所述误差。另外,与可在硬件中简单地进行的解调方案相比,在软件中进行解调允许使用更复杂的解调方案。
如所属领域的技术人员所了解,本发明可以其它特定形式来体现,而不脱离本发明的本质特征。举例而言,可使用三阶调制器或更高或更低分辨率的多位模拟到数字转换器。可在不脱离本发明的本质特征的情况下在电路中进行无数其它改变。因此,前述描述意在对以上权利要求书中所阐述的本发明的范畴进行说明而非限制。
权利要求
1.一种血氧计装置,其包含一∑-Δ调制器,其具有一经耦合以接收一模拟传感器信号的输入端;一第一开关电路,其耦合到所述输入端,用以在将第一参考电压连接到所述输入端与将第二参考电压连接到所述输入端之间进行切换;和一反馈电路,其耦合到所述∑-Δ调制器的一输出端,用以通过所述开关电路控制在所述第一与所述第二参考电压之间的所述切换。
2.根据权利要求1所述的血氧计装置,其进一步包含一多位模拟到数字转换器,其耦合到所述∑-Δ调制器的所述输出端,以提供一数字输出;且所述反馈电路包括一数字到模拟转换器,所述数字到模拟转换器具有一耦合到所述数字输出端的输入端,和一耦合到所述开关电路的输出端。
3.根据权利要求1所述的血氧计装置,其进一步包含一电阻器,其耦合于所述开关电路与所述∑-Δ调制器的所述输入端之间。
4.根据权利要求1所述的血氧计装置,其中所述∑-Δ调制器包含第一和第二积分器,且进一步包含一第二开关电路,其耦合到所述第二积分器的一输入端且由所述反馈电路控制,用以在所述第一开关电路连接到所述第一参考电压时切换到所述第二参考电压,且在所述第一开关电路切换到所述第二参考电压时切换到所述第一参考电压。
5.根据权利要求1所述的血氧计装置,其进一步包含其中所述∑-Δ调制器包括一配置为一积分器的运算放大器;一第二开关电路,其经配置以通过将所述输入端交替地耦合到所述运算放大器的反相和非反相输入端而充当一取样和保持;和一控制电路,其耦合到所述反馈电路,用以控制所述第二开关电路的所述切换。
6.根据权利要求5所述的血氧计装置,其中所述控制电路包含一触发器。
7.根据权利要求1所述的血氧计装置,其中所述∑-Δ调制器包括一积分器,进一步包含至少第一和第二电容器;和一电容器开关电路,用以在接收到一第一传感器信号后将所述第一电容器连接到所述积分器中,且在接收到一第二传感器信号后将所述第二电容器连接到所述积分器中。
8.根据权利要求7所述的血氧计装置,其中所述第一传感器信号为一红光信号且所述第二传感器信号为一红外信号。
9.根据权利要求8所述的血氧计装置,其进一步包含一第三电容器,用以在接收到所述红光信号与所述红外信号之间的一暗信号后连接到所述积分器中。
10.根据权利要求9所述的血氧计装置,其进一步包含一第四电容器,用以针对所述红外信号与所述红光信号之间的一第二暗信号而连接到所述积分器中。
11.根据权利要求1所述的血氧计装置,其中一经由所述∑-Δ调制器的单个信号路径用于一红光信号和一红外信号两者。
12.根据权利要求11所述的血氧计装置,其进一步包含一多位模拟到数字转换器,其耦合到所述∑-Δ调制器的所述输出端以提供一数字输出;和一存储器,其含有一用于将所述数字输出解调成红光和红外数字信号的程序。
13.一种血氧计装置,其包含一∑-Δ调制器,其具有一经耦合以接收一模拟传感器信号的输入端;一第一开关电路,其耦合到所述输入端,用以在将第一参考电压连接到所述输入端与将第二参考电压连接到所述输入端之间进行切换;一多位模拟到数字转换器,其耦合到所述∑-Δ调制器的所述输出端以提供一数字输出;和一反馈电路,其耦合到所述多位模拟到数字转换器的一输出端,用以通过所述开关电路控制在所述第一与所述第二参考电压之间的所述切换,所述反馈电路将一脉冲宽度调制信号提供到所述开关电路;和一电阻器,其耦合于所述开关电路与所述∑-Δ调制器的所述输入端之间。
14.一种血氧计装置,其包含一∑-Δ调制器,其具有一经耦合以接收一模拟传感器信号的输入端,其中所述∑-Δ调制器包括一配置为一积分器的运算放大器;一开关电路,其经配置以通过将所述输入端交替地耦合到所述运算放大器的反相和非反相输入端,而充当一取样和保持;一反馈电路,其耦合于一输出端与所述∑-Δ调制器的所述输入端之间;和一控制电路,其耦合到所述反馈电路,用以控制所述开关电路的所述切换。
15.一种血氧计装置,其包含一∑-Δ调制器,其具有一经耦合以接收一模拟传感器信号的输入端,其中所述∑-Δ调制器包括一积分器;至少第一和第二电容器;和一电容器开关电路,用以在接收到一第一传感器信号后将所述第一电容器连接到所述积分器中,且在接收到一第二传感器信号后将所述第二电容器连接到所述积分器中。
16.根据权利要求16所述的血氧计装置,其中所述第一传感器信号为一红光信号且所述第二传感器信号为一红外信号。
17.根据权利要求17所述的血氧计装置,其进一步包含一第三电容器,用以在接收到所述红光信号与红外信号之间的一暗信号后连接到所述积分器中。
18.根据权利要求18所述的血氧计装置,其进一步包含一第四电容器,用以针对所述红外信号与所述红光信号之间的一第二暗信号而连接到所述积分器中。
19.一种血氧计装置,其包含一∑-Δ调制器,其具有一经耦合以接收一模拟传感器信号的输入端;一多位模拟到数字转换器,其耦合到所述∑-Δ调制器的所述输出端以提供一数字输出;一反馈电路,其耦合于所述模拟到数字转换器的一输出端与所述∑-Δ调制器的所述输入端之间;和一存储器,其含有一用于将所述数字输出解调成红光和红外数字信号的程序其中一经由所述∑-Δ调制器的单个信号路径用于经调制的红光和红外信号。
全文摘要
本发明涉及一种血氧计,其使用一∑-△调制器和一多位ADC(54),它们具有允许高精度多位转换的PWM反馈。解调在软件中进行,因此仅需要一单个硬件路径用于红光和IR两者。将多联电容器切换到所述∑-△调制器中的积分器(44)中,其中不同的电容器用于红光、IR和暗信号,从而允许使用所述单个硬件路径。在所述∑-△调制器的输入端处的一开关电路(76)由所述PWM反馈(56)控制用作一取样和保持。
文档编号A61B5/00GK1929778SQ200580005860
公开日2007年3月14日 申请日期2005年2月24日 优先权日2004年2月25日
发明者伊桑·彼得森, 威廉·谢伊, 布拉德福德·B·丘 申请人:内尔科尔普里坦贝内特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1