用于射线图像的肺分割和骨抑制技术的制作方法

文档序号:11847815阅读:300来源:国知局
用于射线图像的肺分割和骨抑制技术的制作方法与工艺

技术领域

本发明涉及医学成像,并且在特定的实施例中涉及用于射线图像的肺分割和骨抑制技术。



背景技术:

肺分割被用于与在射线图像(例如X光片等)中肺部分析相关的各种任务。例如,肺分割常常被用来诊断肺气肿,并且也是用于其它肺部结构和异常(诸如血管、裂隙、小叶和结节)的分割的预处理步骤。骨抑制也常常在诊断之前对射线图像执行。因而,期望用于在射线图像中准确地执行肺分割和骨抑制的技术。



技术实现要素:

通过描述用于射线图像的肺分割和骨抑制技术的本公开内容的实施例,总体上实现了技术优点。

根据实施例,提供了用于执行肺分割的方法。在这个例子中,该方法包括接收射线图像、识别射线图像中的感兴趣区域(ROI)边界、根据ROI边界识别肺边界以及合并肺边界来生成分割的肺结构。

根据另一实施例,提供了用于执行骨抑制的方法。在这个例子中,该方法包括接收射线图像以及检测射线图像中的骨。检测到的骨包括锁骨、后肋骨和前肋骨之一或它们的组合。该方法还包括抑制射线图像中检测到的骨,以生成骨抑制的图像。

根据还有另一实施例,提供了用于执行骨抑制的方法。在这个例子中,该方法包括接收射线图像、对射线图像执行肺分割以生成分割的肺图像、检测分割的肺图像中的锁骨、检测分割的肺图像中的肋骨以及抑制从射线图像检测到的骨以生成骨抑制的图像。

附图说明

为了对本公开内容及其优点的更完整理解,现在结合附图参考以下描述,其中:

图1示出用于执行肺分割的实施例方法的流程图;

图2A-2B示出了实施例射线图像的示图;

图3A-3B示出了附加的实施例射线图像的示图;

图4A-4B示出了还有附加的实施例射线图像的示图;

图5示出了还有另一附加的实施例射线图像的示图;

图6A-6D示出了还有附加的实施例射线图像的示图;

图7示出了被平滑的水平强度投影向量的曲线图;

图8示出了还有另一实施例射线图像的示图;

图9示出了被平滑的垂直强度投影向量的曲线图;

图10示出了还有另一实施例射线图像的示图;

图11示出了另一被平滑的水平强度投影向量的曲线图;

图12A-12B示出了还有附加的实施例射线图像的示图;

图13示出了还有附加的实施例射线图像的示图;

图14A-14C示出了与射线图像关联的过零点的示图;

图15A-15C示出了与射线图像关联的附加的过零点的示图;

图16A-16C示出了还有附加的实施例射线图像的示图;

图17A-17B示出了还有附加的实施例射线图像的示图;

图18A-18C示出了还有附加的实施例射线图像的示图;

图19A-19B示出了还有附加的实施例射线图像的示图;

图20A示出了内肺边界的潜在边缘候选的示图;

图20B示出了还有另一实施例射线图像的示图;

图21A-21B示出了还有附加的实施例射线图像的示图;

图22A-22B示出了还有附加的实施例射线图像的示图;

图23示出了实施例骨抑制模块的示图;

图24A-24B示出了还有附加的实施例射线图像的示图;

图24C示出了射线图像分布的曲线图;

图25A-25C示出了射线图像中的强度分布位置的示图;

图26示出了还有另一实施例射线图像的示图;

图27示出了还有另一实施例射线图像的示图;

图28示出了还有另一实施例射线图像的示图;

图29A-29B示出了还有附加的实施例射线图像的示图;及

图30示出了实施例计算平台的示图。

具体实施方式

在下面详细讨论本公开内容的实施例的制作和使用。但是,应当明白,本文所公开的概念可以在多种具体的背景下体现,并且本文所讨论的具体实施例仅仅是说明性的并且不用来限制权利要求的范围。另外,应当理解,在不背离如由所附权利要求定义的本公开内容的精神和范围的情况下,可以在本文作出各种改变、替换和变更。

本公开内容的各方面提供用于分析人体胸腔的X射线的实施例肺分割技术。实施例肺分割技术从输入图像中去除虚假边界像素以获得受保护的区域,并利用基于解剖和/或图像的信息从受保护的区域计算粗略的肺部感兴趣区域(ROI)。其后,感兴趣区域中的肺轮廓/边界被识别、精细化和合并,以生成肺分割结果,例如,分割的肺结构。这些和其它方面将在下面更详细地讨论。

图1示出了用于执行肺分割的实施例方法100。如图所示,方法100开始于步骤110,在步骤110获得输入图像。输入图像可以是人体胸腔的射线图像。接下来,方法100前进到步骤120,在步骤120虚假边界像素被去除,以获得受保护的区域,该受保护的区域可以是主要由相关属性组成的区域。除其它之外,虚假边界像素可以对应于位于具有不同密度的组织之间的边界(例如,骨和软组织之间的边界)处的欺骗性像素值,并可能导致肺分割期间和/或之后肺结构(例如,结节等)的错误分类。其后,方法100前进到步骤130,在步骤130在受保护的区域中识别感兴趣区域。感兴趣区域可以对应于涵盖主要肺结构的粗略区域或网格(例如,由垂直和水平线形成)。接下来,方法100前进到步骤140,在步骤140肺轮廓被初始化。肺轮廓可以对应于勾勒出肺部的弯曲的肺边界线。其后,方法100前进到步骤150和160,在步骤150和160肺轮廓被精细化并合并,以产生肺分割结果。用于执行这些步骤当中每一个的技术将在下面更详细地解释。

实施例技术通过至少部分地从射线图像消除虚假像素来获得受保护的区域。虚假像素包括在射线图像中描绘的不代表对象(例如,人体胸腔)的任何像素值。虚假像素可以包括虚假边界像素,其是在射线图像中不同密度区域之间的边界处定位的非代表性像素值。

虚假边界像素可以包括沿图像边界定位的暗边界带。图2A示出了包括如由箭头指示的暗边界带的射线图像201。本公开内容的各方面提供了用于裁剪射线图像以去除暗边界带的技术。图2B示出了其中许多暗边界带已被去除的射线图像201的经裁剪的输出图像202。可以通过从射线图像的边界(例如从图像的顶部、底部、左和右边缘)执行搜索来识别暗边界带。在一些实施例中,搜索是在那个特定方向对射线图像的多达三分之一执行的。如果沿带的低强度像素的比率超过阈值,则那个特定带可以被认为是暗的。在一个例子中,如果沿带的像素中至少百分之六十具有低强度值,则那个带被认为是暗的。图像被裁剪,以去除定位于离图像边界至少阈值距离处的检测到的带,以获得经裁剪的输出图像。在一个实施例中,图像被裁剪,以去除定位于离图像边界最远的暗带。

虚假边界像素也可以包括高方差边界。图3A示出了包括如由箭头指示的高方差边界的射线图像301。本公开内容的各方面提供了用于裁剪射线图像以去除高方差边界的技术。图3B示出了其中许多高方差边界已被去除的射线图像301的经裁剪的输出图像302。为了裁剪高方差边界,射线图像被划分成重叠的块并且为每个重叠的块计算方差。基于阈值来识别沿图像边界的具有高方差的候选块。随后,基于所选择的高方差块沿每个边界裁剪射线图像,以获得经裁剪的输出图像。

虚假边界像素还可以包括线性结构。图4A示出了包括如箭头指示的线性结构的射线图像401。本公开内容的各方面提供了用于裁剪射线图像以去除线性结构的技术。图4B示出了其中许多线性结构已被去除的射线图像401的经裁剪的输出图像402。为了去除线性结构,利用(例如)各向同性高斯滤波器对射线图像进行平滑。其它技术也可被用来平滑射线图像。接下来,跨平滑的图像的每个边界方向计算一阶导数,并且基于计算出的导数来识别线性结构。在一个例子中,基于计算出的一阶导数来检测图像边界的五度内的线性结构。在线性结构被识别出之后,射线图像被裁剪,以去除线性结构并获得经裁剪的输出图像。

在处理射线图像以去除虚假像素之后,基于经处理的图像生成粗略的感兴趣区域(ROI)。感兴趣区域可以包括对应于肺部区域的顶部、底部、左、右和中间的五个控制点。贯穿本公开内容,控制点可以被称为ROI边界。例如,顶部控制点可以被称为ROI上边界、底部控制点可以被称为ROI下边界、左控制点可以被称为ROI左边界、右下点可以被称为ROI右边界并且中央控制点可以被称为ROI中心边界。图5示出了其中ROI边界510-516(虚线)和粗糙肺边界520、521(实线)已被识别出的射线图像500。ROI边界510-516包括ROI上边界510、ROI下边界512、ROI右边界514、ROI左边界515和ROI中心边界516。

用于识别ROI边界的实施例技术可以由识别和隔离表示患者的躯干的身体区域开始。可以通过识别表示身体区域的像素并且将位于身体区域之外的像素置零来隔离身体区域。可以使用以下步骤来识别表示身体区域的像素:(i)识别射线图像中的低强度像素(例如,具有低于阈值的像素强度值的像素);(ii)计算识别出的低强度像素的平均像素值和中值像素值;(iii)识别具有小于计算出的平均像素值的强度值的第一组像素;(iii)识别具有大于计算出的平均像素值的强度值的第二组像素;(iv)对第一和第二组像素执行连通分量分析,以获得最大的二进制大对象(blob);及(v)通过利用连通分量过程填充最大的二进制大对象中的洞来获得身体区域。值得注意的是,执行连通分量分析可以保存最大的二进制大对象并消除小的虚假区域。最大的二进制大对象可以对应于身体区域,并且在最大的二进制大对象中填充的洞可以对应于肺的低密度区域。

图6A示出了射线图像601,而图6B示出了在射线图像601中识别具有小于低强度像素的平均值的强度值的像素区域625的射线图像602。

图6C示出了识别虚假像素区域630、低强度肺区域632和最大二进制大对象区域635的射线图像603。图6D示出了识别虚假像素区域630和身体区域645的射线图像604。可以已经通过填充最大二进制大对象区域635中的洞而生成身体区域645,其中洞对应于低强度肺区域632。

识别ROI边界的下一步可以是确定中间、左和右控制点。为了找到中间、左和右控制点,可以通过将身体区域内每个图像列的强度值求和来计算水平强度投影。然后,(例如,利用各向同性高斯滤波器)对水平强度投影进行平滑,然后计算水平强度投影的局部最大值和最小值。图7示出了对应于射线图像604的身体区域645的平滑的水平强度投影向量的曲线图700。曲线图700示出了平滑的水平强度投影向量上的局部最大值711-713和局部最小值701、702。中间控制点可以根据局部最大值711-713来选择。例如,中间控制点可被选择为大于水平强度投影向量的长度的三分之一的最低局部最大值。作为另一个例子,中间控制点可被选择为小于水平强度投影向量的长度的三分之二的最高局部最大值。外面的左和右控制点可以基于投影向量的右和左最大值来选择。在一些实施例中,局部最小值701、702对应于肺中心。

识别ROI边界的下一步可以是识别顶部控制点。为了识别顶部控制点,可以在垂直方向对身体区域的上部子区域计算强度投影。在实施例中,上部子区域包括原始图像最上面的三分之一,例如,位于图像顶部的三分之一的行。图8示出了对应于射线图像604的最上部三分之一的经裁剪的射线图像800。图9示出了对应于经裁剪的射线图像800的平滑的垂直强度投影向量的曲线图900。曲线图900示出了投影平滑的垂直强度投影向量的局部最大值911。

识别ROI边界的下一步可以是识别用于右和左肺的底部控制点,这些被称为ROI右下边界和ROI左下边界。ROI右下边界可以在身体区域的右子区域中识别,其可以包括在ROI上边界下方并且在ROI中心边界和ROI右边界之间的身体区域的一部分。例如,可以通过使用顶部、左和中间控制点裁剪射线图像、为经裁剪的图像计算水平强度投影的二阶导数并根据计算出的水平强度投影的最后的局部最大值计算底部控制点来获得用于患者的右肺的底部控制点。图10示出了通过利用顶部、左、右和中间控制点裁剪射线图像604而得到的经裁剪的射线图像1000。图11示出了对应于经裁切的射线图像1000的平滑的水平强度投影向量的曲线图1100。曲线图1100示出了投影平滑的水平强度投影向量的局部最大值1111。ROI左下边界可以在身体区域的左子区域中识别,其可以包括在ROI上边界下方并且在ROI中心边界和ROI左边界之间的身体区域的一部分。例如,可以利用顶部、右和中间控制点裁剪原始图像、为经裁剪的图像计算水平强度投影的二阶导数并根据计算计算出的水平强度投影的最后的局部最大值计算底部控制点来识别用于患者的左肺的底部控制点。

一旦找到了感兴趣区域,肺外边界就可以被识别。肺外边界被划分为三个部分:中间界限;上界限;和下界限。图12A示出了展现出肺外边界的粗糙估计射线图像1200,而图12B示出了肺外边界1216。肺外边界的粗糙估计可以产生上界限1210(长虚线)、中间界限1212(实线)和下界限1214(短虚线)。中间界限1212可以经由对肺外区域的线拟合过程来估计,这可以利用控制点(例如,ROI边界)和肺中心来建立。值得注意的是,肺外区域可以包括离ROI边界有阈值水平距离的区域。可以利用用于每个肺的ROI边界和肺中心的坐标来计算阈值距离。处于不同的朝向的线被拟合到已建立的区域的二阶导数,并且最佳拟合线被选择为用于肺外边界的中间界限1212。可以利用用于由顶部控制点和中间界限1212定义的下肺区域的线拟合过程来建立上界限1210。可以利用用于由中间界限1212的下半部分定义的下肺区域的线拟合过程来建立下界限1214。然后,上界限1210、中间界限1212和下界限1214可以被合并,以形成肺外边界1216,如图12B中所示。用于合并上界限1210、中间界限1212和下界限1214的一种技术是对肺外边界的粗糙估计的行应用高斯最小二乘拟合算法。

肺轮廓可以在肺外边界和感兴趣的区域识别出之后被初始化。图13示出了射线图像1301、1302。射线图像1301包括ROI界限510-516和肺边界1216。肺边界可以从用来初始化肺边界的ROI界限和图像特征生成。射线图像1302包括初始肺边界1310-1321。如图所示,初始肺边界1310-1321被分成顶部、底部、外和内界限,这些可以以相对粗糙的尺度被初始化。可以通过计算从处于更高尺度(scale)的图像的一阶导数计算出的过零点并且将直线拟合到最接近中间控制点的过零点的子集来获得中线1316。过零点可以在水平方向计算。

接下来,计算在水平方向从图像的二阶导数计算出的过零点。本领域普通技术人员将明白,在一个方向(或沿着向量)计算出的导数(例如,二阶导数)可以是方向导数(例如,二阶方向导数)。图14A示出了绘制出用于射线图像1301的过零点的过零点示图1401。位于ROI左边界1430以及中线1420和ROI右边界1410的内部一半的边缘候选被消除,以获得图14B中绘制出的过零点示图1402。因此,边缘候选包括定位成比中线1420更接近ROI右边界1410或更接近ROI左边界1430的水平过零点。肺外边界被选择为到其相应的粗略肺边界1440、1450具有最近距离(例如,在距其相应的粗略肺边界1440、1450的阈值距离内)的边缘候选集合,并且如由图14C中所绘制出的示图1403所示来估计最终的肺外边界候选1460、1470。

接下来,识别初始肺内边界。为了识别初始肺内边界,从图像的二阶导数计算出的过零点在水平方向中为右肺计算,并且有角度的过零点为左肺计算。有角度的过零点可以在水平平面和垂直平面之间以一个角度计算,例如四十五度角,等等。图15A示出了在四十五度的过零点。(例如,在较高的尺度)利用左肺内子区域的一阶导数来计算初始掩蔽1520,如图15B中所示。左肺内子区可以是描绘左肺的内部一半的区域,例如,在ROI左边界和中线之间一半的区域。

如图15C中所示,掩蔽内部的连通边缘像素被组合,以便生成初始左肺内边界1530。类似的方法可以被用来检测右内边界。例如,可以通过根据右肺内子区域的一阶导数计算右掩蔽区域并将右掩蔽区域中的水平过零点识别为右边缘像素并且对右边缘像素执行线拟合以形成右肺内边界来形成右肺内边界。

其后,初始顶部边界被识别。初始顶部肺边界被选择为位于肺的顶部(例如,在距ROI上边界的阈值距离内)并且具有下凹的结构的一组边缘候选。此外,考虑下凹的结构的长度和角度,以便挑选适当的顶部肺边界。图16A示出了射线图像1601,而图16B示出了绘制出用于射线图像1601的潜在边缘候选的射线图像1602。图16C示出了绘制出从在射线图像1602中绘制出的潜在边缘候选中选择的初始顶部肺边界的射线图像1603。

接下来,初始肺下边界(或底部肺边界)被识别。初始肺下边界可以被选择为位于肺的底部部分(例如,在距ROI下边界的阈值距离内)并具有下凹的结构的一组边缘候选。此外,使用宽度阈值和二阶导数幅值阈值来从边缘候选最终选择肺边界。图17A示出了绘制出用于在射线图像1601中绘制出的肺的底部部分的潜在边缘候选的射线图像1701。图17B示出了绘制出所选择的底部肺边界的射线图像1702。

在被初始化之后,肺轮廓/边界可以被精细化。在一些实施例中,在被合并以产生最终的肺分割输出之前,顶部、底部、右和左初始化被单独精细化。

可以以肺外边界的精细化开始肺轮廓精细化。对于初始肺外边界上的每个点,在法线方向构建既定宽度的强度分布。对这个强度分布执行搜索,以便识别最接近的肺内边缘。对应于初始肺外点的所有点被精细化,使得它们对应于肺内边界。图18A示出了绘制出初始化的肺边界的射线图像1801。图18B示出了绘制出精细化的肺边界的射线图像1802。图18C示出了绘制出合并的肺分割的射线图像1803。

图19A示出了绘制出初始肺外边界1910和经调整的肺外边界1920的射线图像1901。可以基于强度分布上最接近的内边缘来调整初始外边界1910,以获得经调整的肺外边界1920。然后,经调整的肺外边界1920被平滑,以获得最终的精细化的肺外边界1930,如由图19B中所示的射线图像1902所绘制出的。

然后,实施例肺轮廓精细化技术可以继续进行肺内边界的精细化。图20A示出了用于肺内边界的潜在边缘候选的示图2001。在一些实施例中,Canny边缘检测器在多个尺度被采用,以便检测用于肺内边界的潜在边缘候选。图20B示出了绘制出初始肺内边缘2010和精细化的肺内边界2020的射线图像2002。在一些实施例中,通过选择最接近初始肺内边缘2010并且具有最强的二阶导数值的边缘候选来获得精细化的肺内边界2020。

随后,肺轮廓精细化可以继续,以精细化顶部和底部肺边界。被用来精细化肺外边界的过程也可被用来精细化上和下边界。图21A示出了绘制出初始肺上边界2110和精细化的肺上边界2120的射线图像2101。图21B示出了绘制出了平滑的肺上边界2130的射线图像2102。图22A示出了绘制出初始肺下边界2210和精细化的肺下边界2220的射线图像2201。图22B示出了绘制出平滑的肺下边界2230的射线图像2202。除了平滑,左底部肺边界也可以延伸到精细化的左肺外边界的最大列值。一旦肺边界被精细化,精细化的边界就被合并以生成肺分割结果。

在一些实施例中,可以在肺分割之后执行骨抑制。图23示出了包括骨检测和抑制阶段的骨抑制模块2300的示图。实施例骨抑制技术可以检测明亮的对象和设备,然后检测和抑制射线图像中的锁骨、后肋骨和前肋骨。

实施例骨抑制技术可以通过提取设备和明亮的对象以使得它们不被抑制开始。提取明亮的对象可以避免在骨信号估计过程中的错误。具体而言,人工对象会创建具有陡峭边缘的伪像,这会通过例如掩蔽异常病变(例如,肺癌)或者以其它方式造成异常病变被抑制来干扰骨信号估计。设备可以包括高对比度的医疗设备(例如,心脏起搏器、导管、标记等),而明亮的对象可以包括小叶、结节和其它对象。然后,实施例骨抑制技术可以去除肺底趋势。例如,可以通过将多项式(例如,二阶或更高)拟合到肺表面、然后从原始图像中减去拟合表面而去除肺底趋势。图24A示出了在去除肺分布之前的射线图像2401。图24B示出了在去除肺分布之后的射线图像2402。图24C示出了绘制出在肺分布去除之前射线图像2401的分布2410的曲线图2403,以及在肺分布去除之后射线图像2402的分布2420。

一旦肺分布被去除,实施例骨抑制技术就可以找到高对比度区域。图25A示出了绘制出峰值(圆圈)的射线图像2501。从先前计算的图像中提取峰值及其对应的对比度。区域生长技术被用来更新计算出的峰值,如在图25B中绘制出的射线图像2502中所示。图25C示出了利用诸如对象在多个尺度的宽度、面积、圆度和对比度之类的特征选择的明亮区域的示图2503。

本公开内容的各方面提供了用于检测锁骨的技术,锁骨一般可以是肺部区域中最突出的骨。

一些实施例锁骨检测技术可以使射线图像翘曲,以获得绘制出更直的锁骨的翘曲的射线图像,例如,锁骨在翘曲的射线图像中比在原始射线图像中以更小的曲率绘制。然后,锁骨检测技术可以在翘曲的射线图像中执行边缘检测,以检测锁骨。

一些实施例锁骨检测技术可以迭代地翘曲射线图像来提高锁骨检测的准确度。例如,实施例锁骨检测技术可以从射线图像中的锁骨生成角度图,并且根据角度图翘曲射线图像以获得第一翘曲的射线图像。可以在第一翘曲的射线图像中以比在射线图像中小的曲率绘制锁骨。然后,实施例锁骨检测技术可以根据在第一翘曲的射线图像中绘制出的锁骨更新角度图,并根据更新的角度图使射线图像再翘曲以获得绘制出比第一翘曲的射线图像具有更小曲率的锁骨的第二翘曲的射线图像。然后,实施例锁骨检测技术可以在第二翘曲的射线图像中执行边缘检测来检测锁骨。在一些实施例中,可执行图像翘曲的附加迭代,以进一步提高锁骨检测的准确度。

还有其它实施例锁骨检测技术可以通过在训练数据集上标记锁骨顶部和底部边缘并且从标记的边缘获得角度测量来创建先验角度图。然后,角度被内插并被低通滤波,以生成先验角度图。然后,实施例锁骨检测技术可以利用先验角度图翘曲图像。可以通过沿遵循角度图的轮廓采样图像以获得其中锁骨基本上水平的图像来实现翘曲。接下来,通过首先利用与角度关联的约束执行边缘检测、然后对角度测量进行滤波以生成针对先验角度图的更新的图像,角度图可以被更新。然后,更新的图像被翘曲回图像空间,并添加到先验角度图,使得锁骨可以被检测。为了检测锁骨,每个肺利用更新的角度图被翘曲,以获得其中锁骨基本上比在原始图像中更水平的更新的图像。然后,利用各种约束对结果图像执行边缘检测,以限制有效边缘分割。然后,各个边缘片段被接合,以形成用于锁骨的边缘候选。然后,在任一侧的锁骨边缘候选被匹配,以选择满足各种约束的最佳一对锁骨。一旦被检测到,就可以利用与在下面更详细描述的被用来抑制后肋骨的技术相似的技术来抑制锁骨。

本公开内容的各方面提供了用于检测包括前肋骨和后肋骨的肋骨的技术。实施例肋骨检测技术为射线图像中的每根肋骨生成角度图,并且根据对应的角度图翘曲射线图像绘制出肋骨的部分,以获得多个翘曲的子图像。翘曲的子图像绘制出比射线图像具有更小曲率的肋骨。然后,肋骨检测技术可以通过对翘曲的子图像执行边缘检测来检测肋骨。

本公开内容的各方面提供了用于检测和抑制后肋骨的技术。在实施例中,首先利用特定于情况的角度图使后肋骨翘曲,以拉直后肋骨,然后利用近似肋骨定位技术检测肋骨。更具体而言,利用以下过程为每根肋骨计算角度图。首先,该过程在真实空间中生成角度测量。这可以通过对图像执行低通滤波操作、然后执行边缘检测和阈值滤波来实现。形成由构成行和列的多个点(例如,构成八行和五列的四十个点)组成的网格,并且计算用于检测到的边缘上最近的点的角度测量。其后,角度测量基于先验角度图经受约束,并且在(例如,如由先验角度图定义的)范围之外的角度测量被消除,使得只有满足约束的那些测量被保留。其后,利用内插技术从保留的角度测量创建用于每个肺的角度图。然后,沿遵循角度图的轮廓对图像进行采样,由此获得其中肋骨基本上水平的图像。利用由本公开内容提供的实施例技术再次计算角度测量,并且测量再次经受约束,以获得有效的角度测量。然后,有效的角度测量被添加到角度图,并且结果被滤波,以创建平滑的角度图。

在获得平滑的角度图之后,角度图被修改,使得围绕肺外边缘的角度遵循最接近的肺边界。其后,利用实施例近似技术估计近似的肋骨位置。实施例近似技术可以通过基于角度图翘曲图像开始,使得图像沿着遵循角度图的轮廓被采样,由此获得其中肋骨基本上水平的结果图像。然后,实施例近似技术可以在几个尺度平滑图像,以找出不同尺寸的结构,并从识别出的结构获得测量。测量可以具有各种不同的分类。例如,测量可以与肋骨结构的顶部边缘、底部边缘、脊或谷关联。可以通过找出图像梯度在梯度方向的局部最大值来获得与顶部和底部边缘关联的测量。可以通过找出图像中的凹部的局部极值(例如,最大值和/或最小值)来获得与脊和谷关联的测量。

其后,实施例近似技术可以根据那些测量的位置累计所获得的测量,以获得在肋骨位置比没有肋骨的位置具有更高值的最终累计图像。每个测量可以垂直展开以考虑位置误差,然后根据分类/类型偏移。例如,与顶部边缘关联的测量可以向下偏移肋骨宽度的一半,而与底部边缘关联的测量可以向上偏移肋骨宽度的一半。在一些实施例中,与脊和谷关联的测量不偏移。每个测量的贡献可以通过类型来加权。在一个例子中,与顶部/底部边缘相关联的测量贡献可以比与脊或谷相关联的测量更重地加权。在一些实施例中,与谷相关联的测量被指派负权重,以指示肋骨不应当在那里存在。结果累计图像可以具有指示肋骨位置的水平带。水平带可以被分割并且垂直位置可以在跨图像的几个水平位置进行测量。

随后,肋骨检测可被映射到胸腔坐标系。坐标系可以基于三条线为每个肺创建,即:沿肺的中间(medial)边缘的垂直线;刚好在肺上方的水平线;以及沿肺的横向边缘的横向线。水平线可以为垂直线和横向线建立参考。在创建坐标系之后,胸腔模型可以被提取。胸腔坐标系可以为在胸腔中定位肋骨提供框架。胸腔模型可以将沿肺的中间的点与沿肺的后侧的点匹配。这些点可以利用角度图来最初匹配,在这之后匹配点的位置可以被调整以更好地拟合肋骨位置测量。点可被约束以维持肋骨之间一致的距离。一旦匹配点的位置被确定,就可以检查肋骨距离以滤除与胸腔不一致的测量,以及推断未直接检测到的肋骨的存在。

然后,可以借助于先前计算出的近似肋骨位置来计算精确的肋骨位置。近似肋骨位置可以反映每根肋骨的中心线的位置的估计,并且可以从胸腔坐标系的内侧边缘延伸到横向边缘。然后,可以通过采样与近似肋骨位置对准的非均匀隔开的网格而从原始图像为每个近似肋骨位置创建子图像。可以通过沿近似肋骨位置线以一个像素间隔进行采样来创建这个网格的中心行。可以通过在垂直于肋骨的方向从中心行中每一个点以一个像素的增量行进来创建这个中心行上面和下面的行。行被添加到网格,直到它在中心行上面和下面延伸肋骨之间的估计间隔或者两厘米(选其中较大的一个)。结果子图像可以各自包含被翘曲成关于射线图像至少部分地水平和垂直居中的单个肋骨。

其后,边缘测量可以被收集。为了收集边缘测量,子图像可以首先利用非对称高斯技术被平滑以弱化它们的垂直结构。然后,通过识别梯度幅值中的局部最大值来找出边缘点。如果边缘点的梯度幅值低于阈值(例如,第三十个百分点)或者如果边缘点沿边缘的朝向离水平大于阈值角度(例如,三十度),则边缘点可以被滤除。类似朝向的其余相邻边缘点可以被连通于边缘测量中。比最小长度需求短的测量可以被丢弃并且顶部和底部边缘测量可以被分离。

在被收集之后,边缘测量可以被组合以生成候选边缘测量组合。在一些实施例中,考虑边缘测量的每个组合。基于边缘之间的空间关系与表示单根肋骨不一致的组合被滤除。例如,其中相同类型的边缘(例如,顶部边缘、底部边缘,等等)水平重叠大于阈值长度(例如,它们的长度的三分之一,等等)的组合被消除。作为另一个例子,其中相同类型的边缘具有水平地在彼此附近的端点的组合被消除。作为还有另一个例子,其中顶部和底部边缘测量水平重叠但是相距太远或太近以至于无法表示肋骨的边缘的组合也被消除。如果边缘测量的剩余组合的数目大于阈值(例如,256个,等等),则包含最短剩余测量的组合被去除,直到剩余的组合小于或等于阈值。

其后,实施例技术可以建立个体肋骨模型。肋骨模型可以从测量的剩余组合来创建。肋骨模型可以是跨子图像的连续路径,并且可以意在估计作为边缘测量的对应组合的源的肋骨的真实边缘。为了针对每个组合创建遵循边缘测量的跨子图像的平滑变化的路径,应用Rauch-Tung-Striebel平滑器。用于平滑器的状态空间模型只跟踪肋骨中心(行)位置和跨图像列的宽度。该处理方差被初始化为非常高,以允许合理紧拟合到边缘测量。一旦计算出肋骨模型,不满足某些约束的模型就被丢弃。不满足约束的模型可以包括具有高二阶导数的区域的模型或者具有离近似肋骨宽度多于阈值距离的宽度的模型。

接下来,肋骨模型根据覆盖度量被排序。覆盖度量可以对应于子图像中的列数,其中顶部或底部边缘测量被包括但是不与同一类型的另一测量重叠。具有更高覆盖程度的模型可以被认为比较低覆盖程度的模型更可靠,因为它们往往与检测到的边缘更一致。然后,模型坐标被变换回原始图像的坐标系,原始图像的坐标系可以撤销试图在其个体子图像中拉直肋骨的变换。其结果可以是在原始图像中勾勒出候选肋骨的多边形。建立个体肋骨模型的输出可以是针对每个肋骨近似的所选择的候选肋骨和替代候补肋骨的有序集合。

在建立个体肋骨之后,实施例技术可以选择全局一致的肋骨模型集合。选择全局一致的肋骨模型集合可以使用来自所有检测到的肋骨的信息来选择提供与胸腔一致的肋骨解释的候选肋骨集合。为了确定候选肋骨集合是否与对胸腔的期望相匹配,全局模型可以和与期望关联的约束集合一起使用。例如,全局模型中的约束集合可以对应于肋骨宽度和肋骨的行位置之间的线性、非递减关系。约束集合也可以对应于肋骨间间距的线性、非递减关系,例如基于上部肋骨的行位置的下部肋骨和上部肋骨之间的间距。该模型可以维持用于左和右肺的一致约束/关系。

可以通过测量候选的参数(例如,肋骨间距/宽度值)与模型的参数之间的差来确定给定的候选肋骨集合的质量。这可以利用鲁棒的线性回归技术获得质量度量来实现,其中质量度量可以是测量值与线性模型的预测之间的加权均方误差。肋骨宽度和间距模型可以利用最佳候选肋骨来拟合。利用针对肋骨宽度的模型预测值,用于所有肋骨的肋骨候选可以被滤波,以去除极端异常值。如果所有最佳候选肋骨被去除并用其最佳替代肋骨代替,则肋骨宽度和间距模型被更新。

计算描述每个最佳候选肋骨和其它邻近肋骨的多边形之间的重叠量(如果有的话)。如果在一对候选之间存在显著的重叠,则用于这一对中每个成员的每个替代肋骨被单独代替到胸腔中并且结果候选集合的质量被记录。在考虑所有的替代之后,具有最佳质量得分的候选的组合被记录并被用作新的最佳候选集合。如果这些代替测试产生对最佳候选肋骨集合的变化,则肋骨宽度和间距模型被相应地更新。这个处理可以对其它标准重复,在该处理中有测试来识别一根或多根肋骨的不太可能的配置(以上是针对重叠),接下来是替代候补肋骨的代替和质量度量的评估。这些包括个体候选肋骨宽度统计数据和对肋骨间间距计算的统计。然后,完整的测试集合可以被迭代,直到最佳候选集合稳定或者直到定时需求限制进一步的搜索。搜索处理最终提供指定精确肋骨位置的最佳候选集合。在识别出精确的肋骨位置之后,后肋骨可以被抑制。

本公开内容的各方面提供用于从射线图像去除/抑制检测到的骨的骨抑制技术。可以按照逐根骨的方式对骨进行个别抑制。一种实施例骨抑制技术包括从射线图像选择检测到的骨之一来从射线图像进行抑制、识别绘制出所选择的骨的矩形子图像并从该矩形子图像修剪位于肺部区域以外的所选择骨的边缘。本实施例技术还包括对矩形子图像执行图像处理以减小所选择的骨的曲率、从经处理的矩形子图像估计骨分布并从射线图像抑制骨分布。可以通过从经处理的矩形子图像中去除背景信号以生成背景去除的图像、识别由背景去除的图像所绘制出的所选择骨的上部和下部边缘分布并根据上部和下部边缘分布估计骨分布来对骨分布进行估计。值得注意的是,也可以利用经处理的矩形子图像或背景去除的图像来执行骨边缘信号估计。骨边缘信号的估计可以与骨信号(例如,骨分布)的估计分开地执行,因为骨边缘可以具有比骨的其它部分相对更高的对比度。在实施例中,对定向子采样的子图像执行骨边缘信号估计,该定向子采样的子图像是通过在平行于骨的方向比在垂直于骨的方向以更高的频率子采样图像(例如,经处理的矩形子图像)所获得的。骨边缘信号估计还可以包括形态学处理(例如,最小-最大处理)和图像平滑(例如,高斯平滑),以减少去除除骨之外的其它结构(像异常疾病和例如血管等其它正常结构)的可能性。例如,定向子采样的子图像可以被按形态学处理,以获得经处理的定向子采样的子图像。然后,经处理的定向子采样的子图像可以被平滑,以获得平滑的定向子采样的子图像。在平滑期间,较小的西格玛值可被用来平滑骨边缘附近的区域。西格玛值对应于低通滤波器的方差,因此在骨边缘附近使用较小的西格马值(例如,更严格的方差)可以提供骨边缘信号的更准确的近似,例如更清晰的边缘。

本公开内容的各方面还提供了肋骨抑制技术。实施例肋骨抑制技术可以对两个肺中的每根肋骨依次执行。最顶部或底部的肋骨可以被抑制并且那根肋骨被去除的输出图像可以作为输入被传递用于去除下一根肋骨(例如,在被去除的肋骨上方或下方的肋骨)。这可以被重复,直到所有的肋骨都被抑制。在任何时候用于正被抑制的肋骨的输入图像都是去除所有之前的肋骨的图像。该处理可以从顶部向底部执行,反之亦然。用于左和右肺的肋骨抑制可以独立地执行。

实施例后肋骨抑制技术的第一步可以是创建肋骨子图像。作为例子,肋骨子图像可以是在被抑制的骨周围的矩形子图像,其可以从全分辨率图像被裁剪。这可以减少处理时间,因为肋骨抑制一般一次对一根肋骨执行。在创建肋骨子图像之后,本实施例后肋骨抑制技术可以继续精细化肋骨边缘。由于肋骨检测通常对子采样的图像执行,因此以原始图像分辨率的精细化可以避免在抑制处理期间引入伪像。通过在每个点计算垂直于肋骨边缘的强度分布、然后沿垂直分布基于一阶导数精细化边缘来实现这种精细化。然后,这些精细化的肋骨边缘被平滑,以便去除可能由于噪声而被引入的任何不连续。图26示出了检测到的肋骨的射线图像2600,其中示出了检测到的肋骨边缘2610和精细化的肋骨边缘2620。在精细化肋骨边缘之后,实施例技术可以在肺区域外面修剪,以去除不在肺区域内部的肋骨的区域。值得注意的是,对于主要(或完全)兴趣在于抑制位于肺区域内部的肋骨的部分的实现,修剪可以降低复杂度。由于这个原因,在两端的肋骨边缘被截断,以位于肺区域内部。图27示出了其中检测出的肋骨边缘已经在肺区域外面被修剪的射线图像2700。其后,实施例技术可以拉直肋骨。为了实现这一目标,肋骨的上部和下部边缘被重新采样,并且在两个重新采样的边缘之间构成中心线。然后,垂直和水平指数的内插矩阵垂直于中心线创建,其中该矩阵的每一列表示从上部肋骨边缘上的点开始并且在下部肋骨边缘上的点结束的内插的水平和垂直指数。然后,矩阵被用来创建拉直的(水平的)肋骨图像。图28示出了绘制出拉直的肋骨的射线图像2800。

在拉直肋骨之后,可执行肋骨分布估计,以便从拉直的肋骨图像去除背景信号。这对于估计真实的骨分布以及对于防止背景信号被抑制会是有益的。在上部边缘上方和在下部边缘下方的点被用来内插这些点之间的区域。可以对这个内插的区域执行高斯最小平方拟合。其后,可以从拉直的肋骨图像中减去背景图像,以去除背景图像。

肋骨的上部和下部边缘与肋骨的其余部分相比可以具有相对高的强度。这样,边缘分布可以被估计,然后从去除背景的图像中减去,以便避免在抑制处理期间引入伪像。然后,最小-最大操作可以对图像执行,在这之后可以执行平滑,以便避免去除异常(结节,等等)和其它结构。随后,边缘分布可被添加回图像,并且结果图像可被映射回原始图像空间。其后,肋骨分布估计可以从子图像中减去,并且子图像可被输入图像中原始裁剪的子图像代替,由此获得肋骨抑制的图像。可以以类似的方式对剩余的每根肋骨执行抑制。

本公开内容的各方面提供了用于前肋骨检测的技术。前肋骨检测可以通过以类似于用来翘曲后肋骨的方式利用先验图对前肋骨进行翘曲开始为每一种情况计算角度图。其后,可以对图像进行低通滤波,并且可以对结果低通滤波的图像执行边缘检测机制以生成角度测量。然后,角度测量经受约束,以滤除在用于前肋骨的有效角度范围之外的测量。该角度范围可以通过利用图像的训练集合构造先验角度图来计算。然后,有效角度测量被内插并低通滤波,以形成更新的图像。然后,这个图像被翘曲回到真实图像空间,并且结果图像被添加到先验角度图,然后该先验角度图被用来执行后续的前肋骨检测操作。

本公开内容的各方面提供了用于近似前肋骨位置的技术。用于为前肋骨定位近似肋骨位置的技术可以类似于用来为后肋骨定位近似肋骨位置的技术,不同之处在于用于前肋骨的胸腔坐标系可以将每个肺分离成上部区域和下部区域。在下部区域中的前肋骨位置可以利用类似于被用来近似后肋骨位置的技术来近似。在上部区域中的前肋骨位置可以通过利用中间线和上部线的交点作为参考点来匹配中间线和上部线之间的位置而近似。用于为前肋骨识别精确的肋骨位置的技术可以类似于用来为后肋骨识别精确肋骨位置的技术。

用于抑制前肋骨的技术可以类似于用来抑制后肋骨的技术。前肋骨抑制可以被限制到胸腔,以避免在肺边缘引入伪像。利用以下等式外=原始-SLM*(原始–骨抑制)将肺掩蔽外部的平滑图像添加回在肺掩蔽内部的骨抑制图像。图29A示出了射线图像2901,而图29B示出了用于射线图像2901的最终骨抑制图像的射线图像2902。

可以对骨抑制的图像执行结节检测。结节检测技术可以类似于由2012年10月30日提交且标题为“Spiculated Malignant Mass Detection and Classification in Radiographic Images”的美国专利申请13/695,369描述的质量检测(mass detection)技术,该申请通过引用被结合于此,就好像其全部内容被复制一样。

图30是可被用于实现本文所公开的设备和方法的处理系统的框图。具体的设备可以利用所示出的所有部件,或者仅部件的子集,并且集成度可以根据设备而不同。此外,设备可以包含部件的多个实例,诸如多个处理单元、处理器、存储器、发送器、接收器等。处理系统可以包括配备有一个或多个输入/输出设备的处理单元,其中输入/输出设备诸如扬声器、麦克风、鼠标、触摸屏、小键盘、键盘、打印机、显示器等。处理单元可以包括连接到总线的中央处理单元(CPU)、存储器、大容量存储设备、视频适配器和I/O接口。

总线可以是任何类型的若干种总线体系结构当中一个或多个,包括存储器总线或存储器控制器、外围总线、视频总线等。CPU可以包括任何类型的电子数据处理器。存储器可以包括任何类型的系统存储器,诸如静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、同步DRAM(SDRAM)、只读存储器(ROM)、它们的组合,等等。在实施例中,存储器可以包括在启动时使用的ROM以及在执行程序时用于程序和数据存储的DRAM。

大容量存储设备可以包括被配置为存储数据、程序和其它信息并且使数据、程序和其它数据经由总线可访问的任何类型的存储设备。大容量存储设备可以包括例如固态驱动器、硬盘驱动器、磁盘驱动器、光盘驱动器等当中的一个或多个。

视频适配器和I/O接口提供将外部输入和输出设备耦合到处理单元的接口。如所示出的,输入和输出设备的例子包括耦合到视频适配器的显示器和耦合到I/O接口的鼠标/键盘/打印机。其它设备可以耦合到处理单元,并且可以使用附加的或更少的接口卡。例如,诸如通用串行总线(USB)(未示出)的串行接口可被用来提供用于打印机的接口。

处理单元还包括一个或多个网络接口,这可以包括有线链路(诸如以太网电缆等)和/或无线链路,以访问节点或不同的网络。网络接口允许处理单元经由网络与远程单元进行通信。例如,网络接口可以经由一个或多个发送器/发送天线和一个或多个接收器/接收天线提供无线通信。在实施例中,处理单元被耦合到局域网或广域网,用于数据处理和与远程设备(诸如其它处理单元、互联网、远程存储设备等)通信。

下列参考文献涉及本申请的主题。这些参考文献中的每一个都整体通过引用被结合于此:于2013年1月3日提交且标题为“Marking System for Computer-Aided Detection of Breast Abnormalities”的美国专利申请13/808,229;于2012年10月30日提交且标题为“Probability Density Function Estimation”的美国专利申请13/695,351;于2012年10月30日提交且标题为“Microcalcification Detection Classification in Radiographic Images”的美国专利申请13/695,347;于2011年6月24日提交且标题为“Breast Skin Line Detection in Radiographic Images”的美国专利申请13/168,614;于2011年6月24日提交且标题为“Breast Segmentation in Radiographic Images”的美国专利申请13/168,588;及于2004年11月23日提交且标题为“CAD Medical Imaging System,Components,and Method of Operation”的美国专利申请10/996,595。

虽然已参考说明性实施例描述了本发明,但是这种描述并非意在以限制性的意义来解释。在参考描述后,说明性实施例的各种修改和组合以及本发明的其它实施例,将对本领域技术人员而言是清楚的。因此,意在所附权利要求涵盖任何此类修改或实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1