用于检测气管的系统和方法与流程

文档序号:13764531阅读:200来源:国知局
用于检测气管的系统和方法与流程

本申请要求于2014年7月2日提交的申请号为62/020,257的美国临时专利申请的权益和优先权,上述专利申请的全部内容通过引用并入本文。

技术领域

本公开涉及用于检测气管的系统和方法。更具体地,本公开涉及基于胸部的三维体积的切片图像来检测气管的系统和方法。



背景技术:

已经研发了涉及视觉观察胸部的可视化技术,以便帮助医生对包含在胸部内的器官或其它部分进行诊断和/或手术。可视化对于识别病变区域的位置而言尤为重要。此外,当治疗病变区域时,进一步着重识别病变区域的特定位置,从而在胸部中的正确位置处执行外科手术。

过去,使用胸部的扫描二维图像来帮助可视化。为了根据胸部的扫描二维图像来视觉观察肺部,重点在于确定二维图像中的区域是否构成肺部的一部分。因此,检测起始位置(例如,连接至肺部或作为肺部的一部分的器官或其它部分的位置)对于识别肺部而言也是重要的。在一个示例中,气管可以用作起始位置,这是因为气管沿其长度具有大体恒定的直径,并且已知气管连接至肺部。



技术实现要素:

根据本公开,提供一种用于检测患者的气管的系统。

在本公开的一方面,所述系统包括:成像装置,所述成像装置构造成获得患者的图像数据;和计算装置,所述计算装置包括处理器和存储指令的存储器,所述指令在被处理器执行时促使计算装置:基于图像数据生成患者的胸部的三维(3D)模型;沿轴向方向生成3D模型的切片图像;在生成的切片图像的第一切片图像中识别潜在相连组成部分;在生成的切片图像的第二切片图像中识别潜在相连组成部分,其中,第二切片图像紧接着生成的第一切片图像;确认第一切片图像的潜在相连组成部分与第二切片图像的潜在相连组成部分相连;将潜在相连组成部分标记为相连组成部分;将第一切片图像标记为生成的切片图像的最上方切片图像;将最上方切片图像中的相连组成部分标记为有效目标;基于连接标准,将生成的切片图像的当前切片图像中的每一个相连组成部分与在先切片图像中的对应的相连组成部分关联;将与在先切片图像的相连组成部分关联的当前切片图像中的每一个相连组成部分标记为有效目标;并且基于有效目标的长度,将有效目标识别为气管。

在本公开的另一方面,由成像装置利用层析成像技术、射线照相术、通过计算机化轴向断层扫描产生的断层照片、核磁共振成像、超声波造影术、对比成像、荧光检查、核扫描、或者正电子发射断层成像获得图像数据。

在本公开的另一方面,所述指令进一步促使计算装置最终确定在先切片图像中的有效目标。

在本公开的另一方面,切片图像以相等的距离彼此间隔开。

在本公开的另一方面,所述指令进一步促使计算装置通过将最终确定的有效目标中包含的切片图像的数目减1与每一个切片图像之间的距离相乘来计算最终确定的有效目标的长度。

在本公开的另一方面,当最终确定的有效目标的长度大于或等于70mm时,所述指令进一步促使计算装置指示已识别出气管。

在本公开的另一方面,当最终确定的有效目标的长度大于或等于30mm但小于70mm时,所述指令进一步促使计算装置指示可能已识别出气管。

在本公开的另一方面,当最终确定的有效目标的长度小于30mm时,所述指令进一步促使计算装置指示未识别出气管。

在本公开的另一方面,在当前切片图像的相连组成部分中的像素的坐标与在先切片图像中对应的相连组成部分中的像素的坐标匹配时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,在当前切片图像的相连组成部分的质心与在先切片图像中对应的相连组成部分的质心之间的差别小于预定值时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,在当前切片图像的相连组成部分的面积与在先切片图像中对应的相连组成部分的面积之间的差别小于预定值时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且其中,关联参数是通过将当前切片图像中的相连组成部分的面积除以在先切片图像中对应的相连组成部分的面积而算出的面积比。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且其中,关联参数是当前切片图像的相连组成部分的、与在先切片图像中的对应有效目标的坐标匹配的坐标的数目以及当前切片图像的相连组成部分的非匹配坐标的数目之间的比率。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且其中,关联参数是当前切片图像的相连组成部分的面积。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且当关联参数大于预定值时,移除在先切片的对应有效目标的作为有效目标的标记。

在本公开的另一方面,所述指令进一步促使计算装置在关联参数大于预定值时移除当前切片的相连组成部分的作为有效目标的标记。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且其中,当关联参数小于预定值时,最终确定有效目标。

在本公开的另一方面,所述指令进一步促使计算装置基于关联参数最终确定在先切片图像中的有效目标,并且当关联参数大于或等于第一预定值且小于或等于第二预定值时,将当前切片的相连组成部分标记为有效目标。

根据本公开,提供一种用于检测患者的气管的方法。

在本公开的一方面,所述方法包括:获得患者的胸部的三维(3D)模型;沿轴向方向生成3D模型的切片图像;在生成的切片图像的第一切片图像中识别潜在相连组成部分;在生成的切片图像的第二切片图像中识别潜在相连组成部分,其中,第二切片图像紧接着生成的第一切片图像;确认第一切片图像的潜在相连组成部分与第二切片图像的潜在相连组成部分相连;将潜在相连组成部分标记为相连组成部分;将第一切片图像标记为生成的切片图像的最上方切片图像;将最上方切片图像中的相连组成部分标记为有效目标;基于连接标准,将生成的切片图像的当前切片图像中的每一个相连组成部分与在先切片图像中的对应的相连组成部分关联;将与在先切片图像的相连组成部分关联的当前切片图像中的每一个相连组成部分标记为有效目标;并且基于有效目标的长度,将有效目标识别为气管。

在本公开的另一方面,基于图像数据生成3D模型,由成像装置利用层析成像技术、射线照相术、通过计算机化轴向断层扫描产生的断层照片、核磁共振成像、超声波造影术、对比成像、荧光检查、核扫描、或者正电子发射断层成像获得所述图像数据。

在本公开的另一方面,所述方法还包括最终确定在先切片图像中的有效目标。

在本公开的另一方面,切片图像以相等的距离彼此间隔开。

在本公开的另一方面,所述方法还包括通过将最终确定的有效目标中包含的切片图像的数目减1与每一个切片图像之间的距离相乘来计算最终确定的有效目标的长度。

在本公开的另一方面,当最终确定的有效目标的长度大于或等于70mm时,所述指令进一步促使计算装置指示已识别出气管。

在本公开的另一方面,当最终确定的有效目标的长度大于或等于30mm但小于70mm时,所述指令进一步促使计算装置指示可能已识别出气管。

在本公开的另一方面,当最终确定的有效目标的长度小于30mm时,所述指令进一步促使计算装置指示未识别出气管。

在本公开的另一方面,在当前切片图像的相连组成部分中的像素的坐标与在先切片图像中对应的相连组成部分中的像素的坐标匹配时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,在当前切片图像的相连组成部分的质心与在先切片图像中对应的相连组成部分的质心之间的差别小于预定值时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,在当前切片图像的相连组成部分的面积与在先切片图像中对应的相连组成部分的面积之间的差别小于预定值时,将当前切片图像的相连组成部分与在先切片图像中对应的相连组成部分关联。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,其中,关联参数是通过将当前切片图像中的相连组成部分的面积除以在先切片图像中对应的相连组成部分的面积而算出的面积比。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,其中关联参数是当前切片图像的相连组成部分的、与在先切片图像中的对应有效目标的坐标匹配的坐标的数目以及当前切片图像的相连组成部分的非匹配坐标的数目之间的比率。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,其中,关联参数是当前切片图像的相连组成部分的面积。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,并且当关联参数大于预定值时,移除在先切片的对应有效目标的作为有效目标的标记。

在本公开的另一方面,所述方法还包括在关联参数大于预定值时移除当前切片的相连组成部分的作为有效目标的标记。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,其中,当关联参数小于预定值时,最终确定有效目标。

在本公开的另一方面,所述方法还包括基于关联参数最终确定在先切片图像中的有效目标,当关联参数大于或等于第一预定值且小于或等于第二预定值时,将当前切片的相连组成部分标记为有效目标。

本公开的任何上述方面和实施例可以进行组合且并不背离本公开的范围。

附图说明

在参照附图阅读各个实施例的说明内容时,本公开的系统和方法的目标和特征对于本领域技术人员而言将变得显而易见,在附图中:

图1是根据本公开的实施例的、能够用于以患者的肺部的3D模型检测气管的示例性装置的示意图;

图2示出了根据本公开的实施例的、由3D模型生成的2D切片图像,其示出处于轴向和横向取向的气管;

图3是根据本公开的实施例的、患者的胸部的2D切片图像中的相连组成部分的图解视图;

图4是根据本公开的实施例的、患者的胸部的2D切片图像的平面图的图解视图;

图5A是根据本公开实施例的用于检测气管的方法的流程图;且

图5B是根据本公开的实施例的、用于确定2D切片图像之间的关联的方法的流程图。

具体实施方式

本公开涉及用于基于患者的胸部的2D切片图像自动地检测气管的系统和方法。识别气管可以是使用电磁导航(EMN)系统执行ELECTROMAGNETIC NAVIGATION (ENB,电磁导航气管镜检查)程序的路径规划的必要组成部分。

ENB程序通常涉及至少两个阶段:(1)规划通向位于患者的肺部内或靠近患者的肺部的目标的路径;和(2)沿规划的路径将探针导航至目标。这些阶段通常被称为(1)“规划”和(2)“导航”。因为肺部连接至气管,所以通过检测气管就能够将肺部与肺部以外的区域视觉地区别开。可以在均于2013年3月15日由Covidien LP提交的、发明名称均为“Pathway Planning System and Method”且申请号分别为13/838,805、13/838,997和13/839,224的美国专利申请中找到本文所描述的规划软件的示例,上述专利申请通过引用而并入本文。可以在共同受让的、发明名称为“SYSTEM AND METHOD FOR NAVIGATING WITHIN THE LUNG”且申请号为62/020,240的美国临时专利申请中找到规划软件的示例,其全部内容通过引用而并入本文。

在规划阶段之前,例如通过计算机层析成像(CT)扫描对患者的肺部成像,不过本领域技术人员也已知其它能够应用的成像方法。随后,在CT扫描期间汇总的图像数据随后可以存储成例如医学数字成像和通信(DICOM)格式,不过本领域技术人员也已知其它能够应用的格式。随后,CT扫描图像数据可以加载到待处理以用于生成3D模型的规划软件应用程序(“应用程序”)中,所述3D模型可以在ENB程序的规划阶段期间使用。

应用程序可以使用CT扫描图像数据来生成患者的肺部的3D模型。3D模型除了其它方面外可以包括模型气道树,该模型气道树对应于患者的肺部的实际气道,并且示出患者的实际气道树的各个通路、支路和分叉。尽管CT扫描图像数据可能在图像数据中包括间隙、遗漏和/或其它瑕疵,但3D模型是患者的气道的顺滑表示,在其中填充或修正了CT扫描图像数据中的任何这样的间隙、遗漏和/或瑕疵。

规划阶段通常涉及识别3D模型中的至少一个目标,并生成通向目标的路径。该路径通常从患者的口部通过气管和相连气道延伸到目标。然而,为了生成通向目标的路径,必须要知道在3D模型内的气管位置。

正如下文更详细地描述的那样,应用程序将试图自动地检测3D模型内的气管。然而,可能存在气管的自动检测失败的情况。在这样的情况下,可能需要手动地识别并标记气管。在共同受让的、于2014年7月2日由Lachmanovich等提交的发明名称为“Trachea Marking”且申请号为62/020,253的美国临时专利申请中更全面地描述了该过程,上述专利申请的全部内容通过引用而并入本文。

气管提供了用于呼吸的通路。气管的上端连接至喉部和咽部。特别地,气管的上部从喉部和咽部并且在胸骨的后方大体线性地延伸。气管的下端分叉到一对较小的管(即,主支气管)中,每一个管连接至肺部。隆突(main carina)是由气管分叉到主支气管中而形成的软骨脊突。气管的直径沿其长度(即,轴向方向)大体恒定,而肺部的大小沿与气管的长度相同的方向显著变化。因此,通过分析3D模型的2D切片图像,可以检测气管。

图1示出了可以在ENB程序的规划阶段期间用于检测3D模型中气管的位置的图像处理装置100。图像处理装置100可以是构造成执行下述功能的专用的图像处理计算机。图像处理装置100可以实施为本领域技术人员已知的任何实现形式,例如笔记本电脑、台式机、平板电脑、或其它类似的计算机。图像处理装置100除了其它方面外还可以包括:一个或多个处理器110、存储器120、显示器130、一个或多个专用的图形处理器140、网络接口150、以及一个或多个输入接口160,所述存储器除了其它方面外还存储上述应用程序122。如上所述,3D模型的2D切片图像能够以各种取向显示。作为一个示例,图2示出了处于轴向取向和横向取向的、患者的肺部的3D模型的2D切片图像,其中2D切片图像210沿轴向平面生成,2D切片图像220沿横向平面生成。

2D切片图像210和220均示出了气管212和隆突214。3D模型的2D切片图像可以示出具有高强度的高强度区域以及具有低强度的低强度区域。例如,相较于肺部的气道的内部区域,骨头、肌肉、血管或癌性部分被用更高的强度显示。

在一方面,可以生成2D切片图像,用以在给定位置处示出患者的轴向图、横向图和纵向图。例如,在3D模型的每一个交叉点处,可以沿三个独立的方向生成三个不同的2D切片图像。这些2D切片图像可以重设格式以用于显示。例如,应用程序122可以将2D切片图像的色域转换成适于显示的另一色域并执行图像处理(例如,比例调节、旋转、平移、或投影)以按照意图来显示2D切片图像。

可以通过使用区域增长算法将2D切片图像二元化。基于区域增长算法并且始于种子像素,检查3D模型的2D切片图像中的每一个像素,以确定分配给每一个像素的亨斯菲尔德(Hounsfield)值是否小于阈值以及每一个像素是否连接至种子像素。当确定分配给一像素的值具有小于阈值的亨斯菲尔德值并且该像素连接至种子像素时,则该像素的亨斯菲尔德值被设定为1或最大值。否则,该像素的亨斯菲尔德值被设定为0或最小值。作为区域增长算法的一部分,阈值选择成足够高的值以在肺部中引起漏泄(leakage),并因此用从气道漏泄的强度值填充肺部。

在3D模型的2D切片图像中的每一个像素被设定为最大值或最小值之后,2D切片图像将仅具有两种颜色的像素。结果得到一组2D切片图像,其中具有最大亨斯菲尔德值的像素将呈现为白色,具有最小亨斯菲尔德值的像素将呈现为黑色。在某些情况下,3D模型的2D切片图像中的像素的值被取反,使得肺部区域示出为黑色,且非肺部区域示出为白色或另一种颜色。二元化的2D切片图像可以示出白色区域作为非肺部区域(例如,骨头、胃部、心脏、血管、气道壁等),并且示出黑色区域作为肺部区域(例如,肺部、气管和相连组成部分)。正如后文更详细说明的那样,相连组成部分是一个2D切片图像中的识别为在一个或多个其它的2D切片图像中具有对应区域的区域,并且因此可以代表患者的肺部或气管。

图3是根据本公开的实施例的、基于3D模型生成的三个2D切片图像。图像305沿轴向方向生成,图像310沿纵向方向生成,图像315沿横向方向生成。在三个图像305、310和315中示出为黑色区域的是肺部区域,在三个图像305、310和315中所包括的白色区域为非肺部区域。白色区域可以表示血管和气道壁。在相连组成部分的内部区域足够大并且具有比构成肺部区域的组织更低的强度(例如,血液、空气、或粗糙空间)的情况下,也会出现黑色区域。就该意义而言,相连组成部分也包括肺部区域。例如,图像305中的相连组成部分是左肺320、右肺325、左主支气管330和右主支气管335。在左肺320和右肺325内的白色区域不是相连组成部分,而是血管或气道壁。

气管的上部从喉部和咽部并且在胸板或胸骨的后方大体线性地延伸。气管的下端分叉到一对较小管(即,主支气管)中,每一个管连接至肺部。气管的直径沿其长度(即,轴向方向)大体恒定,而肺部的大小沿与气管的长度相同的方向显著变化。因此,通过分析基于3D模型生成的2D切片图像中相连组成部分的面积,可以检测气管。为此,在本公开中,可以分析沿轴向方向生成的图像来检测气管。在其它实施例中,还可以使用沿其它两个方向生成的图像来检测气管。

图4示出了根据本公开的实施例的、由3D模型生成的2D切片图像。图像405是示出了沿患者的若干轴向位置的患者的横向图像,在这些轴向位置处,根据本公开识别并处理轴向图像410a-430b。例如,图像410a从最上方灰线所示的沿胸部的轴向位置获得,图像415a从第二条灰线所示的沿胸部的另一轴向位置获得,图像420a从第三条灰线所示的沿胸部的另一轴向位置获得,依次类推。

图像410a-430b的轴向位置可以彼此以相等的距离间隔开,这意味着任意两个相邻的2D切片图像之间的距离为同一距离D。轴向2D切片图像410a、415a、420a、425a和430a示出了患者的胸部的在不同位置处的部分。作为二元化的结果,这些图像410a、415a、420a、425a和430a中的每一个均示出了黑色的包封区域,其代表气管和/或肺组织。

用于检测气管的处理可以基于在每一个轴向2D切片图像410a、415a、420a、425a和430a中识别出的相连组成部分。通常,分析第一轴向2D切片图像来识别出满足二元化标准(即,可能是气管或肺部)的一个或多个识别区域。除了识别轴向2D切片图像中的满足二元化标准的区域之外,完成初次相连组成部分分析,其中过滤掉轴向2D切片图像410a中的连接到图片边界的任何部分。此外,还过滤掉高于或低于一定大小阈值的相连组成部分。根据与其它图像中的相连组成部分的连接标准,将任何一个轴向切片图像(例如,410a)的剩余相连组成部分与有效目标关联。执行轴向相连组成部分分析,其中,确定两个相继的轴向2D切片图像中的相连组成部分是否在地理上彼此重叠。可以通过比较相继图像中的有效目标的坐标并确定在相继图像的有效目标中是否出现相同的坐标(例如,X和Y坐标)而确定地理重叠(Geographical Overlap)。如果是地理重叠,则将来自两个轴向2D切片图像的相连组成部分彼此关联并且均对应地标记为有效目标。标记为有效目标的相连组成部分是待识别为气管的候选。当另外的相连组成部分不与来自在先2D切片图像的一个或多个相连组成部分地理重叠时,则另外的相连组成部分被标记为新的有效目标。此外,如果在随后的轴向切片中确定没有与在先图像重叠的相连组成部分目标,则在先图像中最后识别出的有效目标即被最终确定。在每一个2D切片图像上执行上述步骤,直到识别出在每一个横向2D切片图像中的每一个相连组成部分,并且在适当的情况下归类为有效目标。

参照图4,对上述处理的细节进行进一步阐述。在一实施例中,首先处理最上方2D切片图像410a,以识别或标记相连组成部分411。在一实施例中,最上方2D切片图像410a中的任何相连组成部分都被标记为有效目标。结果,在上述过滤后的图像410b中,示出单个有效目标412。

接下来,以与横向2D切片图像410a相类似的方式处理第二轴向2D切片图像415a,以识别三个相连组成部分416、417和418。再次执行上述的过滤处理,从而导致识别出图415b中所示的三个有效目标416、417和418。对有效目标416-418中的一个或多个是否与在先轴向2D切片图像中的相连组成部分(例如,411)地理重叠进行判定。作为该分析的结果,有效目标413和414是新的有效目标,与在先轴向2D切片图像410b中相比没有相连组成部分。然而,相连组成部分416与2D切片图像410a中的相连组成部分411地理重叠并关联,因此,将两个相连组成部分416和411彼此竖直地(即,从轴向切片到轴向切片地)连接。结果,关联的相连组成部分416和411共享共同的有效目标标记412。

参照第三2D切片图像420a,识别出三个相连组成部分421-423。按照上述过滤处理,将每一个相连组成部分421-423与第二轴向2D切片图像415a的相连组成部分416-418分别地比较。相连组成部分421与相连组成部分416地理重叠,并且其尺寸或面积与相连组成部分416的尺寸或面积类似。因此,将相连组成部分421与相连组成部分416关联并且标记为与相连组成部分416相同的有效目标412,这是基于其与轴向图像切片410a中的相连组成部分411的比较。

相连组成部分422和423分别与相连组成部分417和418地理重叠,因此是基于该重叠被标记为有效目标413和414的候选。然而,相连组成部分422和423也必须如上所述根据尺寸进行过滤。因为相连组成部分422和423的面积大于预定最大尺寸,所以它们必须被过滤掉而不被认为是有效目标。在图420b中,这些相连组成部分基于颜色由黑到白的变化而示出为被过滤掉。相反地,与有效目标412关联的相连组成部分421仍为黑色。在本公开的上下文中,由于已知气管沿其长度具有大体恒定的直径,并且由于该直径对于男性而言通常在约27-13mm的已知范围内、对于女性而言通常在约23-10mm的已知范围内,因此当相连组成部分被识别为具有比在先2D切片图像中的对应的相连组成部分的面积明显更大的面积时,则由这样的相连组成部分代表的器官被确定为不是气管,因而从分析中被排除。作为替代或附加步骤,因为相连组成部分422和423具有比相连组成部分416和418的面积更大的面积,也可以认为相连组成部分422和423过大,因此不是气管的部分。此外,第二轴向2D切片图像415b的相连组成部分417和418可以被再次标记,以移除有效目标标识。结果,2D切片图像410b、415b和420b仅具有一个有效目标412。

如上文简要说明的那样,可以基于连接标准,将单独的2D切片图像的相连组成部分与相邻的上方2D切片图像的相连组成部分关联。连接标准可以包括考虑当前2D切片图像上的坐标与相邻的上方2D切片图像上的坐标的相等性。在一实施例中,2D切片图像的像素的坐标可以基于笛卡尔坐标系,其中原点可以位于2D切片图像的左上角,并且坐标从左至右和从上至下地增加。替代地,像素的坐标可以基于适用于预期用途的另一种坐标系例如极坐标系。

可以基于当前2D切片图像的相连组成部分的、与相邻的上方2D切片图像的相连组成部分的像素的坐标匹配的像素的数目计算来自两个不同图像的两个相连组成部分之间的地理重叠(也称作关联参数)。替代地,可以基于质心来评估重叠。即,在当前2D切片图像的相连组成部分的质心与相邻的上方2D切片图像的相连组成部分的质心相类似时,将当前2D切片图像的相连组成部分与相邻的上方2D切片图像的相连组成部分关联。可以按照下面的公式以相连组成部分中的每一个像素具有相等权重的方式计算质心:

其中,Cx和Cy分别是质心的x轴坐标和y轴坐标,xi和yi是相连组成部分的第i个像素的坐标,N是相连组成部分中包含的像素总数。

在另一方面,连接标准可以基于面积比。特别地,当前2D切片图像的相连组成部分的非重叠部分的面积与当前切片的相连组成部分的重叠区域的面积之比可以与第一预定值相比较。例如,可以通过将相邻的上方2D切片图像的相连组成部分的重叠部分的面积除以相邻的上方2D切片图像的相连组成部分的非重叠部分的面积来计算该比率。当该比率小于第一预定值时,将当前2D切片图像的相连组成部分与相邻的上方2D切片图像的对应的相连组成部分关联。

回到图4,沿轴向方向获得第四轴向2D切片图像425a,在其中检测到三个相连组成部分426-428。利用上述连接标准和过滤技术,将相连组成部分426与相连组成部分421关联、将相连组成部分427与相连组成部分422关联、以及将相连组成部分428与相连组成部分423关联。由于相连组成部分422和423先前因过大而已被过滤掉并且没有标记为有效目标,因此相连组成部分427和428在图425b中也被过滤掉并且不被标识为有效目标。然而,如图像425b所示,相连组成部分426与相连组成部分421关联,并且最终被标记为有效目标412的一部分。

轴向2D切片图像430a是从最上方2D切片图像410a算起的第五2D切片图像。再次地,在2D切片图像430a中检测出三个相连组成部分431-433。基于上述连接标准和过滤处理,将相连组成部分431与相连组成部分426关联、将相连组成部分432与相连组成部分427关联、以及将相连组成部分433与相连组成部分428关联。正如在图像425b中那样,因为相连组成部分427和428过大而不被标记为有效目标,所以相连组成部分432和433也类似地不与有效目标关联并且从分析中移除。然而,相连组成部分431与相连组成部分426关联,且相连组成部分426先前已与有效目标412关联,正如图像430b所示。

如在2D切片图像430a和430b中所示,相较于在2D切片图像425a中的相连组成部分426的面积、在2D切片图像420a中的相连组成部分421的面积、在2D切片图像415a中的相连组成部分416的面积、以及在2D切片图像410a中的相连组成部分411的面积(所有这些相连组成部分426都与有效目标412关联),相连组成部分431的面积较小。在至少一个实施例中,由于相连组成部分431的面积与2D切片图像425a的相连组成部分426的面积之比小于阈值,所以包括相连组成部分411、416、421、426和431的有效目标412可以被最终确定,这意味着有效目标412闭合。在有效目标被最终确定之后,没有其它的连接组成部分再与有效目标关联。

当有效目标412被最终确定时,可以通过将包含有效目标的2D切片图像的数目乘以相邻的2D切片图像之间的距离来计算有效目标的长度。基于有效目标的长度,对有效目标是否为气管进行判定。在一方面,如果有效目标的长度大于70毫米(mm),则将有效目标识别为气管。在另一方面,如果有效目标的长度大于或等于30mm且小于或等于70mm,则将有效目标识别为可能是气管。当有效目标的长度小于30mm时,有效目标不被识别为气管。

图5A和5B是根据本公开的实施例的、用于自动检测气管的方法500的流程图。方法500始于步骤505,在该步骤中生成患者的肺部的3D模型。3D模型可以基于CT扫描图像数据,所述CT扫描图像数据在对患者的胸部进行CT扫描期间获得并存储成DICOM图像格式。在一方面,成像模式也可以是射线照相术、通过CAT扫描生成的断层照片、MRI、超声波造影术、对比成像、荧光检查、核扫描和PET(正电子发射断层成像)。

在步骤510中,可以由3D模型生成2D切片图像。生成的2D切片图像可以是仅包括黑色像素和白色像素的二元化2D切片图像。可以沿轴向方向生成2D切片图像。替代地,可以沿不同于轴向方向的方向生成2D切片图像。在一方面,以相等的间隔距离生成2D切片图像,从而可以简便地计算任意两个2D切片图像之间的距离。在另一方面,能够以不同的距离生成2D切片图像,但是可以包括指明每一个2D切片图像与最上方2D切片图像相距多远的距离信息。

在步骤515中,在2D切片图像中识别相连组成部分。如上文所述,在每一个图像中的相连组成部分是仅具有单一颜色像素(例如,如图4所示的黑色)的包封区域。在步骤520中,在最上方2D切片图像中识别出的任何相连组成部分被标记为有效目标。有效目标被认为是气管的候选。在步骤525中,计数器i被设定为2,并且检查下一个2D切片图像。

图5B示出了作为用于自动检测气管的方法500的一部分的、用于关联并标记相连组成部分的流程图。在步骤526中,对在第i个2D切片图像中的相连组成部分是否与在第i-1个2D切片图像中的相连组成部分关联进行判定。在一方面,可以基于当前和在先2D切片图像中的每一个的相连组成部分的位置来将当前2D切片图像中的相连组成部分与在先2D切片图像中的相连组成部分关联。当相连组成部分重叠时,它们彼此关联。否则,相连组成部分不被关联。

当确定当前2D切片图像(即第i个2D切片图像)中的相连组成部分不与在先2D切片图像(即第i-1个2D切片图像)中的相连组成部分关联时,在步骤528中,将当前2D切片图像的相连组成部分标记为有效目标。然后执行步骤570(图5A)。

当在步骤526中确定当前2D切片图像中的相连组成部分与在先2D切片图像中的相连组成部分关联时,在步骤530中对在先2D切片图像的相连组成部分是否为有效目标进行另一次判定。在标记处理之后,接着执行图5A的步骤570。

在将在先2D切片图像的相连组成部分标记为有效目标的情况下,在步骤534中,在当前2D切片图像的相连组成部分和在先2D切片图像的相连组成部分之间计算关联参数R。关联参数基于连接标准,所述连接标准用于确定相邻的2D切片图像的两个相连组成部分是否紧密相关。

在一方面,关联参数是面积比,该面积比是当前2D切片图像的相连组成部分的面积与在先2D切片图像的对应的相连组成部分的面积之比。在步骤536中,将关联参数与两个预定值进行比较。在关联参数R小于第一预定值P1的情况下,在步骤538中,在先2D切片图像的被标记为有效目标的相连组成部分被最终确定。在当前2D切片图像的相连组成部分的面积显著减小或完全消失时出现该情况。例如,由于气管的下端分叉,气管的底部的图像可能会显示出面积远小于气管的横截面面积的相连组成部分。相连组成部分的面积的显著减小可能表示到达气管的底部。

当关联参数R大于或等于第一预定值P1、但小于或等于第二预定值P2时,在步骤540中,将当前2D切片图像的相连组成部分标记为有效目标。在该情况下,当前2D切片图像的相连组成部分被认为是在先2D切片图像中识别出的有效目标的延续(例如,气管候选)。

当关联参数R大于第二预定值P2时,在步骤542中,在先2D切片图像的相连组成部分的标记可以被移除,以使其不被标记为有效目标。在当前2D切片图像的相连组成部分的面积显著增加时出现该情况。结果,关联参数可以达到100%。在这样的情况下,在步骤541中,对当前图像切片的相连组成部分的直径是否大于预定阈值(例如,对于男性而言为30mm、对于女性而言为25mm)进行第二次查询。相连组成部分的这样的直径将表明相连组成部分不可能是气管。因此,在先2D切片图像的相连组成部分被认为不是气管。在步骤544中,当前2D切片图像的相连组成部分的标记也被移除,以使其不被标记为有效目标。

在步骤538、540和544之后,对在当前2D切片图像中是否存在未经处理的相连组成部分进行判定。当确定存在未经处理的相连组成部分时,重复步骤526-546,直到在当前2D切片图像中未发现另外的未经处理的相连组成部分为止。当确定在当前2D切片图像中不存在未经处理的相连组成部分时,继续图5A的步骤570。

现在转至图5A,在步骤570中,计数器i加1。在步骤575中,将计数器i与2D切片图像的数目N进行比较。当计数器i小于或等于2D切片图像的数目N时,所述方法在图5B所示的步骤526处重复。否则,在每一个2D切片图像中的所有相连组成部分均已处理。在步骤580中,计算有效目标的长度。

在步骤585和586中,将有效目标的长度与预定范围的值进行比较。在步骤590中,如果有效目标的长度大于预定值,则有效目标被确定为气管。类似地,在步骤592中,如果有效目标的长度在预定范围内,则有效目标被标记为很可能是气管,并且医生可能必须在能够进行ENB程序的下一个步骤之前先确认有效目标是否为气管。在步骤595中,如果有效目标的长度小于预定范围,则气管的自动检测失败,并且必须要手动地识别并标记气管。在一方面,预定范围为30mm到70mm。因此,如果有效目标的长度大于70mm,则有效目标被确定为气管;如果有效目标的长度在30mm到70mm之间,则有效目标被标记为很可能是气管。用这样的方式,方法500根据2D切片图像自动地检测气管。

现在,回到图1,存储器120包括应用程序122例如EMN规划和程序软件以及能够被处理器110执行的其它数据。例如,所述数据可以是存储成DICOM格式的CT扫描图像数据和/或基于CT扫描图像数据生成的3D模型。存储器120还可以存储其它相关数据,例如患者的医疗记录、处方和/或患者的病史。存储器120可以是通过存储控制器和通信总线连接至处理器的一个或多个固态存储装置、闪存芯片、大容量存储器、磁带驱动器、或任何计算机可读存储介质。计算机可读存储介质包括以任何方法或技术实现的非暂时性、易失性和非易失性、可移除和不可移除的介质,其用于存储例如计算机可读指令、数据结构、程序模块这样的信息或其它数据。例如,计算机可读存储介质包括随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存或其它固态存储技术、CD-ROM、DVD或其它光学存储器、磁盒、磁带、磁盘存储器或其它磁存储装置、或可以用于存储所需信息并且可以被图像处理装置100存取的任何其他介质。

显示器130可以是触摸感应式和/或声音激活式,从而使显示器130能够用作输入装置和输出装置。

图形处理器140可以是执行图像处理功能的专用图形处理器,所述图像处理功能例如是处理CT扫描图像数据以生成3D模型、处理3D模型以沿上述的多种取向生成3D模型的2D切片图像、以及3D模型的3D渲染。图形处理器140还可以构造成生成要显示在显示器130上的图形用户界面(GUI)。GUI除其它方面外还可以包括示出2D图像切片、3D渲染的视图。在实施例中,图形处理器140可以是专用图形处理器,例如专用图形处理单元(GPU),其仅执行图像处理功能,以使得一个或多个通用处理器110可供用于其它功能。专用的GPU可以是独立的专用图形卡或者是集成的图形卡。

网络接口150使图像处理装置100能够通过有线和/或无线网络连接而与其它装置通信。在一实施例中,图像处理装置100可以经由网络连接从成像装置接收CT扫描图像数据。在其它实施例中,图像处理装置100可以经由存储装置(例如,磁盘或本领域技术人员已知的其它外部存储介质)接收CT扫描图像数据。

输入接口160用于输入数据或控制信息(例如设定值、文字信息)和/或控制图像处理装置100。输入接口160可以包括键盘、鼠标、触摸传感器、摄像头、麦克风、或者本领域技术人员已知的用于用户交互的其它数据输入装置或传感器。

在共同拥有的于2014年7月2日由Brown等提交的发明名称为“Real-Time Automatic Registration Feedback”且申请号为62,020,220的美国临时专利申请、于2014年7月2日由Brown提交的发明名称为“Methods for Marking Biopsy Location”且申请号为62,020,177的美国临时专利申请、于2014年7月2日由Brown等提交的发明名称为“System and Method for Navigating Within the Lung”且申请号为62,020,240的美国临时专利申请、于2014年7月2日由Kehat等提交的发明名称为“Intelligent Display”且申请号为62,020,238的美国临时专利申请、于2014年7月2日由Greenburg提交的发明名称为“Unified Coordinate System for Multiple CT Scans of Patient Lungs”且申请号为62,020,242的美国临时专利申请、于2014年7月2日由Klein等提交的发明名称为“Alignment CT”且申请号为62,020,245的美国临时专利申请、于2014年7月2日由Merlet提交的发明名称为“Algorithm for Fluoroscopic Pose Estimation”且申请号为62,020,250的美国临时专利申请、于2014年7月2日由Markov等提交的发明名称为“System and Method for Segmentation of Lung”且申请号为62,020,261的美国临时专利申请、于2014年7月2日由Lachmanovich等提交的发明名称为“Cone View-A Method of Providing Distance and Orientation Feedback While Navigating in3D”且申请号为62,020,258的美国临时专利申请、以及于2014年7月2日由Weingarten等提交的发明名称为“Dynamic 3D Lung Map View for Tool Navigation Inside the Lung”且申请号为62,020,262的美国临时专利申请中更全面地描述了能够在ENB程序的规划或导航阶段使用的图像和数据生成、管理和操控的更多方面的内容,上述专利申请的全部内容通过引用而并入本文。

尽管出于阐释和说明的目标,参照附图详细地描述了实施例,但是应理解,本发明的方法和装置不应解释为由此受限。对于本领域技术人员而言显而易见的是,可以对前述实施例进行各种变型而并不背离本公开的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1