带有流动传感器的便携式血液透析机器和一次性盒的制作方法

文档序号:11526448阅读:172来源:国知局
带有流动传感器的便携式血液透析机器和一次性盒的制造方法与工艺
本发明涉及用于提供透析的人造肾系统。更特别地,本发明涉及包含一个或多个流动传感器的血液透析系统,其显著改善了血液透析安全性,以便向更广基础的患者提供血液透析和降低血液透析的总体成本。在此,申请人通过援引并入本申请引用或参考的任何及所有专利和公开的专利申请。
背景技术
:血液透析是一种用于实现在体外从患者血液移除包括肌酸、尿素和自由水的废物的医学程序,其涉及使溶质扩散通过半渗透膜。未能适当地移除这些废物会导致肾衰竭。在血液透析过程中,通过动脉管线移出患者血液,通过透析机器处理患者血液,并通过静脉管线使患者血液返回到身体。透析机器包括透析器,该透析器包括大量中空纤维,这些中空纤维形成半渗透膜,血液通过半渗透膜输送。此外,透析机器使用包含适量的电解质和其他主要成分(例如,葡萄糖)的透析液,透析液也通过透析器泵送。通常,通过混合水与适当比例的酸浓缩物和碳酸氢盐浓缩物来制备透析液。优选地,酸浓缩物和碳酸氢盐浓缩物是分开的直到正好在透析器中使用之前的最后混合,这是因为酸浓缩物中的钙和镁在接触碳酸氢盐浓缩物中的高碳酸氢盐水平时会沉淀析出。透析液还可以包括适当水平的纳、钾、氯化物和葡萄糖。通过扩散和对流的结合实现穿过膜的透析处理。扩散引起分子通过随机运动从高浓度区域迁移到低浓度区域。同时,对流引起通常响应于不同的静压力的溶质运动。形成半渗透膜的纤维将血浆与透析液分开并且提供大的表面区域用于进行扩散,其允许包括尿素、钾和磷酸盐的废弃物渗透到透析液中,同时避免诸如血细胞、多肽和某些蛋白质的大分子传递到透析液中。通常,透析液沿与体外回路中血液流相反的方向流动。逆向流动保持半渗透膜两侧的浓度梯度,以便提高透析效率。在一些情况中,血液透析可以提供用于流体移除,其也被称为超滤。超滤通常通过降低透析器的透析液隔室的静压力从而允许包含溶解的溶质的水穿过膜从血浆运动到透析液而实现,其中溶解的溶质包括电解质和其他可渗透物质。在极少情况下,渗透器的透析液流动路径部分中的流体高于血液流动部分,从而导致流体从透析流动路径运动到血液流动路径。这通常被称为逆向超滤。由于超滤和逆向超滤会增加患者的风险,因此,超滤和逆向超滤通常仅在训练有素的医务人员的监督下进行。不幸的是,血液透析存在很多缺点。动静脉瘘是最公认的接入点。为了产生瘘管,医生将动脉和静脉连接在一起。由于这绕开了患者的毛细管,血液快速地流动。对于每个透析疗程,必须用大的针刺穿瘘管以将血液传送到透析器中并且使血液从透析器返回。通常,该过程每周进行三次,每次治疗持续3-4小时。在较轻的程度,患者在家中进行血液透析。家中血液透析通常每周6天,每次2小时。家中血液透析被认为压力较小,并且由于通常用导管进行,因此被认为更简单化。然而,家中血液透析要求更经常的治疗。家中血液透析仍然存在另外的缺点。现有的家用血液透析系统大、复杂、令人恐惧并且难以操作。该设备需要大量训练。家用血液透析系统目前过大以致于不能携带,从而使血液透析患者不能旅行。家用血液透析系统价格昂贵并且需要很高的初期金钱投资,相较于在中心进行血液透析而言尤其如此,在中心进行血液透析,患者不需要为仪器付钱。现有的家用血液透析系统不足以提供对供应物的重复使用,从而使家中血液透析在经济上对医学提供者而言更不可行。由于上述缺点,仅有少量的积极的患者进行家中血液透析的艰苦治疗。目前,多数血液透析系统采用蠕动滚子泵,其与挠性管接合以推动流体通过透析流动路径或血液流动路径。这些滚子泵价格昂贵且效率较低。还有问题在于,用于血液透析的滚子泵会对血小板造成损害并且导致凝结的危险。因此,非常需要这样的血液透析系统,该系统可运输,轻量,易于使用,对患者友好,并且因此能够在家中使用。此外,希望提供一种家用血液透析系统,其在泵、马达、管或电子器件中不存在会使患者危险的单点故障。此外,希望提供一种血液透析系统,其采用这样的泵,该泵不挤压血液流动路径中的血液并且不像蠕动滚子泵中那样包含挠性材料。在另一方面,希望提供一种血液透析系统,其中在单次患者治疗之后,与血液或透析液接触的泵部件可以被丢弃,但是泵马达可以被重复使用。在另一方面,希望提供一种血液透析系统,其包含储存容器,该储存容器具有用于测量透析液流动路径中透析液的流动的流动传感器,并且识别流动传感器中的故障状况。本发明的这些方面满足了这些需求,并且提供在下文技术实现要素:中描述的其他相关优点。
发明内容根据本发明的第一方面,提供一种血液透析系统,其包括用于连接至患者的动脉以从患者收集血液的动脉血液管线、用于连接至患者的静脉以将血液返回至患者的静脉血液管线、可重复使用的透析机器、和一次性盒。在本发明的第二方面,本发明提供一种用于在血液透析机器中使用的盒。动脉血液管线和静脉血液管线可以具有本领域技术人员已知的典型构造。例如,动脉血液管线可以是连接至针的传统挠性中空管,用于从患者的动脉收集血液。类似地,静脉血液管线可以是传统挠性管和针,用于将血液返回至患者的静脉。可以采用各种构造和外科手术程序以获得至患者血液的通路,包括静脉导管、动静脉瘘、或合成移植物。一次性盒旨在用于单次患者治疗并且不重复使用。一次性盒包括具有本领域技术人员已知的设计和构造的透析器。合适的透析器可以从freseniusmedicalcare、baxterinternational,inc.和nipromedicalcorporation获得。优选地,透析器包括大量中空纤维,其形成半渗透膜。一次性盒包括血液流动路径和透析液流动路径。血液流动路径通过连接至用于将血液从患者输送至透析器并且返回到患者的动脉血液管线和静脉血液管线而在闭环系统中输送血液。同时,透析液流动路径在从储存容器到透析器并且返回到储存容器的闭环系统中输送透析液。血液流动路径和透析液流动路径都经过透析器,但通过透析器的半渗透膜分开。优选地,一次性盒包括三个泵致动器。出于本文目的,术语“泵”旨在指代利用抽吸和压力移动流体的致动器和用于使致动器机械地运动的马达。合适的泵致动器可以包括叶轮、活塞、隔膜、罗茨泵的凸瓣、螺杆泵的螺杆、蠕动泵的滚子或线性运动指杆、或者可以由本领域技术人员确定的用于移动流体的任何其他机械构造。同时,马达是用于使致动器运动的机电装置。马达可以通过轴或类似物连接至泵致动器。在优选实施例中,一次性盒的泵致动器是滑动叶片旋转泵构造,其包括滑动地安装至转子的叶片,该转子在壳体的中心腔内旋转。转子是圆形的并且在该更大的基本圆形腔内旋转。转子的中心相对于腔的中心偏置从而导致偏心。允许叶片滑入和滑出转子以便与腔的内侧壁密封,从而形成泵送流体的叶片室。正如后文更详细地解释的,优选地,一次性盒不包括泵马达。第一和第二泵致动器连接至透析液流动路径,用于泵送透析液通过透析液流动路径从储存容器到透析器并返回到储存容器。优选地,第一泵致动器在透析器的“上游”(意味着在流动路径中从透析器之前)连接至透析液流动路径,而第二泵致动器在透析器的“下游”(意味着在流动路径中从透析器之后)连接至透析液流动路径。同时,一次性盒的第三泵致动器连接至血液流动路径。第三泵致动器将血液从患者泵送通过动脉血液管线、通过透析器并且通过静脉血液管线以返回至患者。优选地,第三泵致动器在透析器的上游连接至血液流动路径。一次性盒可以包含多于或少于三个的泵致动器。例如,可以仅利用单个泵致动器将透析液泵送通过透析器。然而,优选地,一次性盒包含两个泵致动器,包括在透析器上游的第一泵致动器和在透析器下游的第二泵致动器。一次性盒还包含过滤器,该过滤器连接至透析液流动路径,用于移除通过半渗透膜从血浆渗透到透析液中的毒素。优选地,过滤器在透析器的下游连接至透析液流动路径,以便在透析液被输送到储存容器之前移除通过透析器传递到透析液中的毒素。本领域技术人员熟知用于与一次性盒一起使用的过滤材料。例如,合适的材料包括树脂床,其包括锆基树脂。优选地,过滤器具有壳体,该壳体包含氧化锆层、磷酸锆层和碳层。在美国专利no.8,647,506和美国专利申请公开no.2014/0001112中描述了可接受的材料。其他可接受的过滤材料可以由本领域技术人员研发和使用而不需要过度实验。优选地,过滤器壳体包括蒸汽膜,该蒸汽膜能够释放包括氨的气体,但不能释放液体,尤其是不能释放流经过滤器的透析液。优选地,一次性盒包含用于监测血液透析的传感器。为此,优选地,一次性盒具有连接至透析液流动路径的流动传感器,用于检测透析液流动路径内的流体流动(体积和/或速度)。此外,优选地,一次性盒包含一个或多个压力传感器,用于检测透析液流动路径内的压力。优选地,一次性盒还具有一个或多个传感器,用于测量血液流动路径内的压力和/或流体流动。在优选实施例中,匣盒具有四个压力传感器,包括用于测量透析器上游的透析液流的压力的第一压力传感器、用于测量透析器下游的透析液流的压力的第二压力传感器、用于测量透析器上游的血液流的压力的第三压力传感器、和用于测量透析器下游的血液流的压力的第四压力传感器。此外,优选的匣盒具有四个流动传感器,包括用于测量透析器上游的透析液流的流率的第一流动传感器、用于测量透析器下游的透析液流的流率的第二流动传感器、用于测量透析器上游的血液流的流率的第三流动传感器、和用于测量透析器下游的血液流的流率的第四流动传感器。压力传感器和流率传感器可以是分开的部件,或者压力和流率测量可以由单个传感器进行。例如,在优选实施例中,透析液流动路径具有两个仅用于测量压力的压力传感器和两个仅用于测量流率的传感器,从而导致存在四个传感器来监测透析液流动路径中的透析液的压力或流率。然而,优选的一次性盒仅包括两个连接至血液流动路径的传感器,其中每个传感器能够测量压力和流率两者。为了传递由流动传感器和压力传感器产生的测量结果,优选地,一次性盒具有安装在外部的电端子,该电端子电连接至流动传感器和压力传感器。优选地,一次性盒由耐用且高强度的塑料制成,例如由高等级聚碳酸酯或丙烯酸制成。聚碳酸酯和/或丙烯酸被认为是有利的,这是因为其具有高反射率性能、极高的电阻和良好的介电常数。优选地,一次性盒的血液流动路径和透析液流动路径是形成在一次性盒的塑料壳体内的管道。此外,优选地,一次性盒是无管的,这意味着在整个血液透析系统内,除了动脉血液管线和静脉血液管线之外,没有患者或医护人员可访问的挠性管。特别是,优选地,一次性盒壳体和泵致动器由硬塑料制成并且不采用任何挠性管,例如与蠕动泵一起采用的挠性管。除了一次性盒之外,血液透析系统包括重复使用的“透析机器”,其匹配至一次性盒,用于连接至并且控制一次性盒的泵致动器以及用于监测一次性盒的传感器。为此,优选的透析机器包括三个泵马达,用于接合并操作一次性盒的三个泵致动器。更特别地,透析机器包括第一和第二泵马达,用于接合并操作连接至透析液流动路径的第一和第二泵致动器。透析机器的第三泵马达接合并操作一次性盒的连接至血液流动路径的第三泵致动器,用于控制血液泵送通过一次性盒的血液流动路径。有利地,泵马达和泵致动器优选地能够仅通过手动地按压泵致动器使其抵靠泵马达而容易地彼此接合和脱离,不需要使用工具,或者对透析机器或一次性盒造成损坏。泵马达和泵致动器可以利用本领域技术人员已知的各种构造机械地相连接。例如,泵马达或泵致动器可以包括带键轴,该带键轴定位成伸出到对应的泵致动器或泵马达内的带键接收部中并与之接合。然而,在优选实施例中,泵马达和泵致动器通过多个磁体相连接,其中泵马达的多个磁体定位成接合泵致动器内的具有相反极性的磁体。优选地,透析机器包括用于储存透析液溶液的储存容器。当透析机器匹配至一次性盒时,储存容器连接到一次性盒的透析液流动路径以形成闭环系统,用于将透析液从储存容器输送至一次性盒的透析器并且返回到储存容器。储存容器可以具有医护人员进行适当的血液透析治疗所需的任何尺寸。然而,优选地,储存容器足够小以便使透析机器能够容易地携带。透析机器优选地具有热连接至储存容器的加热器,用于加热储存在储存容器内的流体。加热器优选地通过电激活,并且包括电阻器,其借助电流的流过而产生热量。为了监测血液透析系统的适当操作,透析机器具有各种传感器。透析机器包括温度传感器,用于测量储存容器内流体的温度。此外,透析机器具有液位传感器,用于检测储存容器内流体的液位。在优选实施例中,液位传感器利用电容变化来确定储存容器中的流体液位。在优选实施例中,液位传感器包括交错地竖直排列的阵列式电极260,其中给定电极处的电容变化反映存在或不存在温和地(mildly)导电的透析液流体。在至少一个实施例中,电极包括定位在透析液流体液位下方的湿式参考电极和定位在透析液流体液位上方的干式参考电极,湿式参考电极和干式参考电极用作透析液流体的电容耦合和环境电容耦合的参考。此外,优选地,透析机器包括血液泄漏检测器,其监测通过透析液流动路径的透析液的流动并且检测血液是否已经通过透析器的半渗透膜不适当地扩散到透析液流动路径中。在优选实施例中,血液透析系统包括血液泄漏传感器组件,其包含光源和光传感器,光源发射光通过透析液流动路径,光传感器接收已经发射通过透析液流动路径的光。优选地,光源和光传感器位于透析机器中,因此在每次血液透析治疗后重复使用而不被丢弃。此外,优选地,光源产生两个峰值波长的光,因而产生两种颜色。双色光在一次性盒上从透析机器发出并且通过透析液流动路径。在通过透析液流动路径之后,光被转向返回到透析机器以便被光传感器接收。随后,分析所接收的光以确定光是否已经改变以反映透析液中可能存在血液。透析机器优选地包括额外的传感器,其包括:氨传感器,其定位在一次性盒的蒸汽膜附近以便感测氨是否形成在一次性盒的过滤器内;静脉血液管线压力传感器,用于检测静脉血液管线中的压力;和连接至静脉血液管线的气泡传感器,用于检测气泡是否已形成在静脉血液管线中。透析机器还可以包含连接至静脉血液管线的夹管阀,用于选择性地允许或阻塞通过静脉血液管线的血液流动。提供夹管阀以便夹住静脉血液管线,从而在任一传感器已检测到不安全状况时避免血液流回到患者。透析机器具有包含专用电子器件的处理器,用于控制血液透析系统。处理器包含连接至泵马达、透析机器传感器和夹管阀的功率管理电路,用于控制血液透析系统的适当操作。此外,透析机器还具有电端子,其定位成接合并电连接至一次性盒的电端子,以便使一次性盒的流动传感器和压力传感器与处理器相连接,使得处理器也可以监测一次性盒传感器。处理器监测各个传感器中的每一个,以确保血液透析治疗根据由医疗人员输入到用户界面中的预编程的程序进行。透析机器和一次性盒提供了可运输、轻量、易于使用、对患者友好并且能够家用的血液透析系统。有利地,在呈现给患者之前对一次性盒和血液管线进行消毒,在血液透析治疗之后将一次性盒和血液管线丢弃。由于血液管线直接连接至一次性盒而非连接至重复使用的机器,在每次治疗后丢弃并在后续治疗前更换易被污染的所有部件,包括不可变形的泵部件。然而,泵马达可以在后续治疗中重复使用。此外,有利地,血液透析系统除静脉血液管线和动脉血液管线之外不使用任何挠性管,以便减少可能对患者造成危险的区域。另一个优点在于,血液透析系统采用的泵不挤压血液流动路径中的血液。此外,血液透析系统提供了之前的血液透析系统未提供的大量的控制和监测,以便提供提高的患者安全性。参照附图,本领域技术人员在阅读后续详细说明时将理解本发明的其他特征和优点。附图说明图1是根据至少一个实施例的示出为在治疗患者的过程中使用的血液透析系统的透视图;图2是根据至少一个实施例的示出了血液透析系统的分解透视图;图3是根据至少一个实施例的血液透析系统的另一分解透视图;图4是根据至少一个实施例的血液透析系统的透视图;图5是根据至少一个实施例的在透析机器的托盘上方的血液透析系统的一次性盒的分解透视图;图6是根据至少一个实施例的示出了用于与血液透析系统一起使用的优选的泵的分解透视图,所述泵包括泵致动器和泵马达;图7是根据至少一个实施例的示出了用于与血液透析系统一起使用的储存容器和过滤器的分解透视图;图8是根据至少一个实施例的示出了血液透析系统的包括过滤器的一次性盒在其连接至血液透析系统的储存容器时的透视图;图9是根据至少一个实施例的血液透析系统的一次性盒的俯视平面图;图10是根据至少一个实施例的血液透析系统的一次性盒的仰视平面图;图11是根据至少一个实施例的示出了用于接收一次性盒的透析机器的托盘的俯视平面图;图12是根据至少一个实施例的示出了血液透析系统的安全特征部的流程图,所述安全特征部包括压力传感器、气泡传感器和夹管阀;图13是根据至少一个实施例的示出了血液和透析液流动通过血液透析系统的流程图;图14是根据至少一个实施例的示出了血液透析系统的各个电子器件和机电部件的连接的图示;图15是根据至少一个实施例的示出了血液和透析液流动通过血液透析系统的更详细的流程图;图16是根据至少一个实施例的氨传感器的示例性加热器的电路图;图17是透析机器的托盘和一次性盒的匣盒的横截面图,示出了血液泄漏传感器组件;图18是根据至少一个实施例的示出了由示例性液位传感器提供的电极布置的图示;图19是示出了用于测量储存容器中的透析液的液位的液位传感器的侧视图;图20是优选的流动传感器辐条轮的俯视剖视图,所述流动传感器辐条轮用于测量透析液流动路径中的透析液的流率;图21是优选的流动传感器辐条轮和磁场传感器的俯视剖视图,所述流动传感器辐条轮和磁场传感器用于测量透析液流动路径中的透析液的流率;图22是优选的流动传感器辐条轮的透视图,所述流动传感器辐条轮用于测量透析液流动路径中的透析液的流率;图23是示出了由辐条轮的旋转而激活的霍尔效应开关产生的波形图;图24是示出了在轮磁体的磁场强度不足或者轮磁体已经离开原位时霍尔效应开关产生的波形图;图25包括两个图,示出了在传感器故障时霍尔效应传感器产生的波形。具体实施方式尽管本发明可以有各种形式的实施例,但是如附图所示,在后文中将描述本发明的当前优选的实施例,应理解,本公开应认为是本发明的示例,而不旨在将本发明限制为所示的具体实施例。参照图1-25,本发明的血液透析系统1包括重复使用的透析机器201、一次性盒11、包括用于连接至患者的动脉的针7的动脉血液管线3、和包括用于连接至患者的静脉的针7的静脉血液管线5。特别参照图1-5和图15,一次性盒11包括壳体13,壳体具有提供血液流动路径15的管道17和提供透析液流动路径19的管道21。优选地,一次性盒的血液流动路径和透析液流动路径是内径约为0.156英寸(3-5毫米)的管道。一次性盒11可以是单一零件结构。然而,优选地并且如本文所描述的,一次性盒可以被拆成多个零件以便允许使透析器25和过滤器79脱离接合,但是多个零件可以组装到一起以形成一次性盒11。优选地,一次性盒的壳体由federaldrugadministration批准的材料制成。当前优选的用于一次性盒的壳体的材料是聚碳酸酯塑料。一次性盒的血液流动路径15在一端连接到动脉血液管线3并且在另一端连接到静脉血液管线5。血液流动路径15和透析液流动路径19两者都延伸通过透析器25,以将各自的流体输送通过闭环系统,其中,透析液流动路径通过半渗透膜(未示出)与血液流动路径隔离开。优选地,在透析器25内透析液沿与血液流动相反的方向流动,透析器具有用于接收透析液的入口31、用于排出透析液的出口33、用于从患者接收血液的入口27、和用于将血液返回至患者的出口29。更特别地,如图1、3和9所示,一次性盒的壳体13包括用于将透析器的入口27连接至动脉血液管线3的联接件37和用于将透析器的血液出口29连接至静脉血液管线5的联接件39。此外,一次性盒的壳体13还包括匣盒部分23,其包括用于从储存容器209来回输送透析液的管道21。为此,匣盒23通过联接件47和43连接至透析器的入口31和出口33。透析液通过匣盒的联接件47接收到匣盒23中。此后,透析液行进通过透析液流动路径19(在管道21内)直到在透析器的入口31处进入透析器25。随后,透析液在透析器的出口33处离开透析器25,并且继续通过管道21行进通过透析液流动路径19,直到在联接件43处离开匣盒23。优选地,一次性盒的匣盒23具有两个泵致动器51和53。第一泵致动器51定位在透析器25的上游以将透析液通过透析液流动路径19泵送至透析器25。第二泵致动器53定位在几乎紧接着透析器25的下游以从透析器25泵送透析液。通过独立地控制第一泵致动器51相对于第二泵致动器53的操作,允许增加或降低透析器25内的透析液流体的压力。优选地,一次性盒的壳体13包括第三泵致动器55,该第三泵致动器定位在壳体的联接件37内,该联接件连接至动脉血液管线3。第三泵致动器55泵送血液通过血液流动路径15,并且优选地定位在透析器25的上游。如图2、7、8清楚可见的,一次性盒11包括过滤器79。过滤器79包括用于封装过滤材料的壳体81,过滤材料用于从透析液移除毒素。过滤材料可以具有本领域技术人员已知或者可以确定的用于从血液移除各种废弃物的成分和结构,所述废弃物主要是尿素和肌酸。过滤器71包括入口83和出口85。过滤器的入口83连接至匣盒的联接件43,过滤器的出口85连接至储存容器的入口211,在后文中会对其进行更详细的描述。在优选实施例中,过滤器的壳体81包括图7和图8所示的蒸汽膜87。蒸汽膜87是半渗透膜,其能够释放包括氨的气体,但不能释放液体、尤其是不能释放透析液流经过滤器79。如在后文详细讨论的,一次性盒11具有用于监测透析器25内发生的透析的各种传感器。如图5-10所示,优选的一次性盒11包括在匣盒中的两对流动传感器93和压力传感器95,用于测量透析液流动路径19中透析液的流体流动和压力。优选地,流动传感器93分别定位在透析器25的上游和下游。流动传感器向处理器249传递电信号,该处理器确定流率。在处理器确定了流率是不合适的情况下,处理器改变泵的速度以实现合适的流率,或者处理器使透析系统完全不工作。例如,处理器可以比较两个透析液流动路线流动传感器93的流率。在流动传感器报告了不同流率的情况下,处理器可以指示故障状况并且使进一步的透析治疗停止。如图5、8-10、20-23所示,在优选实施例中,透析液流动路径中的每个流动传感器93包括圆形室91和在圆形室91内的可旋转辐条轮271,圆形室和可旋转辐条轮位于一次性匣盒23中。优选的辐条轮271由模制塑料制成并且包括轴274和径向延伸的辐条273,辐条通过透析液的流动旋转。优选地,辐条273相对于轴274以微小角度对准。成角度的辐条使震颤最小化,震颤是因圆形室91内的轴274的低冗差捕获而造成的。在不存在该微小的斜度的情况下,在一定速度下,辐条轮271可能因湍流而“震颤”。相反地,在存在该微小的斜度的情况下,辐条轮271沿一致(consistent)的方向被流体流动所促动,以克服震颤的趋势。参照图20-21,优选地,辐条轮271包括两个磁体275,其揭示了轮的旋转位置和旋转速度,处理器使用该旋转位置和旋转速度来确定流体流动。优选的流动传感器93包括至少一个磁体275,更优选地包括两个磁体,磁体集成到辐条轮271中以便与辐条轮的旋转一起转动。磁体可以是小的稀土磁体,其具有足够强度以保持足够场强度,以便覆盖磁体和磁场传感器之间的间隙,从而使传感器致动。当辐条轮271包括两个或更多个磁体275时,根据采用的磁场传感器,磁体可以对准成具有相同的极性和相对的极性。参照图11和21,流动传感器93还包括磁场传感器277,该磁场传感器位于可重复使用的透析机器201中,靠近辐条轮的一个或多个磁体275,用于检测辐条轮的旋转。优选的传感器是小的全极性霍尔效应开关,例如texasinstruments,inc.的零件no.drv5033,其需要±6.9mt以致动。由于传感器是全极性的,辐条轮中磁体的取向可以是任意的,从而使制造简化。有利地,霍尔效应开关在检测到磁场时输出下降沿信号,其被传递至处理器249。例如,图23示出了由霍尔效应开关产生的波形,其中霍尔效应开关由辐条轮的旋转而激活。处理器249应用以下公式来确定透析液通过透析液流动路径的流率。其中,across是流动通道的横截面(以mm2为单位),kmeter是流和马达之间的联接因子(以每ml/min的ml/min为单位),qmeter是由流量计测量的流速(以ml/min=1000mm3/min为单位),rhub是转子毂的半径(以mm为单位),rchannel是流动通道的外半径(以mm为单位),t是对于转一个圈测量的时间(以min/rev为单位)。如图21所示,优选地,每个流动传感器93具有两个磁场传感器277、例如霍尔效应开关,其呈直角定位,并且与轴相距的半径距离与磁体275相同。由于流动传感器93包括两个磁场传感器277,处理器249可以检测故障状况,故障状况例如是缺少磁体,磁体中的一个的磁场不足以触发磁场,或者磁场传感器中的一个发生故障。缺少或较弱的磁体由图24所示的波形示出,其中缺少磁体由taa≠2tab确定。同时,图25示出了故障磁场传感器的波形,其由霍尔效应开关未随着辐条轮271的旋转一起转变而导致。优选地,用于测量透析液压力的匣盒的压力传感器95也分别定位在透析器25的上游和下游,用于在透析液进入透析器25之前和在透析液离开透析器25之后测量透析液的压力。匣盒的压力传感器和流动传感器可以是可以被本领域技术人员选择的federaldrugadministration批准的传感器。优选地,一次性盒还具有额外的传感器97,其用于测量在从患者接收到血液之后和在血液返回至患者之前紧接着经过血液流动路径15的血液的压力和流体流动。在优选实施例中,血液的压力测量和流体流动测量两者由单个传感器进行。如图5、9、10、13、15清楚示出的,优选的一次性盒11包括在联接件37内的第一压力/流体传感器97,用于测量血液进入透析器25之前被动脉血液管线3接收时血液的压力和流体流动。此外,优选地,一次性盒具有在联接件39内的第二压力/流体传感器97,用于测量血液通过静脉血液管线5返回至患者之前血液的压力和流体流动。为了传递匣盒的流动传感器和压力传感器产生的测量结果,一次性盒11具有电端子101。图1-5清楚示出了血液透析系统的透析机器201。优选地,透析机器201具有外壳205,该外壳具有用于封装和保护透析机器201和一次性盒11的各个部件的腔207。优选地,外壳205的大小适于置于商用客机的舱顶行李箱中。透析机器201具有储存容器209,用于在血液透析程序期间储存透析液。优选的储存容器储存1加仑(3.785升)的透析液,透析液可以通过储存容器的可移除盖215引入到储存容器中。此外,储存容器209包括入口211和出口213。如图7清楚所示的,储存容器的入口211连接至一次性盒的过滤器的出口85。同时,储存容器的出口213连接至一次性盒的连接件47。优选地,透析机器具有加热器211(如图15所示),加热器热联接至储存容器209,用于加热透析液并将透析液的温度保持在所需温度。优选地,透析机器201包括托盘219,用于支撑并匹配至一次性盒的壳体13、透析器25、动脉管线联接件37和静脉管线联接件39。托盘219可以包括闩锁件225,用于将一次性盒11锁定成与透析机器201接合。在优选实施例中,托盘219还包括三个泵马达(227、229和231),其用于联接至一次性盒的三个泵致动器(51、53和55)。参照图5、6、11,透析机器包括用于与一次性盒的第一泵致动器51联接的第一泵马达227、用于与一次性盒的第二泵致动器53联接的第二泵马达221、和用于与一次性盒的第三泵致动器55联接的第三泵马达231。优选地,泵马达是可以被本领域技术人员选择的传统商用现货电旋转马达。如图6所示,优选地,每个泵致动器(51、53和55)不像常见的接合动脉管线或静脉管线的滚子泵那样采用可变形构件来提供泵送动作。而是,优选的泵致动器具有滑动叶片构造。为此,每个泵致动器包括用于将流体引入到腔63内的入口57和用于排出这种流体的出口59。此外,每个泵致动器包括具有狭槽67的圆形转子65,所述狭槽用于接收径向运动的叶片69。离心力、液压力和/或偏压部件(例如弹簧或推杆)将叶片推到腔63的壁以形成由转子、叶片和腔侧壁形成的室。在图6所示的优选实施例中,由转子的旋转引起的离心力将叶片推到腔侧壁。优选地,腔63和转子67是基本圆形的,转子定位在该更大的腔内。然而,转子的中心和腔的中心彼此轴向偏置(偏心)。在操作中,转子65和叶片69形成叶轮。随着转子旋转,流体通过入口57进入泵致动器。转子和叶片的旋转泵送流体以从泵致动器的出口59推出。优选地,每个泵致动器由基本不可变形的材料制成,所述材料包括federaldrugadministration批准的塑料。如在本文中使用的,术语“不可变形”不意味着泵致动器部件在泵操作过程中不会经历一些微小的变形。然而,不可变形的泵致动器部件不像接合挠性管(例如血液管线)的蠕动滚子泵那样以提供泵送动作的方式变形,这正是目前的血液透析治疗通常采用的。在优选实施例中,泵致动器的壳体和转子由聚碳酸酯制成,泵致动器的叶片由聚醚醚酮(peek)制成。仍参照图6,泵致动器的转子63可以通过本领域技术人员已知的各种构造连接至电马达67。例如,转子可以包括轴,所述轴带有键以与形成在转子中的对应的接收部形成压配合。然而,在图6所示的优选实施例中,马达227和转子65利用磁体71联接在一起。如所示出的,优选的转子具有六个磁体,其中对于各个相邻的磁体71交替极性(北-南方向)。类似地,马达227包含另外的六个磁体71,其中各个磁体的极性交替。当一次性盒11联接至透析机器201时,马达的磁体定位并对准成与转子的磁体紧密接触。磁力将泵马达联接至泵致动器,使得泵马达的受控激活使转子旋转,由此操作泵致动器。如下文详细讨论的,除了在一次性盒11中有的传感器之外,优选的透析机器201还具有用于监测血液透析系统1的适当操作的各种传感器。例如,透析机器优选地包括温度传感器223,用于测量储存容器209内透析液的温度。此外,透析系统还包括氨传感器237(见图15),其定位成靠近过滤器的蒸汽膜87,用于检测过滤器79内的任何氨。如图2、3、12所示,优选地,透析机器201还包括一对传感器(239和241)和连接至静脉血液管线5的阀245,用于为患者提供额外的冗余安全性。额外的传感器包括用于测量静脉血液管线5中血液的压力的压力传感器239和用于确定在静脉血液管线5中是否存在不希望的气泡的气泡传感器241。在血液的压力不在预定范围内的情况下,或者在检测到不希望的气泡的情况下,使夹管阀245闭合。参照图14,透析机器201包括处理器249、用户界面25和电源253,该电源用于向处理器249、用户界面251、泵马达和传感器供电。处理器249通过传统电路连接至透析机器传感器(包括储存容器液位传感器217、血液泄漏传感器235、氨传感器237、静脉血液管线压力传感器239和静脉血液管线气泡传感器241)、三个泵马达227、229、231和夹管阀245。此外,透析机器具有用于连接至一次性盒的电端子101的电端子247(见图11),以便使处理器249与一次性盒的传感器(包括流动传感器和压力传感器)相连接。处理器可以是通用计算机或微处理器,其包括可以被本领域技术人员确定的硬件和软件,以监测各个传感器并提供对加热器、泵和夹管阀的自动或直接控制。处理器可以位于电路板的电子器件内,或者位于多个电路板的聚合处理部内。在操作中,处理器249电连接至第一、第二和第三泵马达,用于控制泵马达的激活和旋转速度,泵马达转而控制泵致动器,泵致动器则控制通过血液流体路径的血液和通过透析液流动路径的透析液的压力和流体速度。通过独立地控制第一和第二泵致动器的操作,处理器可以保持、增加或降低透析器中透析液流动路径内的压力和/或流体流动。此外,通过独立地控制所有三个泵致动器,处理器249可以控制透析器的半渗透膜两侧的压差,以保持预定压差(零、正或负),或保持预定的压力范围。例如,大多数血液透析在半渗透膜两侧的压差为零或接近零的情况下进行,为此,处理器可以监测并控制泵以保持这种所需的零或接近零的压差。可替代地,处理器可以监测压力传感器和控制泵马达,并且继而控制泵致动器,以增加并保持透析器内的血液流动路径中的相对于透析器内的透析液流动路径中的压力的正压力。有利地,可以通过处理器影响该压差,以提供超滤并且将自由水和溶解的溶质从血液传递到透析液。此外,处理器监测全部的各个传感器,以确保血液透析机器有效且安全地操作,并且在检测到不安全或未规定状况的情况下,处理器更正缺陷或停止进一步的血液透析治疗。例如,如果静脉血液管线压力传感器239指示存在不安全压力或者气泡传感器241检测到在静脉血液管线中存在气态气泡,则处理器发出警示信号,泵被停用,夹管阀245闭合以避免血液进一步回流至患者。类似地,如果血液泄漏传感器235检测到血液已经渗透该透析器的半渗透膜,则处理器249发出警示信号,并且停止进一步的血液透析治疗。透析机器的用户界面251可以包括键盘或触摸屏,用于使患者或医护人员能够输入有关治疗的指令或者使患者或医护人员能够监测血液透析系统的性能。此外,处理器可以包括wi-fi连接,用于将信息或控制传递至较远位置。如上文所述,血液透析系统1包含大量以前从未包含在血液透析设备中的改进的传感器。改进的传感器包括氨传感器237、流体液位传感器217和血液泄漏传感器235。下文将对这些传感器中的每个进行更详细地描述。氨传感器系统同样如上文所述,至少一个氨传感器237定位成靠近过滤器的蒸汽膜87,并且构造成用于检测过滤器79内的任何氨。更详细地,在至少一个实施例中,每个氨传感器237包含加热器(未示出),所述加热器具有以下参数:在至少一个实施例中,由于氨传感器237上化学敏感薄膜的性质,重要的是通过加热器升高温度在氨传感器237的整个寿命期间是可重复的并且是一致的。为此,同样重要的是尽可能一致地控制施加到加热器的功率,尤其是已知加热器的电阻在氨传感器237的整个寿命期间是变化的。在至少一个实施例中,氨传感器237使用与加热器串联的单个负载电阻器。该构造对vcc和rh的变化非常敏感。使用标称vcc=3.3v±3.0%和rl=36.5ω±1.0%,得出ph=0.0669w±10.3%(其中设计中心ph=0.0667w),正如下表所呈现的:在至少一个实施例中,为了更密切地控制加热器中的功耗,使用图16所示的电路。使用ldo以使恒定电流通过rl,并且使用rp以平衡通过rh的电流。使用vfb=0.8v±1.25%、rl=13.0ω±1%、rp=69.8ω±1%、ph=0.0658w±1.65%(其中设计中心ph=0.0661w),正如下表所呈现的:最大功耗为p(rl)=0.050w和p(rp)=0.076w,其完全在1/10w、0603电阻器的正常操作参数内。ldo所需的最大vout为3.12v(v(rh)+vfb)。62ma下的跌落电压为~80mv。vcc(min)=3.12+0.08=3.20v,其需要3.3v±3%的vcc供电。在至少一个实施例中,氨传感器237的敏感层具有化学电阻特性。由于敏感层的制造,不能密切地控制参考电阻r0(环境条件,合成空气)。通过获得当前感测电阻rs并除以环境电阻来进行气体感测,这是因为sno2气体感测层在高温、偏压情况下使nh3(以及其他气体)减少并且电导率增加。rs/r0比率代表气体浓度,并且用于标定和阈值检测。下表示出了敏感层特性:特性符号最小最大单位空气中的感测电阻r0101,500kω敏感度因素(1ppmnh3)sr1.515rs/r0比率(1ppmnh3)rs/r00.670.067最小rsrs820敏感层功耗ps8mw由于氨传感器237的输出将通过rl(微分)读取,必须保持v(rl)低于转换器的微分满量程输入范围(0.5v),以便适当的极限内转换。由于r0具有较宽的动态范围,显然需要切换多个电阻以便管理氨传感器237的读出值。下文示出了至少一个实施例的构造。在涉及低电流的情况下,gpio信号可以假定为gnd(或者反复地接近gnd)。gpio针脚或者处于高z状况(浮动),或者被驱动为0。该构造用于确保敏感层两侧实施的最高电压,以便确保在敏感层增益边界处适当减小。通过敏感层的最大电流和功率通过以下公式限定:ps=is2*rs=0.00252*820=5.1mw应注意,一旦预热后确定了基线r0,转换器的内部增益就可以用于增加动态范围。血液泄漏传感器还如上文所述的,血液泄漏传感器235定位并构造成用于检测血液是否已经渗透该透析器25的半渗透膜。更详细地,在至少一个实施例中,血液泄漏传感器235利用光学吸收原理来确定血液在透析液中的存在。尤其如图9、11、17所示,血液透析系统1包括血液泄漏传感器组件233,其包括光源261和采用光传感器235形式的血液泄漏传感器235两者。光源261和光传感器位于透析机器的托盘219中以便重复使用,而不是在每次血液透析治疗之后被丢弃。同时,一次性盒的匣盒23构造成用于:接收从光源261发射的光265;引导光265通过透析液流动路径19;以及使光返回到光传感器235。光传感器235接收光并将光转换成电信号,电信号被传递到处理器249用于分析。为了允许由光源261产生的光通过透析液流动路径19,匣盒的透析液管道21的至少一区段263由半透明材料制成。如在本文使用的,术语“半透明”不意味着对所有波长的光都是透明的。例如,透析液管道可以由阻挡可能损坏透析液的光的波长的材料制成。然而,如在本文使用的,“半透明”意味着靠近光源261和光传感器235的透析液管道区段263允许足够的来自光源的预定波长(或多个预定波长)的光通过,以允许光传感器和处理器249确定血液是否已经泄漏到透析液中。在优选实施例中,匣盒壳体,包括管道区段263,由半透明聚碳酸酯制成。本领域技术人员可以采用各种构造使来自光源261的光传送通过半透明透析液管道区段263到达光传感器235。例如,一次性匣盒23和非一次性透析机器托盘219可以构造成使光源261和光传感器235定位成在半透明透析液管道区段263的相对两侧上面朝内。然而,如图17所示,在优选实施例中,匣盒23包括第一棱镜259,其接收来自光源261的光并且重新引导光通过透析液流动路径19的半透明区段263。随后,光265被重新引导通过第二棱镜259返回到光传感器235。在优选实施例中,棱镜259由聚碳酸酯构成,其中反射表面已经被抛光成沿所需方向反射光。为了避免例如因环境光引起的误差以及为了补偿透析液清晰度的变化,优选地,光传感器235发射具有可见或不可见(红外或紫外)光的至少两个峰值波长的光。在优选实施例中,光源包括两个发光二极管(led),其产生两个不同的峰值波长。优选地,第一峰值波长小于600纳米(nm),第二峰值波长大于600nm。可接受的光源是由rohmco.,ltd制造的双色半导体,零件no.为sml-020mltt86。该表面可安装芯片包括两个led,其产生分别具有大体570nm和大体660nm的峰值波长的绿光和红光。来自光源261的光被引导通过棱镜259和透析液流动路径19的半透明区段263,然后被光传感器235接收。一种可接受的光传感器由fairchildsemiconductorcorporation出售,零件no.为kdt00030a。该光传感器235包含光电晶体管检测器芯片,其提供类似于人眼的光谱响应和630nm的峰值敏感度,该峰值敏感度有利地在由优选光源——rohmco.,ltd的零件no.sml-020mltt86产生的波长的中间。光传感器235将光转换成电信号以便由处理器249分析。继而,处理器分析由光传感器235产生的电信号以确定光量是否改变并因此确定任一峰值波长是否改变,以便指示血液在透析液中的可能性。在处理器249得出光传感器的信号指示血液可能在透析液流动路径中的结论时,处理器终止进一步的血液透析治疗。液位传感器如上文描述的,至少一个液位传感器217定位并构造成用于监测并测量透析液储存容器209(图13和图15)中透析液流体的液位。在至少一个实施例中,流体被包含在储存容器209内,液位传感器217定位在储存容器209外部并且靠近储存容器。液位传感器217提供安全性关键功能,这是因为其监测透析液储存容器209中流体液位的升高和降低。除了严重的流体损失(即,破裂的储存容器209或流动路径19),透析液流体的增益或损失指示透析器25两侧的压力平衡不合适并且必须被调整。参照图18和图19,在至少一个实施例中,液位传感器217利用电容的改变来确定储存容器209中的流体液位270。一系列电极260和接地表面262定位在储存容器209内部或靠近储存容器,一给定电极260处的电容的改变反映存在或不存在温和地导电的透析液流体35。在至少一个实施例中,如图18所示,电极260以交错图案竖直地布置,从而在电极260之间提供重叠。该重叠也允许相较于非重叠电极260而言具有更好的液位分辨率。电极260和接地表面262(“gnd”)之间的电容耦合根据透析液流体的存在而改变。该电容的改变被测量并用于确定跨越所有电极260的流体液位270。在电极260中,液位传感器217包括湿式参考电极264和干式参考电极266,它们用作透析液流体35的电容耦合和环境电容耦合的参考。在至少一个实施例中,湿式参考电极264定位成在正常操作期间始终低于透析液流体液位,干式参考电极266定位成在正常操作期间始终高于透析液流体液位270。处理器分析从顶部“干式”电极和底部“湿式”电极接收的电信号,以确定储存容器中透析液的电容。在第一实施例中,储存容器液位传感器包括至少三个电极和接地路径,其中所述至少三个电极竖直地定位在储存容器中以形成电极阵列。电极阵列包括顶部电极、中间电极和底部电极,其中顶部电极定位在标称满液位上方,中间电极和底部电极定位在标称满液位下方。继续参照图18和图19,在至少一个实施例中,液位传感器217还设置有电容-数字转换器(未示出),其测量每个电极260和接地表面262之间的电容。液位传感器217还设置ac屏蔽输出268,其与被驱动的电极260同相并且用于使电极260与寄生接地耦合隔离。ac屏蔽268用在电极260后方的平面内以屏蔽电极260以免寄生接地,以及用在电极位置中以确保对于每个电极260都有相同的负载。在至少一个实施例中,每个电极260是旋转90度的对称正方形,总高度为12mm,总宽度为12mm(所有边为8.49mm长的旋转正方形),面积为72mm2。电极260在电极260中心之间竖直间隔开7.5mm。可接受的电极阵列可以由analogdevices,inc.获得,零件号为ad7148,其具有以交错图案竖直布置的八个电极。优选地,电极阵列定位在储存容器内,使得包括顶部“干式”电极在内的四个电极定位在优选的标称满液位270上方,包括底部“湿式”电极在内的四个电极定位在优选的标称满液位270下方。标称满液位可以标记在储存容器的内部上,例如用水平线标记,以提供关于透析液流体应在储存容器内充满至哪里并维持在哪里的可见指示器。储存容器内透析液流体的体积与流体液位处的横截面面积成比例。在示例性实施例中,储存容器209的横截面面积是3,102mm2。利用下式计算由液位偏差表示的体积:在示例性实施例中,液位传感器217具有±58ml的基本跨度(±18.75mm)。假设储存容器具有1000ml的标称容积,则液位传感器能够监测5.8%的透析液流体。液位传感器,包括电极,将电信号传递至处理器,电信号被分析以确认在储存容器内存在正确量的透析液。在储存容器内的透析液的量被确定为过多或过少的情况下,如果液位传感器检测到储存容器内透析液的液位低于预定阈值,则处理器停用血液透析系统。本文示出并描述了本发明的示例性实施例。因此,应理解,公开了便携式血液透析机器和一次性盒。由于可以以所示出和所描述之外的各种构造实施本发明的原理,所以应理解,本发明不以任何方式由示例性实施例限制,而是总体涉及便携式血液透析机器和一次性盒,并且能够采取多种形式而不背离本发明的精神和范围。本领域技术人员还应理解,本发明不局限于所公开的特定几何结构和构成材料,而是可以使用当前已知或者以后研发的其他功能相当的结构或材料而不背离本发明的精神和范围。此外,上述实施例中的每个实施例的各个特征可以以任何逻辑方式结合并且旨在包括在本发明的范围内。本发明的替代实施例、元件或步骤的分组不应理解为是限制性的。每组构件可以独立地或者与本文公开的其他组构件任意组合地引用和要求权利。应想到,一组的一个或多个构件可以出于方便和/或可专利的原因而包含在一组中或从一组中删除。当发生这种包含或删除时,应认定说明书包含修改的组。除非有其他指示,本说明书和权利要求中使用的所有表述特征、物品、数量、参数、性质、术语等等的数值应理解成在所有情况下由术语“大约”修正。如本文使用的,术语“大约”意味着如此量化的特征、物品、数量、参数、性质或术语涵盖高于和低于所述的特征、物品、数量、参数、性质、术语的值的±10%的范围。因此,除非有相反指示,说明书和所附权利要求书中阐述的数值参数是近似值,可以改变。至少并且不企图限制权利要求范围的等同原则的应用,每个数字指示至少应被理解为根据报道的重要数字的数目并且应用常规舍入技术。尽管阐释本发明的较宽范围的数值范围和值是近似值,但是在具体示例中阐释的数值范围和值被尽可能精确地报道。然而,任何数值范围和值固然包含一定误差,其因相应的实验测量中存在的标准偏差必然导致。本文对数值范围和值的记载仅旨在用作分别指代落入范围内的每个单独数值的速记方法。除非本文有其他指示,数值范围的每个单独值像单独地记载在本文中那样包含在本说明书中。在描述本发明的上下文(尤其是下面的权利要求的上下文)中使用的术语“一”、“该”、“所述”和类似指示应被认为涵盖单数和复数两者,除非本文有其他指示或通过上下文明确地否定。可以以任何合适的顺序执行本文描述的所有方法,除非本文有其他指示或通过上下文明确地否定。使用本文提供的任何和全部示例或示例性语言(比如,“例如”)仅旨在更好地诠释本发明而不对用其他方式要求保护的本发明的范围作出限制。本说明书中的任何语言都不应理解为指代任何对实施本发明而言必不可少的未要求保护的元件。本文公开的特定实施例可以通过使用“由…组成”或“基本由…组成”语言在权利要求中被进一步限制。当在权利要求中使用时,无论是如递交时的或者每次修改时增加的,过渡术语“由…组成”排除未在权利要求中明确说明的任何元件、步骤或成分。过渡术语“基本由…组成”将权利要求的范围限制为所述的材料或步骤以及不实质影响基本且新颖的特征(多个特征)的内容。如此要求保护的本发明的实施例内在地或明确地在本文被描述和实现。应理解,逻辑代码、程序、模块、过程、方法和每个方法的相应元素的执行顺序仅是示例性的。根据实施方式,可以以任何顺序或并行地执行,除非在本公开中有其他指示。此外,逻辑代码不涉及或局限于任何特定编程语言,并且可以包括在分布式、非分布式或多处理环境中于一个或多个处理器上执行的一个或多个模块。尽管示出并描述了本发明的若干特定形式,但是,显而易见的是,可进行各种改变而不背离本发明的精神和范围。因此,不旨在限制本发明,除了由下面的权利要求限制之外。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1