微细纳米化药剂及其应用的制作方法

文档序号:19151792发布日期:2019-11-16 00:10阅读:211来源:国知局
微细纳米化药剂及其应用的制作方法

本发明涉及分散于溶剂中的有效成分的平均粒径为直径1~20nm的微细纳米化药剂、该药剂的作为微血管血流减少剂的用途、使用该药剂的肿瘤和/或炎症性疾病的处置方法等。



背景技术:

癌细胞及癌组织的基质细胞分泌血管内皮生长因子(vegf)等血管生成因子,形成从组织内已存在的血管系统分支的新的血管网。该新的血管网不认为提供癌组织的生长所需的营养,或成为转移时的路径。于是,为了不使营养从这些肿瘤血管供给至癌组织,着重于抑制肿瘤血管生成或使血管发生栓塞的治疗方法,进行着用于使小血管栓塞的药剂的开发。

但是,肿瘤血管如前所述形成细密的血管网,因此难以仅选择性地使肿瘤血管栓塞,大多数情况下采用通过使分支出肿瘤血管的原血管栓塞来阻止营养传输的方法。然而,该方法需要使正常血管栓塞,因此可能会对正常组织造成影响。

近年来,向组织的特定部分递送药剂的方法受到关注。通过血管造影等特定肿瘤部位,向对该肿瘤部位进行营养供给的动脉注入微导管,从其投入抗癌剂等药剂的该方法被称为超选择动脉灌注法,可向特定部位选择性地以高浓度递送药剂,被认为与全身化学疗法相比副作用更少,效果更好。

如上所述,使用插入血管的医疗器具进行治疗的血管内治疗因能够以低侵入方式获得高效果而受到关注,但现状是对于肿瘤血管等各种各样的微血管的治疗方法在临床上的实用化并不充分。

近年来,对应用超选择动脉灌注法对肿瘤血管或其支持血管给予栓塞剂等使血管栓塞的方法进行着开发。例如,专利文献1中记载了含有作为抗癌剂的紫杉醇的微球血管栓塞剂。记载了该制剂的目的之一是以物理方式栓塞流入肿瘤血管的血流,因此制剂的粒径在干燥状态下为100~350μm。

现有技术文献

专利文献

专利文献1:日本专利特表2008-513381号公报

发明的概要

发明所要解决的技术问题

本发明的目的在于提供特别对于细胞具有高渗透效果的新药剂。

解决技术问题所采用的技术方案

本发明人在对局部递送抗癌剂的使用超选择动脉灌注法的血管内治疗进行研究的过程中,发现如果将分散于生理盐水中的吉西他滨盐酸盐(健择(gemzar))与甘草酸铵混合,则形成具有约60~120nm左右的平均粒径的制剂,所述制剂发挥使肿瘤血管的高血流减少,使肿瘤血管的密度降低的效果,认为该效果可能是由于抗癌剂的粒径小,因而药剂容易地通过肿瘤血管的血管壁到达肿瘤组织。基于所述发现,对用于癌症的血管内疗法的制剂进一步继续研究的过程中,发现通过减小制剂的粒径,可使制剂递送至肿瘤细胞内,甚至是肿瘤细胞的核内,因而例如用作微血管血流减少剂的情况下,发挥使肿瘤血管密度进一步降低等较高的治疗效果,从而完成了本发明。

即,本发明涉及以下所示的发明。

(1)一种微细纳米化药剂,其中,分散于溶剂中的有效成分的平均粒径为直径1~20nm。

(2)根据(1)的微细纳米化药剂,其中,分散于溶剂中的有效成分的粒度分布为直径1~20nm。

(3)根据(1)或(2)的微细纳米化药剂,其中,微细纳米化采用放射线照射。

(4)根据(1)~(3)所述的微细纳米化药剂,其中,有效成分为抗癌剂。

(5)根据(1)~(4)所述的微细纳米化药剂,其中,该药剂为肿瘤血管或炎症血管血流减少剂。

(6)根据(5)的微细纳米化药剂,其中,有效成分包括免疫检查点抑制剂。

(7)一种对药剂进行微细纳米化的方法,其中,包括对所述药剂照射100~200μsv/h的放射线10分钟~60分钟的工序。

(8)根据(7)的方法,其中,放射线以沥青铀矿石为放射线源。

(9)根据(7)或(8)的方法,其中,药剂为纳米化的抗癌剂。

(10)根据(9)的方法,其中,纳米化的抗癌剂包括吉西他滨盐酸盐与甘草酸铵的混合物。

发明的效果

通过本发明,可提供对细胞的渗透性高的新制剂。本申请发明的制剂与以往的制剂相比粒径极小,所以可通过细胞膜,甚至核膜,因此成为特别是对细胞可发挥高效果的制剂。所述制剂作为以使流至微血管、特别是肿瘤血管和炎症血管的血流减少为目的的制剂使用的情况下特别好地发挥效果。

具有微血管的疾病、特别是肿瘤部位中,血管网因过度发达的微血管而复杂化,结果流入大量的血液而导致血流阻滞,疾病部位呈低氧状态。然而,通过用本发明的药剂选择性地使流至微血管的血流减少,血流的阻滞得到消除,可改善微血管周边的低氧状态。一旦低氧状态得到改善,癌症干细胞巢(niche)被破坏,由此癌细胞的增殖被抑制,结果可对癌细胞进行处置。所述机理在发生癌症的脏器中也起到效果,因此可对于任何癌症确立同样有效的处置方法。

附图的简单说明

图1是表示将纳米化抗癌剂通过放射线照射微细纳米化而得的制剂的粒度分布测量的结果的图。上方的图表为表示粒子的粒度分布的图表,下方的表为峰的数据。放射线照射前存在于峰2位置(60nm附近)的峰通过放射线照射迁移至峰1位置(4nm附近)。

图2是表示微细纳米化免疫检查点抑制剂的粒径测量的结果的图表。a表示微细纳米化cbt制剂a的粒度分布测量的结果,b表示微细纳米化cbt制剂b的粒度分布测量的结果。

实施发明的方式

以下,对本发明进行详细说明。

<1>本发明的微细纳米化药剂

本发明提供一种微细纳米化药剂,其中,分散于溶剂中的有效成分的平均粒径为直径约1~20nm。

本发明中,“药剂”是指显示特定的药理学效果的有效成分(化合物)本身,但有时也表示包含该有效成分的制剂(组合物)。

本发明中,“微细纳米化药剂”是指具有小至显示比以往的药剂更高的细胞膜通过性的程度的粒径的药剂,例如为具有小于40nm的粒径的药剂,但并不仅限于此。微细纳米化药剂可以是通过单独或与其他成分组合分散于溶剂而形成较小的粒径的药剂,也可以是分散于溶剂后实施减小粒径的处理而得的药剂。作为减小粒径的方法,可使用例如振荡、稀释、搅拌等该技术领域中通常所用的方法。

本发明中,“微血管”是指构成在特定的疾病部位新生的微血管网的血管。作为微血管的特征,可例举与通常的血管相比,无秩序且过密,存在大量动静脉的短路,血管壁的渗透性高。作为微血管的例子,可例举例如肿瘤血管、炎症血管、缺血的周围血管、长期持续疼痛部位的血管等,但并不仅限于此。本发明的一种形态中,微血管较好是肿瘤血管和炎症血管,更好是肿瘤血管。

本发明中,“肿瘤血管”典型的是指从已有的血管分支新生的构成肿瘤组织内可见的无秩序、过密且存在大量动静脉短路的血管网的血管。肿瘤血管主要通过肿瘤细胞和肿瘤组织内的基质细胞分泌的血管内皮生长因子(vegf)等血管生成因子形成,结构不稳定,具有高通过性。该血管不仅向肿瘤细胞供给氧和营养,还参与血行性转移。

本说明书中,“炎症血管”是指由在炎症部位产生的炎症性细胞因子诱导的新生血管,典型的可例举例如类风湿关节炎中构成在滑膜新生的血管网的血管等。

本发明中,“长期持续疼痛部位的血管”是指主诉持续3个月以上的慢性疼痛的被诊断为变形性骨关节炎、肌腱炎、筋膜炎等的疾病状态中在确认疼痛的部位的筋膜、肌腱、脂肪组织等新生的血管。这些血管并没有显示肿瘤血管和炎症血管那样明显的血管密度的异常,但如果仔细观察,可确认伴有早期的静脉造影的血管密度的增加。

本发明中,“微血管血流减少剂”是指具有在被导入微血管的情况下使该微血管的血流量减少的效果的药剂。本发明的一种形态中,血流量的减少可由微血管的栓塞产生。另一种形态中,血流量的减少可由微血管的破坏产生。因此,微血管血流减少剂包括例如血管的栓塞物质、抑制血管生成的物质、从血管漏出减少血流的物质等,但并不仅限于此。因此,微血管血流减少剂可与其他药剂并用,包括例如血管的栓塞物质、抑制血管生成的物质、从血管漏出减少血流的物质等,但并不仅限于此。

本发明是基于下述新发现的发明:通过使分散于溶剂中的抗癌剂等药剂的粒径达到规定的尺寸,例如小于40nm,但并不仅限于此,从而显示比以往的有效成分更高的药效。因此,本发明的微细纳米化药剂能够以比含有同样的有效成分的以往的药剂更低的用量使用。

本发明的微细纳米化药剂显示高药效的理由并不清楚。可考虑例如由于粒径减小,与细胞表面受体的匹配性提高等理由,但并不受理论限制。

本发明的一种形态中,微细纳米化药剂的分散于溶剂中的有效成分的平均粒径为1~20nm。一种优选的形态中,微细纳米化药剂的分散于溶剂中的有效成分的粒度分布为1~20nm。本说明书中所用的“平均粒径”是指分散于溶剂中的全部粒子的直径的平均值,“粒度分布”是指分散于溶剂中的全部粒子的直径的分布范围。本发明的一种更优选的形态中,平均粒径或粒度分布为1~10nm。一种进一步更优选的形态中,平均粒径或粒度分布为2~6nm。

如上所述,本发明的微细纳米化药剂可以是通过分散于溶剂而形成较小的粒径的药剂,也可以是分散于溶剂后实施减小粒径的处理而得的药剂。作为对粒径进行微细纳米化的处理,可使用振荡、稀释、搅拌等该技术领域中通常所用的方法,一种优选的形态中,作为微细纳米化的方法,还可例举基于放射线照射利用放射线的小剂量刺激(hormesis)效应的方法等。例如在放入要微细纳米化的药剂的容器附近设置放射100~200μsv/h左右的γ射线的沥青铀矿,通过放置10~30分钟左右,可实现较小的粒度分布。

本发明的微细纳米化药剂与粒度分布大的药剂相比,具有更容易被摄入细胞的性质,因此可在各种用途的医药制剂中良好地使用。作为可用作医药制剂的有效成分,可例举例如抗癌剂、抗炎症剂、抗体制剂、双膦酸盐等,但并不仅限于此。一种优选的形态中,有效成分为抗癌剂。如上所述,本发明的微细纳米化药剂即使是比通常的药剂低的用量也可发挥效果,因此在采用全身给药的使用中也可减轻副作用等。

本发明的一种形态中,本发明的微细纳米化药剂可用作微血管血流减少剂。微血管中,大多血管壁的通过性亢进,因此可特别优选地使用本发明的微细纳米化药剂。作为可适用本形态的微血管血流减少剂的微血管,可例举例如肿瘤血管、炎症血管等,但并不仅限于此。特别好是肿瘤血管。

将本发明的微细纳米化药剂用作肿瘤血管血流减少剂的情况下,作为其有效成分,可例举例如抗癌剂、免疫检查点抑制剂等。

作为肿瘤血管血流减少剂所用抗癌剂,可优选例举纳米化的抗癌剂等。本说明书中,“纳米化”是指通过单独或与其他成分组合分散于溶剂,或者分散于溶剂后实施减小粒径的处理,制成具有约60~120nm左右的粒度分布的药剂。作为纳米化的抗癌剂的例子,吉西他滨盐酸盐(健择)与甘草酸铵的混合物(g-g乳液)之外,还可例举阿霉素、奥沙利铂、博来霉素等其他抗癌剂与g-g乳液的混合物等,但并不仅限于此。

本发明的一种特别优选的形态中,可例举将g-g乳液等纳米化的抗癌剂用小剂量刺激效应微细纳米化而得的抗癌剂。通过在具有60~120nm左右的粒度分布的纳米化的抗癌剂的附近设置放射150μsv/h左右的γ射线的沥青铀矿,放置10~30分钟左右,可实现2~6nm左右的粒度分布。

肿瘤血管血流减少剂可用的免疫检查点抑制剂可以是作为免疫检查点抑制剂在该技术领域中已知的任意的抑制剂,可例举例如抗ctla-4抗体、抗pd-1抗体、抗pd-l1抗体、抗tim-3抗体、抗lag-3抗体、抗b7-h3抗体、抗b7-h4抗体、抗btla抗体、抗vista抗体及抗tigit抗体等,但并不仅限于此。本发明的一种形态中,免疫检查点抑制剂较好是抗ctla-4抗体、抗pd-1抗体和抗pd-l1抗体,更好是抗ctla-4抗体和抗pd-1抗体。作为抗ctla-4抗体,典型的可例举伊匹单抗;作为抗pd-1抗体,典型的可例举纳武单抗和派姆单抗;作为抗pd-l1抗体,典型的可例举阿特珠单抗和msb0010718c(阿利库单抗)。

本发明中,“肿瘤(tumor)”包括良性肿瘤和恶性肿瘤(癌,恶性新生物)。癌(cancer)包括造血器官的肿瘤、上皮性的恶性肿瘤(癌,carcinoma)和非上皮性的恶性肿瘤(肉瘤,sarcoma)。本发明的药剂特别发挥治疗效果的是具有肿瘤血管的癌症,典型的是实体癌症。通常将免疫检查点抑制剂用于癌症的处置的情况下,可处置的癌症仅限于对应的免疫检查点蛋白在免疫逃避中参与的癌症。然而,作为肿瘤血管血流减少剂使用免疫检查点抑制剂的情况下,可处置的癌症无特别限定。因此,例如作为本发明的微血管血流减少剂使用抗ctla-4抗体的情况下,处置对象的癌症也可并没有表达ctla-4。

本发明人发现通过将免疫检查点抑制剂与其他的免疫检查点抑制剂或贝伐单抗等抗体药剂组合制备肿瘤血管血流减少剂,可实现约10~15nm左右的粒度分布。因此,本发明的另一种优选的形态包括将免疫检查点抑制剂作为有效成分的微血管血流减少剂,更好是肿瘤血管血流减少剂。

本发明的微细纳米化药剂分散于溶剂中,因此典型的是液剂、注射剂等可注入的形态。作为可用于本发明的微细纳米化药剂的溶剂,可例举作为注射剂的溶剂或稀释剂在该技术领域中通常所用的溶剂等,典型的可例举水、生理盐水等,但并不仅限于此。

<2>对本发明的药剂进行微细纳米化的方法

如上所述,新发现通过对药剂进行微细纳米化,能够以比以往的药剂低的用量发挥所期望的效果,本发明基于该发现。因此,本发明在一个方面涉及对药剂进行微细纳米化的方法。

本发明的微细纳米化方法中,特别优选使用的是利用放射线的小剂量刺激效应的方法。小剂量刺激效应是指一般高浓度或大量使用的情况下有害的事物在低浓度或微量使用的情况下带来有益的效果的现象,该效应在放射线上也可观察到。作为放出显示小剂量刺激效应的放射线的放射源,可例举例如沥青铀矿等,本发明的微细纳米化方法中也优选使用沥青铀矿。

本发明的微细纳米化方法典型的是通过在要微细纳米化的药剂的附近照射约100~200μsv/h左右的放射线10~60分钟左右来实施。照射的放射线的辐射剂量较好是约100~150μsv/h左右,更好是约150μsv/h。照射时间较好是10~30分钟。

如上所述,作为微血管血流减少剂使用本发明的微细纳米化药剂的情况下,可期待特别高的效果。因此,本发明的一种优选的形态中,微细纳米化的药剂为纳米化的抗癌剂。作为纳米化的抗癌剂的例子,典型的可例举吉西他滨盐酸盐与甘草酸铵的混合物(g-g乳液)、或者g-g乳液与其他抗癌剂的混合物等,但并不仅限于此。

<3>本发明的实体肿瘤处置方法

如上所述,本发明的微细纳米化药剂可使各种疾病中的微血管的血流减少,因而可减小微血管的密度。因此,本发明的微细纳米化药剂可良好地用于微血管血流减少方法、及可见微血管的过度形成的疾病和症状的处置方法。即,本发明在一个方面包含使用本发明的微细纳米化药剂的微血管血流减少方法、及可见微血管的过度形成的疾病和症状的处置方法。作为可通过本发明的微血管血流减少方法处置的疾病和症状,可例举实体肿瘤、类风湿性关节炎、主诉持续3个月以上的慢性疼痛的变形性骨关节炎、肌腱炎、筋膜炎、椎管狭窄症和被作为慢性疼痛综合征的各种疼痛等。

本发明的微细纳米化药剂可优选用作在给药至肿瘤血管的情况下,可使该肿瘤血管的血流减少,由此改善低氧状态,使肿瘤血管密度下降的肿瘤血管血流减少剂。因此,本发明的微细纳米化药剂可用于通过改善实体肿瘤周边的微环境(巢)来对实体肿瘤进行处置的方法。即,本发明在一个优选的方面涉及基于使肿瘤血管的血流减少的实体肿瘤的处置方法。

本发明的实体肿瘤的处置方法可使用一般被称为“血管内治疗”的方式实施,包括将本发明的微细纳米化药剂导入要减少血流的微血管网的工序。本发明的微细纳米化药剂被导入微血管网即可,因此既可全身给药,也可局部给药。本发明中,只要没有另外记载,“血管内治疗”一词是指通过对微血管给予使血流减少的药剂来处置疾病的治疗方法。因此,作为血管内治疗的一种形态,可优选使用本发明的微血管血流减少方法及包括实体肿瘤的可见微血管的过度形成的疾病和症状的处置方法。

本发明的一种优选形态中,微细纳米化药剂被局部给药至对象的微血管。作为局部给药的方法,典型的可例举动脉灌注法,其中较好是将导管导入至目标血管的附近来直接给予药剂的方法。本发明的方法中,目标血管为微血管,因此为了将导入至更靠近目标血管的位置,导管较好是使用微导管。使用微导管的向微血管的局部给药方法在该技术领域中公知,可例举例如超选择动脉灌注法等,但并不仅限于此。给予的微细纳米化药剂的用量根据药剂的有效成分的种类而不同,但只要是本领域的技术人员,就可计算适当的量。

如上所述,本发明的实体肿瘤处置方法是通过使向实体肿瘤输送营养的肿瘤血管的血流减少,降低肿瘤血管密度而对实体肿瘤进行处置的方法,因此只要是具有肿瘤血管的实体肿瘤,可对任意的肿瘤进行处置。因此,作为可处置的肿瘤,可例举例如头颈癌、食道癌、肺癌、乳腺癌、胃癌、肝癌、胆管癌、胰腺癌、大肠癌、肾癌、膀胱癌、前列腺癌、睾丸癌、卵巢癌、子宫颈癌、子宫内膜癌、恶性淋巴瘤、肉瘤等,但并不仅限于此。

此外,如上所述,本发明的实体肿瘤的处置方法是通过使肿瘤血管的血流减少,由此降低肿瘤血管密度,从而发挥治疗效果的方法。在此,已知肿瘤血管不仅向肿瘤输送营养,还起到作为血中循环肿瘤细胞(ctc)的出入口的作用。本发明的方法可通过降低肿瘤血管密度,使肿瘤血管消失,封闭该出入口,因而ctc的量下降。由此,可防止肿瘤的转移本身。因此,实体肿瘤可以是原发性的肿瘤,也可以是转移的肿瘤。如果采用本发明的方法,可通过对原发部位的肿瘤进行处置,从而处置转移灶的肿瘤。相反地,也可通过对转移灶的肿瘤进行处置,从而处置原发部位的肿瘤。

实施例

参照以下的例子对本发明进行更详细的说明,但这些例子只是示例本发明的特定的具体例子,本发明并不仅受这些例子的限定。

例1.微细纳米化抗癌剂

(1)纳米化抗癌剂的粒度分布的测量

将健择(从日本礼来株式会社获得)200mg、甘草酸一铵(从日本米诺发源制药株式会社获得)80mg和abraxane(从大棚药品工业株式会社获得)5mg混合,制成乳液。此外,同样地进行操作,制备加入阿霉素10mg、泰索帝10mg、奥沙利铂50mg、奥沙利铂50mg+丝裂霉素4mg、奥沙利铂50mg+丝裂霉素4mg+阿霉素10mg或者博来霉素15mg代替abraxane的乳液。

粒度分布使用ls粒度分布测定装置ls13320(贝克曼库尔特公司制)进行了测量。

结果示于表1。

[表1]

如表1所示,不同的混合制剂会稍有不同,但制成粒度分布为约60~120nm的制剂。

(2)微细纳米化抗癌剂的粒度分布的测量

在放入纳米化抗癌剂(向上述中加入奥沙利铂50mg+丝裂霉素4mg+5-氟脲嘧啶250mg代替abraxane5mg的鸡尾酒制剂中加入abraxane25mg、马沙骨化醇10μg、硼替佐米0.35mg、普萘洛尔2mg、神经妥乐平36nu、依那西普25mg、血栓调节蛋白3200u制剂化而得的制剂)的容器附近设置放射约150μsv/h的γ射线的沥青铀矿,放置30分钟后,对粒度分布进行了测量。粒度分布的测量使用delsamaxpro(贝克曼库尔特公司制)进行。结果示于图1。存在于约60nm附近的峰通过放射线照射微细纳米化而迁移至约4nm附近。

例2.微细纳米化免疫检查点抑制治疗制剂

使纳武单抗20mg、派姆单抗10mg和贝伐单抗50mg分散于生理盐水100ml,制成微细纳米化免疫检查点治疗(cbt)制剂a。此外,使纳武单抗20mg、派姆单抗10mg和伊匹单抗2mg分散于生理盐水100ml,制成微细纳米化cbt制剂b。通过delsamaxpro(贝克曼库尔特公司制)使用表2的条件对粒度分布进行了测定。结果示于图1。

[表2]

图1a表示微细纳米化cbt制剂a的测定结果,图1b表示微细纳米化cbt制剂b的测定结果。微细纳米化cbt制剂a在约13nm的粒径显示峰,微细纳米化cbt制剂b在约12.6nm的粒径显示峰。

工业上利用的可能性

通过本发明,可制备具有数nm~十数nm级的粒度分布的药剂,通过将所述药剂给予肿瘤血管,可实现比以往的药剂更好的药物动态,特别是用作肿瘤血管的血流减少剂的情况下,可带来肿瘤血行动态的变化。此外,还发现通过将具有微细纳米化的粒径的免疫检查点抑制剂用作包含肿瘤血管的微血管的血液减少剂,能够以比以往的血管内治疗更长的治疗间隔进行处置,对晚期癌症患者的qol的改善会很有帮助。另外,本发明的给药主要采用局部给药,因此能够以比以往的给药方法少的量发挥效果,因此还可减轻使用昂贵的免疫检查点抑制剂时的经济负担。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1