气动医疗设施中管路开放性监测的设备及方法

文档序号:1063979阅读:406来源:国知局
专利名称:气动医疗设施中管路开放性监测的设备及方法
技术领域
本发明涉及例如通常用于辅助外科手术的气动压脉器,以及通常用于防止患者深部静脉血栓和治疗淋巴结肿大的气动压肢器等医疗设备。具体地,本发明涉及一种气动医疗设备,具有一个套在患者体外的充气套筒或器械和一个用管路连接到该充气套筒或器械的仪器,以控制该套筒或器械中的气压,以向充气套筒或器械下的体部连续或间歇地施加恒压或所要求的压力波形。
许多医疗设施具有一个套在患者体外的充气部件和一个用管路连接到该充气部件的仪器部件,以控制该充气部件的气压,以向充气部件下的体部连续或间歇地施加恒压或所要求的压力波形。两种常用的设备是外科的气动压脉器,以及防止患者深部静脉血栓和治疗淋巴结肿大的气动压肢器。
在典型的气动压脉器中,一个充气套筒套在肢体上所要求的部位,并由一根软气流管路按气动方式连接到压力控制器上,控制器在足以完成套筒位置远端外科手术的时间内,保持套筒内的压力高于止住套筒远端肢体动脉血流所要求的最低压力。在先技术阐述了许多这类气动压脉技术,例如,麦克依文(McEwen)的美国专利No.4,469,009、4,479,494和5,439,477以及麦克依文(McEwen)和詹姆逊(Jameson)1994年8月26日申请的美国专利申请08/297,256。
在典型的用于防止深部静脉血栓和治疗淋巴结肿大的压肢器中,一个充气器械附着在肢体上,并由一根软气管路通气连接到压力控制器上,控制器控制该器械中的气动压力以周期性地为器械充气,从而周期性地压迫下面的肢体,并增加肢体近端静脉血流。这种压肢器的例子有泰劳(Taylor)等的美国专利3,892,229和哈斯蒂(Hasty)的美国专利4,013,069。另一个例子是麦克依文和詹姆逊1996年4月29日申请的美国专利申请08/639,782。
有关使用脉压器和压肢器的一个共同问题涉及建立压力控制器与气动套筒与器械间气动通路的软气动管路。压力控制器的位置常常远离患者,需要使用长而很软的管路辗转于医务人员及其它设备之间抵达患者。典型地采用供气接头把软管与压力控制器、及套筒或器械连接或分开。在压脉器和压肢器的使用过程中,管路包括关联的接头的开放性,或管路产生的气流障碍程度,可发生变化并严重地防碍这种系统的功能。例如,使用前和使用中管路可能打结并且部分或完全地阻塞,从而限制了气流或完全阻隔压力控制器与套筒或器械间的联系,从而防碍了在套筒或器械中产生所要求的压力。还有,由于故障或操作员失误,管路可能从压力控制器或者从套管或器械上脱离,同样有碍于地套筒或器械中产生所要求的压力。
伯明翰(Birmingham)等在美国专利4,520,819中阐述了一种压脉器系统,具有检测某种类型管路阻塞的差压式阻塞检测器,但是该发明限于压力控制器与套筒间的两个气动管路的压脉器,同时该发明还有其它局限性。
本发明采用声反射测量术原理在气路中导入一个短脉宽气压脉冲,然后分析脉冲通过气路在气路截面上发生变化时的气压脉冲产生的变化,通过比较引入的脉冲幅度和气路反射的脉冲幅度可得到有关截面和长度的特性。如此可以得到有关截面和长度的特性,是因为气路全程上具体位置截面积的任何变化都与该位置反射的声脉冲幅度成比例,并且可以分析检测到反射脉冲时的时间延迟以确定气路全程上的具体位置。关于声反射测量术原理的更详细说明含于弗徕德堡(Fredberg)的美国专利4,326,416。
在先技术中阐述了各种利用声反射测量术,从口腔处测量,以确定气管之类的活体通道的物理特性。例如美国专利4,326,416及授与弗徕德堡的复审证书B14,326,416。在先技术中阐述了一些其它技术,在鼻腔中利用声反射测量术和波管旨在确定鼻胭腔的形状。例如,授与杰克逊(Jackson)等的美国专利5,316,002。在沃狄卡(wodicka)的美国专利5,445,114阐述了一种技术利用声反射测量术在体内对可动管即导管引导安装、定位并保证其开放性。在先技术没有讲述用于检测气动医疗设施的压力控制器与充气套筒之间通气联接的管路和相关接头的部分阻塞、完全阻塞或分离的技术及装置,此类医疗设施的充气套筒套在活体的固定位置周期性受压或在一定时间上受压以达到治疗目的。
本发明提供监测气动医疗设施管路的开放性的设备和方法。更具体地,本发明包含用于检测和定位气动压脉器及气动压肢器之类的气动医疗设施的压力控制器,与充气套筒之间通气联接的管路和相关接头的部分阻塞、完全阻塞或分离的装置。在本发明中,气动连通于医疗设备的压力控制器和套筒或器械之间的管路中与部分阻塞或完全阻塞相关的截面积变化,可以通过分析由这些部分或完全阻塞产生的声反射变化进行检测和定位。类似地,与套筒或器械和管路脱离相关的开放性变化、与管路和压力控制器脱离相关的开放性变化,可以通过分析压力脉冲产生的声反射变化确定。
本发明用于医疗装置,具有套在肢体表面的充气器械,用于充气后向该器械下的肢体施压;建立充气器械和压力控制装置间气流通路的管路;和以受控制的压力为筒管路提供气体的压力控制装置,其中压力控制装置包含脉冲发生装置,用于通过在确定的时间间隔,并在检测位置产生气体压力变化,产生检测位置的气流脉冲;以及,管路开放性监测装置,用于检测检测位置的气流压力变化,并在一定时间间隔后检出的气流压力变化超出某参考值时产生管路阻塞信号。该参考值可以是确定时间间隔内检出的最大气流压力变化的预定分数。
最好,本发明的管路开放性监测装置产生一个计时信号,指示从发生最大气流压力变化到管路障碍信号起始处所经历的时间,并根据计时信号指示的时间估计管路阻塞的位置。


图1为本发明优选实施例用于气动压脉器的方框图,具有连接充气压脉套管和控制仪器的气动管路;图2为描述图1所示设备检测阻塞时进行的操作程序流程图;图3a、3b、3c为图1所示设备记录的信号的曲线表示;图4为本发明用于气动压脉器的优选实施例的方框图,具有两根连接充气压脉套筒和控制仪器的管路;图5为用于气动压脉器和气动压肢器之类的气动医疗设备的本发明优选实施例的更普遍性的方框图。
所讲述的实施例并非要穷尽本发明或把本发明限制于这里公开的准确形式。实施例的选择和阐述旨在说明本发明的原理及应用和实际用途,使其它本领域的普通技术人员能够利用本发明。
所述优选实施例主要涉及监测医疗设施上连接充气套筒或器械和气流控制器的通气管路的开放性。通气管路的开放性利用声反射测量术原理监测,以检测和定位管路中出现的阻塞。但是,显然,此处所述设备和方法也可以用于更充分地确定气动系统有关长度和截面积的特性,例如,用于识别连接到装置的气动附件。
为使读者更了解本发明原理和弄懂本发明的实际应用,以下所述体现于麦克依文的美国专利4,469,009、4,479,494、和5,493,477及麦克依文和詹姆逊1994年8月26日申请的美国专利申请08/297,256所述的气动压脉器,所有这些在这里都是参考引用。本发明还可以实现于压肢器,如麦克依文和詹姆逊1996年4月29日申请的待批美国专利申请08/639,782所述的压肢器,此处引用作为参考。
图1所示的气动压肢器由仪器102和施压套筒104组成,后者可由仪器102充气对患者肢体施压。仪器102示于方框图中并在下文讲述。
套筒104通过管路106(内径1/8英寸软塑料管)按气动方式连接到岐管108。岐管108气动方式连接管路106、阀110(俄亥俄州辛辛那提市克立巴德实验室仪器公司产EVO-3-6V型)、阀112和传感器114(摩托罗拉半导体公司产MPX 5100型)。岐管108构造得使传感器114、阀110和112彼此间距离最小。阀112是止回阀,在岐管108内压力大于管路116内压力时阻止气流从岐管108流向管路116。
阀110响应微处理器118发出的控制信号,并受阀驱动器120的控制,按气动方式连接岐管108和大气,使套筒104中的压力能够释放。
气泵122由管路116按气动方式连接到阀112。气泵122响应微处理器118产生的并经泵驱动器124传递的控制信号动作,为套筒104加压。
压力传感器114产生指示套筒104内气压的套筒压力信号,然后把套筒压力信号传递到微处理器118的模数转换器(ADC)输入端,数字化套筒压力信号。微处理器118结合下文所述的套筒充气信号、套筒放气信号、和套筒压力参考信号,通过产生启动泵122和阀110的信号,把套筒104内的压力调节在由套筒压力信号代表的参考压力附近。
压力传感器114产生的套筒压力信号还经过高通滤波器128联接到放大器126。在本发明该应用中,高通滤波器128为通频带50赫芝的简单阻容滤波器。压力传感器114产生的套筒压力信号幅度约为每毫米汞柱压力5毫伏。本发明优选实施例的放大器126增益为600,3分贝带宽为400赫芝。放大器126的最终输出为经放大和带通限制的套筒压力信号的交流成分,下文称为反射压力脉冲(RPP),耦合到微处理器118的模数转换器输入端。微处理器118分析RPP信号以检验管路106的阻塞,如下文所述。
若将键盘开关130连接到微处理器118的输入端,仪器102使用者就可以通过键盘开关130与微处理器118通信,以设定套筒参考压力、报警限值和按其它方式控制仪器102,这由微处理器118的操作软件确定。
显示器132联接到微处理器18的输出端,在优选实施例中显示器132由7段发光二极管和适宜接口电路组成。运行中微处理器118可通过显示器132向仪器102的使用者传递各种信号电平。这些信号包括(但是不限于)套筒压力信号、套筒压力参考信号、和阻塞报警信号。
音频声换能器134联接在微处理器118的输出端,用于向仪器的使用者提示警报情况。
图1中,电源136提供所有电子电路和电气部件正常工作所需的稳压电源。
微处理器118通过控制阀110和泵122把套筒104中的压力调节到参考压力附近。微处理器118在规则的30毫秒时间间隔输入一个调节子程序。在调节子程序中,微处理器118采样套筒压力信号,然后由套筒压力信号和套筒参考压力信号的差计算出套筒压力误差信号,然后把套筒压力误差信号用于比例/积分控制算法计算阀110或泵122的驱动时间。每输入一次调节子程序,计算一次新的阀110或泵122的驱动时间。
为了保证套筒压力信号代表套筒104中的实际压力,微处理器118周期性地检测管路106的阻塞。
按照微处理器118中的阻塞检测定时器确定的速率,微处理器118通过启动阻塞检测子程序周期性地检查管路106的阻塞,如图3所示。在优选实施例中,每秒启动一次阻塞检验,同时调节套筒104的压力。如果发现管路106受到阻塞,启动阻塞检验的速率就增加到每秒两次。启动后阻塞检验过程如以下所述,并示于图2所绘流程图中。通过上述调节子程序驱动阀110和泵122在步骤202中停止。阻塞检测子程序接着停留一个60毫秒时间(204),使岐管108、管路106和套筒104中的压力得到均衡,并且稳定由操作阀110和泵122产生的压力伪差。然后,微处理器以每毫秒1个样本的速率采样并存储RPP信号。在7毫秒的阀110驱动时间内持续阻塞检测子程序(208),由于阀110的结构限制,该驱动产生约3毫秒的阀实际工作时间。阀110的瞬间驱动在仪器102的气动系统中产生约3毫秒的压力脉冲。该脉冲的确定脉宽由对该气动系统的实验确定。然后继续获取和存储RPP信号(210),在优选实施例中,该采样过程进展到取得60个样本为止。当RPP信号获取完成(212)后,由调节子程序恢复阀112和泵122的驱动(214)。
图2所示的阻塞检测子程序通过处理和评估存储的RPP信号(216)持续下去,如下文所述。如果对RPP信号的评估表明管路106阻塞(218),微处理器118保持的报警信号电平调整到指示阻塞警报的电平(220),并且把阻塞检测定时器调整到500毫秒(222)。如果对RPP信号的评估表明管路106没有阻塞,微处理器118保持的报警信号电平调整到指示没有阻塞警报的电平(224),并且把阻塞检测定时器调整到1000毫秒(226)。
如果岐管108受压,阀110瞬间开放并伴随从岐管108放出气体,会在岐管108中产生短暂的压力变化,这个压力脉冲沿管路106向套筒104转播,也被传感器114检测。瞬间释放气体产生的脉冲的极性定义为负的。产生的压力脉冲的幅度主要由岐管108中的静压力、阀110的开放时间、和阀110的开孔尺寸决定。如果产生的压力脉冲遇到了管路106中的截面变化,部分产生的压力脉冲沿管路106向传感器114往回反射,并被传感器114检出。该反射的压力脉冲相对于产生的压力脉冲的极性的幅度,可以指示反射发生处管路106截面积变化的程度。引入压力脉冲和检出反射的压力脉冲所经的时间可以用于计算到管路106截面积发生变化处的往返距离。
例如,在管路106进入套筒104处,这等于管路106经受直径或说截面积显著增加处,引入的压力脉冲被反射,改变了的极性。图3a所示为管路106未阻塞时从优选实施例记录的RPP信号。图3A中RPP信号标记为302,产生的压力脉冲信号标记为304,而反射的压力脉冲信号标记为306。由图3a可见,反射的压力脉冲与引入的脉冲极性相反,并发生在引入的脉冲之后的30毫秒。如果压力脉冲在用于施压套筒104的气体中的传播速度已知,传播速度乘以引入压力脉冲和检测出反射的压力脉冲之间的时间间隔的乘积再除以2就可以计算出从仪器102到套筒104的距离。在优选实施例的情况下,该传播速度约为每毫秒1英尺,是空气中的声音传播速度,因此,可以计算出套筒104距仪器102约15英尺。
图3b所示为管路106在管路106进入套筒104处受到阻塞时优选实施例记录的RPP信号。图3b中RPP信号标记为308,产生的压力脉冲信号标记为310,而反射的压力脉冲信号标记为312。由图3b可见,反射的压力脉冲与引入的脉冲极性相同,并发生在引入的脉冲之后30毫秒。
图3c所示为管路106在仪器102与套筒104半途处受到阻塞时优选实施例记录的RPP信号。图3c中RPP信号标记为314,产生的压力脉冲信号标记为316,而反射的压力脉冲信号标记为318。由图3c可见,反射的压力脉冲与引入的脉冲极性相同,并发生在引入的脉冲之后15毫秒。反射脉冲318之后跟着的其它脉冲为引入的压力脉冲的回响。
在图1所示的仪器102中,微处理器118处理并评估存储的RPP信号,通过相对于引入的压力脉冲幅度检查反射的压力脉冲幅度,确定管路106是否受到阻塞。如果反射的压力脉冲极性基本与引入的脉冲相同,并且反射脉冲的幅度超过实验决定的预定阈值,管路106就被确定为受到阻塞,微处理器118把阻塞报警信号设定到预定的指示阻塞报警的电平。如果反射的压力脉冲极性基本与引入的压力脉冲相反,并且反射脉冲的幅度超过另一个实验决定的预定阈值,阻塞报警信号就被设定到预定的不指示阻塞报警的电平。在分析存储的RPP信号时,微处理器118计算引入压力脉冲和反射的压力脉冲间的时间,并如上文所述计算管路106中反射发生处的距离。该距离可在显示器132上显示,使仪器102的使用者能定位阻塞。
在阻塞报警信号设定到指示阻塞报警的电平时,微处理器118通过允许声换能器134操作和在显示器132上显示适当的信息提醒仪器102的使用者。
本领域的普通技术人员可以看出,阀110开放在气动系统中引入压力脉冲的时间、放大器128的增益和带宽之类的优选实施例中采用的各种常数专用于本发明的这一特定实施,其它常数可以选用于本发明的其它应用。
图1所示的上述压脉器有一个通过快速从气动系统释放少量气体引入的压力脉冲,该方法要求把气动系统加压至高于大气压一定压力。本领域的普通技术人员会明白,压力脉冲可以在气动系统中以其它方式引入。例如,可以经过接到压力高于气动系统的气源的阀门快速增加少量气体可以引入压力脉冲,快速改变气动系统某部分的容积也可以引入压力脉冲。
图1所示的上述压脉器有一个单根通向充气套筒的通气连接。某些加压装置有一根以上的通向单个充气套筒的通气连接,例如,有两根通向一个充气套筒的通气连接的压脉器,以改进调节性和可靠性。为了更好地理解本发明怎样用于这种装置,用于有两个通向套筒的通气连接的压脉器的实施例说明如下。
图4所示气动压肢器类似于图1所示的上述压脉器,但有两个通向套筒的通气连接。图4所示系统有仪器402和可用仪器402充气向患者肢体施压的加压套筒404。仪器404示于方框图并说明如下。
套筒404通过管路406通气地连接到岐管408并通过管路410通气地连接到岐管412。岐管408通气地连接管路406、阀414和传感器416。岐管412通气地连接管路406、阀418、和传感器420。岐管408和412构造得使换能器和阀之间物理距离最小。
阀418响应微处理器422产生的控制信号,气动地连接岐管412和大气,使套筒404中的压力能够释放。
气泵424由管路428通气地连接到储压器426。气泵424响应微处理器产生的控制信号动作,为储压器426加压。由管路430通气连接到储气器424的压力传感器430产生代表储气器424内的压力的信号,然后把压力信号传递到微处理器422的模数转换器(ADC)的输入端。微处理器422响应储气器压力信号和套筒压力信号,控制泵424的启动,保持储气器426中的压力高于套筒404内的压力100毫米汞柱。
管路434通气地把储气器426连接到阀414。阀424响应微处理器422产生的控制信号,通气地把岐管408连接到管路434使气流能从储气器426流出,并继而为套筒404加压。
压力传感器416和420产生代表套筒404内气压的套筒压力信号,套筒压力信号传递到微处理器422的模数转换器输入端,模数转换器422量化套筒压力信号。微处理器422组合下文所述的套筒充气信号、套筒放气信号、和套筒压力参考信号并利用套筒压力信号,以便通过产生启动阀414和阀418的信号,把套筒404内的压力调节在参考压力信号所代表的参考压力附近。
压力传感器416产生的套筒压力信号还经过高通滤波器438传递到放大器436。放大器436产生的输出,即管路406的反射压力脉冲(RPP),耦合到微处理器422的模数转换器输入。类似地,压力传感器420产生的套筒压力信号经过高通滤波器442联接到放大器440。放大器440产生的输出,即管路410的反射压力脉冲(RPP),耦合到微处理器422的模数转换器输入端。
键盘开关444连接到微处理器422的输入端,仪器402使用者可以通过键盘开关444与微处理器422进行通信,以设定套筒参考压力、报警限,并按其它方式控制仪器402,这由微处理422的操作软件确定。
显示器446联接到微处理器422的输出端。运行中微处理器422可通过显示器446向仪器402的使用者通报各种信号电平。这些信号包括(但是不限于)套筒压力信号、套筒压力参考信号、和阻塞报警信号。
声换能器448联接在微处理器422的输出端,通过微处理器422用于向仪器的使用者提示报警情况。
图4中,电源450提供所有电子电路和电气部件正常工作所需的稳压电源。
微处理器422通过控制阀414和阀418的启动把套筒404中的压力调节到参考压力附近。微处理器422在规则的时间间隔输入一个调节子程序。在调节子程序中,微处理器442采样套筒压力信号,然后由套筒压力信号和套筒参考压力信号的差计算出套筒压力误差信号,然后把套筒压力误差信号用于比例/积分控制算法计算阀414或阀418的驱动时间。每输入一次调节子程序,计算一次新的阀414或阀418的驱动时间。
为了保证套筒压力信号代表套筒404中的实际压力,微处理器422周期性地检验管路406和管路410的阻塞。阻塞检验过程类似于以上对仪器102的说明和图1所详示。在仪器402中,阻塞检验过程如下使通过阀414和阀418对套筒404的驱动调节停止;在一个预定的时间间隔后把压力脉冲引入岐管408和岐管412。通过瞬间启动岐管418,并接着从岐管412中释放气体,在岐管412中引入负向压力脉冲。这与图1所示并在上文在仪器102中引入压力脉冲的方法相同。通过瞬间启动岐管414,并接着从储气器428向歧管408中释放气体,在岐管408中引入正向压力脉冲。获取并分析从传感器416和传感器420输出的RPP信号,使套筒404中的压力调节得以实行。如上文所述,通过比较引入的压力脉冲和反射的压力脉冲的极性和幅度,评估RPP信号,以检测管路406和管路410的阻塞。如果反射的压力脉冲极性与引入的脉冲相同,并且反射脉冲的幅度超过预定阈值,管路就实确定为受到阻塞,微处理器把阻塞报警信号调整到预定的指示阻塞警报的电平。
图1和4表示了用于气动压脉器的优选实施例,优选实施例的部件用于调节和控制压力以及表示气动系统的特征。更有一般代表性的优选实施例示于图5。这是图1和4的更具一般性的代表,表明本发明如何用于其它有诊断或治疗功能的、由通气管路连接压力控制器或充气套筒和器械的医疗设施。
图5所示的气动压肢器有,经过通气接头506、管路508和通气接头510连接到加压袖套504的仪器502。压力控制器512供应气体为袖套504加压并控制袖套504中的压力。
微处理器514、压力传感器516、和压力脉冲发生器518构成监测仪器502和袖套504间通气连接的开放性的气动反射测量计。如果袖套504在通气接头508或510处与仪器502分离,通气连接长度发生变化会被检测出。如果管路508被阻塞也会被检测。
管路520通气地把压力控制器512连接到阀522。阀522为常开阀,当驱动阀522关闭、隔绝压力控制器512与气动系统其余部分的气通路时。阀522通气地把管路520连接到岐管524。岐管524通气地连接阀522、通气接头506、传感器516和压力脉冲发生器518。岐管524构造得使传感器516和压力脉冲发生518之间的物理距离最小。
微处理器514控制阀522和压力脉冲发生器518的启动,处理和评估传感器516产生的信号。代表气动系统中压力变化的、由传感器516产生的信号耦联到微处理器514的模数转换器(ADC)的输入端。
操作中微处理器514周期地检验管路508的阻塞,如以下所述微处理器514首先启动阀522的隔绝岐管524和压力控制器512的气动系统的联系。在足以使阀522关闭造成的伪差消失的时间间隔后,微处理器514接下去开始获取和评估传感器516产生的信号并启动压力脉冲发生器518。压力脉冲发生器518向岐管524中导入沿管路508向袖筒504传播的压力脉冲。压力脉冲发生器518导入的压力脉冲有足够的幅度和脉宽,使传感器516能够检测导入的压力脉冲在遭遇管路508直径或截面积变化处产生的反射压力脉冲。例如,在管路508进入袖筒504处和管路508可能阻塞处产生导入的压力脉冲的反射。
通过比较导入的压力脉冲幅度和任何一个检测到的反射的压力脉冲幅度,微处理器514处理和评估传感器516产生的信号,如上所述。如果反射脉冲的极性与导入脉冲的极性相同,且反射的压力脉冲幅度超过某预定的阈值,管路508被确定为被阻塞,并启动指示器526。如果压力脉冲在用于加压袖筒504的气体中的传播速度已知,微处理器514可以计算出从仪器502到管路508途中反射发生处的距离。微处理器514把该距离显示在指示器526上,以帮助仪器502的使用者能确定阻塞的位置,并采取纠正措施。
权利要求
1.气动医疗设备,具有一个用于套在肢体表面的充气器械,适于充气后向器械下的肢体施加压力;建立充气器械与一个压力控制器装置之间气流通道用的管路;及以受控的压力向管路供气的压力控制装置,其特征在于压力控制装置含有脉冲发生装置,用于在确定的时间间隔,通过造成检测位置空气压力变化在管路的检测位置产生气流脉冲,和管路开放性监测装置,适用于检测检测位置的气压变化,并在确定的时间间隔后检出的气压变化超出参考值时产生管路阻塞信号。
2.权利要求1所述的设备,其特征为,医疗装置为压脉器,用于辅助肢体手术位置上进行的外科手术,这里气动器械为套在肢体手术位置近端的充气套筒,而压力控制装置控制气压,使套筒在足以完成此外科手术的时间内,施加高于阻止动脉血流通过套筒流入肢体所要求的最低压力的压力。
3.权利要求1所述的气动医疗设备,其特征为,医疗设备为压肢器,用于防止深部静脉血栓,这里,气动器械包括一个放在肢体上所要求位置附近的充气腔,而压力控制装置控制气压,使充气腔施加足以增加该腔近端静脉血流的压力。
4.权利要求1所述的气动医疗设备,其特征为,参考值为在确定的时间间隔内检出的最大气流压力变化的预定分数。
5.权利要求1所述的气动医疗设施,其特征为,管路开放性监测装置还产生一个计时信号,指示最大气流压力变化到管路阻塞信号开始之间经历的时间。
6.权利要求5所述的设备,其特征为,管路开放性监测装置还根据计时信号指示的经历时间估算管路阻塞的位置。
7.权利要求5所述的设备,其特征为,管路含有可拆卸的器械连接装置,从而能够有选择地连接和分离管路和充气器械,以分别建立和中止气流通道,而且管路开放性监测装置还适于,当在确定的时间间隔后的时间检测出气流压力变化的极性和幅度超过预定极性和幅度参考值时,发出器械脱离信号。
8.权利要求5所述的设备,其特征为,器械包含一个充气腔和一个用于建立器械连接装置与充气腔间气流通道、并有预定长度的器械管路,并且,管路开放性监测装置还适于产生一个器械管路长度指示。
9.权利要求5所述的设备,其特征为,管路含有可拆卸的控制连接装置,从而能够有选择地连接和分离管路和压力控制装置,以分别建立和中断气流通道,而且管路开放性监测装置还适于,当在确定的时间间隔后的时间检测出的气流压力变化的极性和幅度超过预定极性和幅度参考值时,产生压力控制脱离信号。
10.权利要求1所述的设备,其特征为,脉冲发生装置在不小于预定的时间间隔的时间间隔产生多个气流脉冲。
11.用于辅助肢体手术位上进行的外科手术的压脉器,具有一个用于套在肢体表面的充气套筒,适于充气后向套筒下的肢体施加压力;建立充气套筒与一个压力控制器装置之间气流通道用的管路;及以受控的压力向管路供气的压力控制装置,以使套筒可施加高于阻止动脉血流通过套筒流入肢体所要求的最低压力的压力,其特征为压力控制装置含有脉冲发生装置,用于在确定的时间间隔,通过造成检测位置空气压力变化在管路的检测位置产生气流脉冲,和管路开放性监测装置,适用于检测检测位置的气压变化,并当在确定的时间间隔后检测的气压变化超出参考值时产生管路阻塞信号。
12.权利要求11所述的气动医疗设备,其特征为,管路开放性监测装置还产生一个计时信号,指示最大气流压力变化到管路阻塞信号开始之间经历的时间,管路开放性监测装置还根据经时信号指示的经历时间估算管路阻塞的位置。
13.权利要求11所述的设备,其特征为,管路含有可拆卸的套筒连接装置,从而能够有选择地连接和分离管路和充气套筒,以分别建立和中断气流通道,而且管路开放性监测装置还适于,当在确定的时间间隔后的时间检测出气流压力变化的极性和幅度超过预定极性和幅度参考值时,发出套筒脱离信号。
14.权利要求11所述的设备,其特征为,器械包含一个充气腔和一个用于建立套筒连接装置与充气腔间气流通道、有预定长度的套筒管路,而且,管理开放性监测装置还适于产生一个套筒管路长度指示。
15.权利要求11所述的设备,其特征为,脉冲发生装置在不短于预定的时间间隔的时间间隔内产生多个气流脉冲。
16.监测气动医疗装置管路开放性的方法,包括步骤在肢体表面套上充气器械,用于充气后向器械下的肢体施加压力;建立充气器械与一个气体压力控制源之间的气流通道;及控制向管路供气的压力;在确定的时间间隔,通过造成检测位置空气压力变化在管路的检测位置产生气流脉冲,和检测检测位置的气压变化,并在确定的时间间隔后检测出的气压变化超过参考值时产生管路阻塞信号。
17.权利要求16所述的方法,其特征为,在不短于预定的时间间隔的时间间隔内重复产生气流脉冲的步骤。
全文摘要
气动医疗设备,具有:一个用于套在肢体表面的充气器械,适于充气后向器械下的肢体施加压力;建立充气器械与一个压力控制器装置之间气流通道用的管路;及以受控的压力向管路供气的压力控制装置,其中压力控制装置含有脉冲发生装置,用于在确定的时间间隔,通过造成检测位置空气压力变化在管路的检测位置产生气流脉冲,和管路开放性监测装置,适用于检测检测位置的气压变化,并在确定的时间间隔后检出的气压变化超出参考值时产生管路阻塞信号。
文档编号A61H7/00GK1232382SQ97197288
公开日1999年10月20日 申请日期1997年6月12日 优先权日1996年8月12日
发明者詹姆斯·艾伦·麦克文, 迈克尔·詹姆森 申请人:西方医疗工程有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1