脉管用斯滕特固定模的制作方法

文档序号:1077366阅读:230来源:国知局
专利名称:脉管用斯滕特固定模的制作方法
技术领域
本发明涉及装在生物体的血管、淋巴管、胆管或尿管等脉管内、将脉管内腔保持为一定状态的脉管用斯滕特固定模(stent)。
背景技术
现有技术中,生物体的脉管、尤其是动脉等血管内产生狭窄部时,要进行经皮血管成形术(PTA),该血管成形术,是把设在气球导管前端部附近的气球形成部插入该狭窄部,使气球形成部膨张而形成气球,这样扩张血管狭窄部,使血液流通良好。
但是,即使施行了经皮血管成形术,在原来狭窄的部分产生再狭窄的机率仍很高。
为了防止该再狭窄,要在施行血管成形术的部分装上筒状的斯滕特固定模。该斯滕特固定模以缩径状态插入血管内,然后扩径,便装在血管内。这样,从内部支承血管,可防止在血管中产生再狭窄。
这种斯滕特固定模,有气球扩张型斯滕特固定模和自身扩张型斯滕特固定模两种。
气球扩张型斯滕特固定模,以折叠缩径的状态被设在导管上的气球覆盖住,与气球一起插入血管内产生狭窄的病变部位等目标部位后,通过使气球膨张而扩径,支承血管的内面。气球扩张型斯滕特固定模,一旦扩径后,便固定在该扩径后状态,不能与血管壁的脉动连动地进行变形。另外,气球扩张型斯滕特固定模被扩径并装在血管内后,如果发生变形则不能恢复到原来的扩径状态,不能切实支承血管的内面。
自身扩张型斯滕特固定模,被缩径并收容在管等的保持体内,该保持体的外径小于血管内安装目标部位的内径。在收容在保持体内的状态插入血管内的安装目标部位。插入了血管内安装目标部位的斯滕特固定模,从保持体被推出或抽出,利用斯滕特固定模自身的复原力扩径到缩径前的状态,这样,保持着支承血管内壁的状态。
这种自身扩张型斯滕特固定模,是把不锈钢等金属制的线状体弯折成正弦波状,或者弯折成锯齿状,并形成为筒形而构成的。
采用金属制线状体的自身扩张型斯滕特固定模,不容易高精度地控制扩张时的外径,与安装血管的内径相比,可能会产生过度扩张。另外,该斯滕特固定模,保持为缩径状态的保持力一旦释放,就急剧扩径。插入血管内的斯滕特固定模急剧扩径时,会损伤血管内壁。
另外,提出了自身扩张型斯滕特固定模用Ti-Ni系合金、Ti-Ni-Cu系合金、Ti-Ni-Fe系合金等形状记忆合金形成的方案。
采用形状记忆合金的斯滕特固定模,先形状记忆被装在血管内目标部位时的大小,然后缩径,以缩径的状态插入血管内。该斯滕特固定模插入血管内目标部位后,用气球扩径到所记忆的大小,然后,显示生物体的体温引起的超弹性,由此保持住支承血管内壁的状态。
形状记忆合金,其刚性与血管相比非常高,所以,对血管内壁的局部作用极大的力学上的压力,可能会损伤血管。另外,采用形状记忆合金的斯滕特固定模,装在血管内目的部位时,常常不能对血管内壁均匀地扩径。若斯滕特固定模的局部先与血管内壁相接开始扩径,则不能均匀地将血管扩径。血管的先与斯滕特固定模局部相接的部分,被过大地扩径,容易受损伤。
另外,采用形状记忆合金等金属的斯滕特固定模,一旦装在血管等脉管内后,如果不实施外科手术取出,便永久地留在生物体内。

发明内容
概要本发明的目的是提供一种脉管用斯滕特固定模,该斯滕特固定模不会损伤血管等的脉管,能切实地保持使脉管扩径的状态。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模装在脉管内一定期间后,可以消失,不需要在病变部恢复后用手术从脉管中取出。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模能用均匀的支撑血管等脉管。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模能跟随性良好地插入弯曲的血管等脉管内,可容易且切实地装在脉管内的安装目标部位。
为了实现上述目的,本发明的脉管用斯滕特固定模,备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成的。该斯滕特固定模本体形状记忆住置留在脉管内时的大小。斯滕特固定模本体在被外力缩径的状态装入生物体脉管内,借助生物体体温的加温而扩径。
这里所用的线,是一根连续的单丝,或者是若干根单丝一体化后形成的复丝。
斯滕特固定模本体,是把生物体吸收性聚合物制的线一边弯折成锯齿状、一边卷绕成筒状而形成的,以线的弯折部作为变位部被扩径或缩径。
斯滕特固定模本体,其被弯折成锯齿状并被卷绕成筒状的线的相邻的至少一部分的弯折部是连结着的。这样,在缩径或扩径时,可切实保持一定的筒状形态。
另外,形成为筒状的斯滕特固定模本体,是将弯折成锯齿状并连结成环状的多根线沿着轴方向并列配置而形成的。
形成斯滕特固定模本体的线,是由玻化温度为70℃以下的生物体吸收性聚合物形成的。在接近生物体温度的温度下,扩径为所形状记忆的状态。
另外,形成斯滕特固定模本体的线是用聚乳酸(PLLA)、聚乙二醇酸(PGA)、聚乙二醇酸和聚乳酸的共聚物、二噁烷酮(ポリジオキサノン)、碳酸亚丙脂和乙交酯的共聚物、聚乙二醇酸或聚乳酸和ε-己内酯共聚物的一种或将2种以上复合的生物体吸收性聚合物形成的。
通过在线中混入或付着X射线不透过剂,可用X射线从生物体外容易地确认置留在脉管内的状态。
通过在用生物体吸收性聚合物形成的线中,混入或覆盖抗血栓剂、抑制新生内膜加增殖的药剂,可在与斯滕特固定模溶解的同时持续投入抗血栓剂等的药剂。
通过在用生物体吸收性聚合物形成的线中,混入或覆盖放射β射线的放射线源、放射γ射线的放射线源,可在斯滕特固定模插入生物体的同时,对患部进行放射线照射,可持续地进行放射线照射。
本发明的其它目的以及本发明所具有优点,可从以下说明的实施例中清楚地了解。
附图简单说明

图1是表示本发明之脉管用斯滕特固定模的平面图。
图2是表示构成本发明之斯滕特固定模的线的立体图。
图3是表示构成本发明之斯滕特固定模的线的另一例的立体图。
图4是表示构成斯滕特固定模本体的线的弯折状态的平面图。
图5是将扩张本体局部放大表示的平面图。
图6是表示对脉管用斯滕特固定模赋予形状记忆的状态的立体图。
图7是表示把形状记忆住扩径状态的脉管用斯滕特固定模缩径后状态的立体图。
图8是表示脉管用斯滕特固定模被缩径时的线的弯折状态的平面图。
图9是表示缩径状态的脉管用斯滕特固定模的平面图。
图10是表示本发明之脉管斯滕特固定模的温度特性的特性图。
图11是表示本发明之脉管斯滕特固定模的另一例的立体图。
图12是表示把本发明之脉管用斯滕特固定模插入血管内状态的侧面图。
实施发明的最佳形态下面,参照附图具体说明本发明的脉管用斯滕特固定模。
本发明的脉管用斯滕特固定模1,例如用于插入生物体的冠状动脉血管内,如图1所示,备有由线形成为筒状的斯滕特固定模本体3。该线2是由具有形状记忆功能的生物体吸收性聚合物构成的。
线2是用装在人体等生物体上时对生物体不产生坏影响的生物体吸收性聚合物形成。该生物体吸收性聚合物,可采用聚乳酸(PLLA)、聚乙二醇酸(PGA)、ポリグラクチン(聚乙二醇酸和聚乳酸的共聚物)、二噁烷酮(ポリジオキサノン)、ポリグリコネト(碳酸亚丙脂和乙交脂的共聚物)、聚乙二醇酸或聚乳酸和ε-己内酯共聚物等。另外,也可以采用复合2种以上的上述材料的生物体吸收性聚合物。
生物体吸收性聚合物制的线2,可采用螺旋挤出机形成。采用螺旋挤出机形成线2时,把用生物体吸收性聚合物形成的颗粒,以融点Tm以下的温度在加热的状态下减压干燥,把该颗粒投入螺旋挤压机的漏斗内,在压缸内一边加热到融点Tm附近或融点以上热分解以下、一边压缩使其溶融。把该溶融的生物体吸收性聚合物从设定为融点Tm以下的温度即玻化温度Tg以上温度的管咀中挤出。通过卷绕该挤出的生物体吸收性聚合物而形成线状体。再将该线状体进行延伸,形成为本发明中采用的线2。
这里,形成的线2如图2所示,是由一根连续的生物体吸收性聚合物的单丝形成的。
本发明中采用的线2,不限于是单丝,如图3所示,也可以由若干根单线2a形成为一体的复丝形成。
采用上述的生物体吸收性聚合物并用上述那样的螺旋挤出机形成的线2,聚合物分子交联,具有形状记忆特性。
本发明中采用的线2,其断面形状不限于圆形,也可以是扁平的断面形状。
上述那样形成的线2,如图4所示,通过一边呈锯齿状地被弯折成连续的V字形、一边被卷绕成螺旋状,而形成为筒状的斯滕特固定模本体3。这时,通过将线2的呈V字形的一个弯折部4的一边做成为短线部4a,把另一边做成为长线部4b,从而得到卷绕成螺旋状的形状。形成在线2中途部的弯折部4的张开角θ1基本相同,通过使弯折部4的短线部4a和长线部4b的长度基本相同,如图5所示,相邻的弯折部4的顶点相互接触。相互接触的弯折部4的顶点中的几个或全部被相互融接。形成斯滕特固定模本体3的线2,使弯折部4的顶点相互接触的部分被融接,这样,可切实地保持着筒状状态。
使顶点相互接触的弯折部4的融接,是把接合部分加热到融点Tm以上,使其溶融粘接。
如上所述,用形成为筒状的斯滕特固定模本体3构成的斯滕特固定模1,形状记忆住置留在血管内的状态的大小。该形状记忆如图6所示,把斯滕特固定模1套装在轴状的模101上,该模101具有斯滕特固定模1装在生物体脉管内时的大小,加热到构成线2的生物体吸收性聚合物的玻化温度Tg以上的温度即融点Tm以下的温度,使其变形为模101的大小。然后,把套装在模101上的斯滕特固定模1与模101一起冷却到玻化温度Tg以下,斯滕特固定模1固定为变形后状态,并形状记忆住该状态。
使斯滕特固定模1变形并赋予形状记忆的加热是采用加热炉等进行的。
这里得到的斯滕特固定模1,如图1所示,形状记忆住直径(R1)约为3~5mm,长度(L1)为10~15mm的大小。该大小具有置留在生物体血管内的状态的直径或比其大一些的直径。
装在模101上并被进行形状记忆的斯滕特固定模1,从模101上取下后被缩径。该缩径这样进行即,斯滕特固定模1在被冷却到玻化温度Tg以下的状态,从斯滕特固定模本体3的周围一边加力学上的压力、一边使其变形。例如,如图7所示,是把斯滕特固定模本体3推入设在缩径模201上的缩径沟槽202内进行的。该缩径沟槽202是将模201的平面侧开放的凹槽,这样,便于插入长条状的斯滕特固定模1。
被推入模子201的缩径沟槽202内的斯滕特固定模1,通过使弯折部4变位,使弯折部4的张开角θ1如图8所示地成为小的角θ2,这样被缩径。该通过使弯折部4变位进行的缩径,是使被冷却到玻化温度Tg以下的线2的弯折部4变形而进行的。这时,斯滕特固定模1被缩径到能容易插入生物体脉管的直径。例如,记忆住直径(R1)约3~5mm大小的斯滕特固定模1,如图9所示,其直径(R2)被缩径为约为1~2mm的大小。
形状记忆着扩径状态的斯滕特固定模1通过被缩径沿长度方向延伸从而比记忆状态长度稍长。
被推入设在缩径模201上的缩径沟槽202中并被缩径了的斯滕特固定模1,从缩径沟槽202的开放端部203取出。采用由生物体吸收性聚合物形成的线2形成的斯滕特固定模1,从缩径模201中取出后,将其保持在至少玻化温度Tg以下,这样,赋予变位部即弯折部4的变形被保存住,可保持缩径状态。
使形状记忆了扩径状态的斯滕特固定模1缩径的方法,不限于上述采用缩径模201的方法,还可采用各种方法。例如,也可以不采用模等地从已形状记忆了的斯滕特固定模1外周施加力学上的压力,使其缩径。
如上所述那样,被施加外压而缩径了的斯滕特固定模1,当被加热到玻化温度Tg以上时,赋予弯折部4的变形被释放,被弯折为小开角θ2的弯折部4伸展,其开角变成为θ1,回复到初期形状记忆的形状。即,斯滕特固定模1通过再次被加热到玻化温度Tg以上,如图1所示,被扩径到初期记忆的大小。
本发明的脉管用斯滕特固定模1,用于插入生物体的例如冠状动脉血管内,在插入了血管时,而扩径为记忆的状态,支承住血管内壁。形成脉管用斯滕特固定模1的斯滕特固定模本体3的线2,为了能在生体的体温或接近体温的温度下恢复形状,是采用玻化温度Tg为70℃以下的生物体吸收性聚合物。
用玻化温度Tg在70℃以下、可借助生物体体温恢复形状的线2形成的斯滕特固定模1,为扩径为形状记忆的状态,加热时,可用使生物体血管不会产生热损伤的温度进行。
另外,以缩径状态装在血管内的斯滕特固定模1,借助设在导管上的气球,扩径为与血管内壁接触的大小。斯滕特固定模1由于是用气球与血管内壁接触地扩径,所以,可均匀地与血管内壁接触,可借助体温均匀加温并恢复形状。
为了使斯滕特固定模1恢复形状,通过导管向气球内注入加温的造影剂时,其温度为50℃左右,这样可切实防止生物体血管产生热损伤。
下面,说明两种线2形成的斯滕特固定模1的形状恢复与温度的关系。一种是采用玻化温度Tg约57℃的聚乳酸(PLLA)制的线2,用该线2形成斯滕特固定模1。另一种是采用玻化温度Tg约37℃的聚乙二醇酸(PGA)制的线2,用该线2形成斯滕特固定模1。
这里所采用的线2,是把聚乳酸(PLLA)以及聚乙二醇酸(PGA)用上述的螺旋挤出机形成为直径50μm~300μm的延伸单线而形成的。各斯滕特固定模1,是将该线2如上述那样一边弯折成锯齿状、一边卷绕成筒状而形成的,并形状记忆住直径(R1)为4mm的大小,再被缩径成直径(R2)为1.4mm的大小。各斯滕特固定模1在形状记忆状态,其长度(L1)为12mm。
由聚乳酸(PLLA)制的线2形成的斯滕特固定模1,如图10中A所示,在70℃时仅用0.2秒恢复形状;在50℃时用13秒恢复形状;在接近体温的37℃时,用约20分钟慢慢地恢复形状。在接近室温的20℃以下时,不恢复形状,保持着缩径状态。
这样,由聚乳酸(PLLA)制的线2形成的斯滕特固定模1,通过控制加热温度,可控制恢复形状所需的时间,所以,可控制适当的形状恢复速度,以适应安装着斯滕特固定模1的血管状态等。
由聚乙二醇酸(PGA)制的线2形成的斯滕特固定模1,如图10中B所示,在45℃时仅用0.5秒就恢复形状;在接近体温的37℃时,约用1秒钟恢复形状,在低于体温的30℃时,用10秒钟恢复形状。在接近室温的15℃以下,不恢复形状,保持着缩径状态。
由玻化温度Tg低的聚乙二醇酸(PGA)制的线2形成的斯滕特固定模1,插入血管时借助体温急剧地恢复形状,所以,适用于装入血管后需要立即扩径的场合。另外,由于不必加热,借助体温可迅速恢复形状,所以,使斯滕特固定模1恢复形状的加热控制变容易。
上述的脉管用斯滕特固定模1,是把将弯曲部形成在中途部地被弯折成锯齿状的一根线2卷绕成螺旋状而形成为斯滕特固定模本体3。但也可以把将弯曲部形成在中途部地被弯折成锯齿状的一根线2形成为环状,把卷绕成该环状的若干根线21如图11所示地沿轴方向并列配置,形成为筒状的斯滕特固定模本体23。
该斯滕特固定模本体23,也是将并列配置的各线21的弯折部24的顶点相互接触,将接触部分融接,从而可切实保持筒状形态。
采用该斯滕特固定模本体23形成的斯滕特固定模1,也与上述斯滕特固定模1同样地,装在轴状模101上,加热到构成线21的生物体吸收性聚合物的玻化温度Tg以上的温度即融点Tm以下的温度,使其形状记忆住置留在生物体脉管内时的大小,然后,用缩径模子201等将其缩径到容易插入脉管内的粗细程度。
本发明的斯滕特固定模1,只要将线2一边弯折成锯齿状、一边卷绕成筒状地形成即可,其卷绕方法可采用各种方法。
上述已有技术中,斯滕特固定模所用的形状记忆合金的形状记忆恢复力约为数十kg/mm2,而本发明斯滕特固定模所用的构成线的生物体吸收性聚合物的形状记忆恢复力,约为数kg/mm2。因此,具有形状记忆功能的生物体吸收性聚合物与形状记忆合金相比,其恢复力极小。另外,具有形状记忆功能的生物体吸收性聚合物回复到所记忆状态的速度也为形状记忆合金的10倍以上。用具有该特性的、具有形状记忆功能的生物体吸收性聚合物制的线形成的斯滕特固定模,与采用形状记忆合金的斯滕特固定模相比,可用10倍以上的时间回复到所记忆的状态。
这样,用形状记忆回复力小、并且回复到所记忆状态的时间长的生物体吸收性聚合物制的线形成的斯滕特固定模,以缩径状态插入血管内后进行扩径时,不是急剧地扩径,而是均匀地扩径,而且对血管内壁不施加过度的力学上的压力,因此,可切实防止损伤血管。
另外,具有形状记忆功能的生物体吸收性聚合物制的线与形状记忆合金等金属制的线相比,其摩擦系数小,所以,在斯滕特固定模的扩径过程中,即使与血管内壁的局部相接触,也能在血管内壁面上滑动地均匀地进行扩径,可防止损伤血管。
通常,用于防止血管再狭窄的斯滕特固定模,在置留在血管内后数周间至数月间,虽然仍保持其形态,但是从临床经验看,希望安装后数月以内最好消失。
本发明的斯滕特固定模,由于是用生物体吸收性聚合物制的线形成的,所以,置留在生物体血管内后,虽然在数周间至数月间仍保持其形态,但置留在血管内数月后,可被生物体组织吸收而消失。
在聚合物纤维制的线中可混入各种药剂。在纺制纤维的时刻,通过混入X射线不透过剂,可用X射线观察置留在血管内的脉管用斯滕特固定模的状态。通过预先混入肝素、尿激酶或t-PA等血栓溶解剂或抗血栓剂,可防止血管的血栓性再狭窄。另外,可持续地投入药剂,通过混入或覆盖放射β线的放射线源、放射γ线的放射线源,可容易地对生物体内患部进行集中的放射线照射,而且可持续地进行放射线的照射。
另外,在线内混入抑制新生内膜加增殖的药剂,可持续地抑制新生内膜的加增殖。
这些X射线不透过剂、血栓溶解剂和抗血栓剂、或者抑制新生内膜加增殖的药剂、放射线源,可在纺线后,通过涂敷在该线的表面而覆盖住线。
本发明的斯滕特固定模1,由于是把具有形状记忆功能的生物体吸收性聚合物制的线相互不重合地卷绕成筒状而形成的,所以,如图12所示,在长度方向容易挠曲变形,能对于弯曲的血管301随从性好地进行插入。尤其是在采用中途设有弯折部的线形成的斯滕特固定模1,在长度方向极容易变形,能对于弯曲的血管301随从性更好地插入。
本发明的斯滕特固定模1,使线2不重合地形成,把该线2的弯折部4作为变位部,变位为形状记忆状态,所以,受不到因线2的重合产生的阻力,可顺利地恢复形状。
另外,本发明的斯滕特固定模1,由于将线2不重合地卷绕而形成,所以,成为无重合接缝的形状,可减少对血管壁的损伤。
工业利用性本发明的脉管用斯滕特固定模,由于是采用具有形状记忆功能的生物体吸收性聚合物形成的,所以,可形状记忆住置留在脉管内状态的大小,不损伤血管等的脉管,可切实地将脉管保持为扩径状态。
另外,本发明的脉管用斯滕特固定模,装到血管等脉管内后,可容易地进行扩径,并且可用均匀的力支承血管等脉管,所以,可以稳定的状态将脉管保持为扩径状态。
特别是,本发明的脉管用斯滕特固定模,由于是采用生物体吸收性聚合物形成,所以,虽然在置留在脉管内数周间至数月间保持其形态,但安装后数月内可消失,可提供临床理想的斯滕特固定模。
权利要求
1.脉管用斯滕特固定模,用于插入生物体的脉管内,其特征在于,备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成;上述斯滕特固定模本体,形状记忆着置留在脉管内时的大小。
2.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线是一根连续的单丝。
3.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线是将若干根单丝一体化后的复丝。
4.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,被外力缩径后,再扩径到所形成记忆的、置留在生物体脉管内时的大小。
5.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,是将上述线一边弯折成锯齿状一边卷绕成筒状而形成的。
6.如权利要求4所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,以上述线的弯折部作为变位部被扩径或缩径。
7.如权利要求4所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,其上述线的相邻的至少一部分弯折部是连结着的。
8.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,是将弯折成锯齿状并连结成环状的多根线,沿着斯滕特固定模本体的轴方向并列配置而形成为筒状。
9.如权利要求8所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体以上述线的弯折部作为变位部被扩径或缩径。
10.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是由玻化温度为70℃以下的生物体吸收性聚合物形成的。
11.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是用聚乳酸(PLLA)、聚乙二醇酸(PGA)、聚乙二醇酸和聚乳酸的共聚物、二噁烷酮、碳酸亚丙脂和乙交脂的共聚物、聚乙二醇酸或聚乳酸和ε-己内酯共聚物的一种或2种以上生物体吸收性聚合物形成的。
12.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是用混入了X射线不透过剂、抗血栓剂、抑制新生内膜加增殖的药剂、放射β射线的放射线源、放射γ射线的放射线源中的1种或2种以上的高分子聚合物形成的。
13.如权利要求1所述的脉管用斯滕特固定模,其特征在于,在上述线的表面覆盖了X射线不透过剂、抗血栓剂、抑制新生内膜加增殖的药剂、放射β射线的放射线源、放射γ射线的放射线源中的1种或2种以上。
全文摘要
本发明提供装在生物体脉管内的斯滕特固定模,该斯滕特固定模备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成。上述斯滕特固定模本体,记忆着置留在脉管内时的大小。斯滕特固定模本体在被外力缩径的状态下装入生物体脉管内,借助生物体体温的加温而扩径。斯滕特固定模本体,是把生物体吸收性聚合物制的线一边弯折成锯齿状、一边卷绕成筒状而形成的,以线的弯折部作为变位部被扩径或缩径。
文档编号A61F2/00GK1277560SQ99801529
公开日2000年12月20日 申请日期1999年9月8日 优先权日1998年9月8日
发明者伊垣敬二 申请人:株式会社伊垣医疗设计
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1