采用光敏剂灭活生物污染物的方法和装置的制作方法

文档序号:1077367阅读:787来源:国知局
专利名称:采用光敏剂灭活生物污染物的方法和装置的制作方法
相关申请的交叉引用本申请是1998年7月21日申请的美国申请序列第09/119,666号的部分连续申请,该申请在与本文不相抵触的程度通过引用结合到本文中。
背景血液的污染提供了传染性微生物,诸如HIV、肝炎病毒和其它病毒和细菌,这对必须接受全血输血或给予诸如以下的各种血液成分的人带来严重的健康危害血小板、红细胞、血浆、因子Ⅷ、纤溶酶原、纤连蛋白、抗凝血酶Ⅲ、冷沉淀物、人血浆蛋白组分、白蛋白、免疫血清球蛋白、凝血酶原复合物血浆生长激素和其它从血液分离的组分。血液筛选方法可能漏过污染物,因此尚未得到不损害细胞血液成分、但有效灭活感染性病毒和其它微生物的灭菌方法。
血液成分净化的溶剂去污剂方法通过溶解围绕诸如HIV的病毒的磷脂膜而起作用,并且不损害血液蛋白成分;然而,如果存在血细胞,则不能使用这类方法,因为会损害细胞膜。
光敏剂是吸收限定波长的光,并将吸收的能量转移至能量受体的化合物,已经提出使用光敏剂进行血液成分的灭菌。例如,1986年10月8日公开的欧洲专利申请196,515提出使用非内源性光敏剂作为血液添加剂,所述光敏剂诸如卟啉、补骨脂素、吖啶、甲苯胺、吖黄素(吖黄素盐酸盐)、吩噻嗪衍生物和诸如中性红和亚甲蓝的染料。机体内天然存在的原卟啉可以代谢形成光敏剂;然而,其有用性是有限的,因为它降解蛋白的所需生物活性。氯丙嗪也是这样一种光敏剂的实例,然而,其有用性是有限的,因为它具有镇静作用,所以在净化步骤之后,它应该从给予患者的任何流体中去除。
Goodrich,R.P.等(1997),“用于血液制品灭菌的选择性光活化药物的设计和研制”,Drugs ofthe Future 22∶159-171提供了关于包括补骨脂素在内的某些光敏剂和在选择光敏剂进行血液制品净化方面具有重要性的某些问题的综述。在1997年3月4日授予Magda等的美国专利第5,607,924号和1998年2月3日授予Magda等的美国专利第5,714,328号中,描述了应用texaphyrins进行DNA光切割。在1991年8月20日由于Matthews等的美国专利第5,041,078号中,描述了应用sapphyrins进行病毒灭活。在1996年8月13日授予Wagner的美国专利第5,545,516号中,描述了用吩噻嗪-5-鎓染料加光来灭活血液和血液成分的细胞外有包膜病毒。在1990年4月10日授予Sieber等的美国专利4,915,683号和1994年4月19日授予Sieber等的相关美国专利第5,304,113号中,公开了应用卟啉、血卟啉和步花菁染料作为光敏剂根除来自机体组织例如体液的传染污染物,诸如病毒和原生动物。
这类光敏剂的作用机制被描述为涉及优先结合至例如有包膜病毒和某些病毒感染的细胞上的脂质双层中的结构域。膜结合剂分子的光致激发导致形成活性氧种类,诸如单线态氧,引起脂质氧化。使用这类光敏剂的问题在于,它们攻击待净化流体的所需成分(诸如红细胞)的细胞膜,并且单线态氧也攻击待处理流体的所需蛋白成分。1988年2月23日授予Wiesehahn,G.P.等的美国专利第4,727,027号,公开了应用包括补骨脂素和衍生物在内的呋喃并香豆素进行血液和血液制品的净化,但指出采取一些步骤降低溶解氧和其它活性种类的有效性,以抑制生物活性蛋白的变性。在1996年5月14日授予Park等的美国专利5,516,629和1996年12月24日授予Goodrich,Jr.,R.P.等的美国专利5,587,490中,描述了用卤代香豆素光灭活病毒和细菌血液污染物,而授予Platz等的美国专利第5,418,130号公开了应用取代的补骨脂素灭活病毒和细菌血液污染物。后一专利也提出了控制自由基对其它血液成分损害的必要性。1997年8月5日授予WolloWitz等的美国专利5,654,443提出了用于血液光净化的新的补骨脂素组合物。1998年1月20日授予Lin等的美国专利5,709,991提出,使用补骨脂素光净化血小板制品并且此后去除补骨脂素。1992年6月9日授予Horowitz等的美国专利5,120,649和1993年8月3日授予Horowitz等的相关美国专利5,232,844,也公开了需要结合攻击脂膜的光敏剂使用“猝灭剂”,而1994年11月1日授予Chapman等的美国专利5,360,734也提出了防止损害其它血液成分的问题。
攻击核酸的光敏剂是本领域已知的。1994年8月30日授予Platz等的美国专利5,342,752,公开使用基于吖啶染料的化合物减少包含红细胞、血小板和血浆蛋白组分的血液物质中的寄生污染物。尽管这些物质的毒性相当低,但这些物质例如对红细胞的确具有某些毒性。该项专利没有公开在流通(flow-through)基础上净化血液的装置。授予Doodrich,Jr.等的美国专利第5,798,238号,公开了使用喹诺酮和喹诺酮化合物灭活病毒和细菌污染物。
正如1986年9月16日授予Edelson的美国专利第4,612,007号和1987年8月4日授予Edelson的相关美国专利第4,683,889号中所指出的,在处理中已经利用DNA与光活性剂的结合减少血液中的淋巴细胞群体。
已经报道核黄素(7,8-二甲基-10-核糖基异咯嗪)攻击核酸。在Tsugita,A等(1965),“核黄素存在下的核糖核酸的光敏失活”,Biochimica et Biophvsica Acta 103360-363;和Speck,W.T.等(1976),“对核黄素存在下DNA光氧化的进一步观察”,Biochimica etBiophysica Acta 435∶39-44中,讨论了在核黄素存在下核酸的光转变作用。在Kuratomi,K.等(1977),“DNA和核黄素之间相互作用的研究”,Biochimica et Biophysica Acta 476207-217中,讨论了光黄素(7,8,10-三甲基异咯嗪)与DNA的结合。Hoffmann,M.E.等(1979),“在核黄素和色氨酸存在下暴露于光的哺乳动物细胞中DNA链断裂”,Photochemistry and Photobiology 29299-303,描述了在暴露于可见荧光或近紫外光后,使用核黄素和色氨酸诱导哺乳动物细胞中DNA的断裂。文章陈述了,如果培养基中无核黄素或者无色氨酸,则这些效应不发生。在Piette,J.等(1979),“硫酸原黄素和光处理产生单链和双链形式的噬菌体φX174 DNA断裂”,Photochemistry and Photobiology30∶369-378中,报道了暴露于硫酸原黄素和光时DNA链的断裂,在Piette,J.等(1981),“在硫酸原黄素介导的DNA光敏作用期间鸟嘌呤残基的改变”,Photochemistry and Photobiology 33325-333中,讨论了在硫酸原黄素介导的DNA光敏作用期间鸟嘌呤残基的改变。
J.Cadet等(1983),“核酸光敏降解的机制和产物以及相关的模式化合物”,Israel J.Chem.23420-429,讨论了与不涉及黄素或pteron衍生物藉此攻击核酸的单线态氧产生的机制相比,玫瑰红、亚甲蓝、硫堇和其它染料的单线态氧产生的作用机制。在本说明书中例举核黄素具有降解核酸的能力。Korycka-Dahl,M.等(1980),“在核黄素存在下用荧光光降解DNA和黄素三重线态猝灭剂的光保护作用”,Biochimicaet Biophvsica Acta 610229-234,也公开了活性氧种类不直接参与由核黄素引起的DNA切断作用。Peak,J.G.等(1984),“天然存在的核酸组分和核苷酸辅酶增强334-nm紫外光引起的DNA断裂”,Photochemistryand Photobiology 39713-716,进一步探讨了核黄素和其它光敏剂的作用机制。然而,没有提示这类光敏剂可用于医学流体的净化。
在1994年3月1日授予予Wlofe,Jr等的美国专利第5,290,221号和1996年7月16日授予Bischof的美国专利第5,536,238号中,已经描述了用于净化血液的装置。美国专利第5,290,221号公开了在相对窄的弓形间隙中辐射流体。美国专利5,536,238公开了利用延伸到过滤介质中的光纤的装置。这两个专利均推荐对细胞壁具有亲和性的光敏剂苯并卟啉衍生物。
本文引用的所有出版物在同等程度上通过引用结合到本文中。
提供用于处理流体或其它材料的方法和装置,以灭活其中可能存在的至少某些微生物和白细胞。这类流体也可以含有一种或多种选自以下的、不破坏这类组分生物活性的组分蛋白,例如生物活性蛋白,诸如治疗蛋白;血液和血液成分。所述方法包括(a)将有效无毒量的内源光敏剂或内源基(endogenously-based)衍生光敏剂与所述流体混合;(b)使所述流体暴露于足以活化所述光敏剂的光辐射;藉此至少某些所述微生物被灭活。
这些光敏剂可以灭活微生物的一种机制是干扰核酸,以阻止所述核酸复制。
本文所用的术语“微生物的灭活”是指或者通过杀伤所述微生物,或者干扰其繁殖能力,全部或部分阻止所述微生物复制。
微生物包括病毒(细胞外和细胞内)、细菌、噬菌体、真菌、血液传播的寄生虫和原生动物。典型的病毒包括获得性免疫缺陷(HIV)病毒、甲型、乙型和丙型肝炎病毒、新培斯病毒、巨细胞病毒、疱疹性口腔炎病毒、单纯疱疹病毒(例如Ⅰ型和Ⅱ型)、人嗜T淋巴细胞反转录病毒、HTLV-Ⅲ、淋巴结病病毒LAV/IDAV、细小病毒、转输传播的(TT)病毒、EB病毒和本领域已知的其它病毒。噬菌体包括φX174、φ6、λ、R17、T4和T2。典型的细菌包括铜绿假单胞菌(P.aeruginosa)、金黄色葡萄球菌(S.aureus)、表皮葡萄球菌(S.epidermis)、单核细胞增生利斯特氏菌(L.monocytogenes)、大肠杆菌、肺炎克雷伯氏菌和S.marcescnes。
当需要抑制免疫应答或自身免疫应答时,例如在可能存在供体红细胞时涉及输入红细胞、血小板或血浆的过程中,可能希望灭活白细胞。
可以用本发明方法处理的材料包括可充分透过光辐射以提供足够光达到病毒灭活的任何材料,或可以悬浮于或溶于对光辐射具有这种通透性的流体的任何材料。这类材料的实例是全血和含得自血液或血液成分的生物活性蛋白的水性组合物。压紧红细胞、血小板和血浆(新鲜或新鲜冷冻的血浆)是这类血液成分的实例。另外,本发明的净化方法可以处理含得自血液的蛋白的疗效性蛋白组合物,诸如含可用于治疗医学失调的生物活性蛋白的流体,所述生物活性蛋白例如为因子Ⅷ、Von Willebrand因子、因子Ⅸ、因子Ⅹ、因子Ⅺ、Hageman因子、凝血酶原、抗凝血酶Ⅲ、纤连蛋白、纤溶酶原、血浆蛋白组分、免疫血清球蛋白、修饰的免疫球蛋白、白蛋白、血浆生长激素、促生长素抑制素、纤溶酶原链激酶复合物、血浆铜蓝蛋白、运铁蛋白、触珠蛋白、抗胰蛋白酶和前激肽释放酶。可以从本发明处理中受益的其它流体是用于腹膜透析的腹膜液,它们在连接期间有时受污染,导致腹膜感染。
术语“生物活性”是指能够实现活生物或其成分的改变。关于“生物活性蛋白”方面的“生物活性”在此不是指作为待灭活微生物的部分的蛋白。同样,关于光敏剂方面的“无毒的”是指对人类和其它哺乳动物低毒性或无毒性,不是指对待灭活微生物无毒。生物活性的“大致破坏”是指与卟啉和卟啉衍生物、已知对生物活性蛋白和人类和哺乳动物细胞具有损害效应的代谢物或前体引起的破坏至少一样。同样,“大致无毒”是指毒性低于卟啉、卟啉衍生物、已知用于血液灭菌的代谢物和前体的毒性。
本文所用的术语“血液制品”包括血液成分和含上述得自血液的蛋白的治疗蛋白组合物。含非得自血液的生物活性蛋白的流体也可经本发明方法处理。
本发明采用内源光敏剂和内源基光敏剂衍生物的净化方法,大致不会破坏除微生物外的流体组分的生物活性。尽管在某些情况下,当将所述方法最佳化时,生物活性的某些损失(例如蛋白组分的变性)必须与有效净化所述流体平衡,但尽可能保留这些组分的生物活性。只要流体组分保留组分的可用于其计划的或天然目的的充分的生物活性,则认为其生物活性没有被“大致破坏”。
可用于本发明的光敏剂包括本领域已知可用于灭活微生物的光敏剂。“光敏剂”的定义为吸收一个或多个限定波长辐射并随后利用吸收的能量进行化学处理的任何化合物。这类光敏剂的实例包括卟啉、补骨脂素、染料,诸如中性红、亚甲蓝、吖啶、甲苯胺、黄素(吖黄素盐酸盐)和吩噻嗪衍生物、香豆素、喹诺酮、醌和蒽醌。本发明的光敏剂可以包括这样的化合物,它们优先吸附至核酸,并因此将其光动态效应集中于微生物和病毒上,而极少或不影响伴随的细胞或蛋白。其它光敏剂也可用于本发明中,诸如用单线态氧依赖性机制的那些光敏剂。最优选内源光敏剂。术语“内源的”是指或者由于机体的合成,或者因为作为必需食物(例如维生素)的摄取或体内形成代谢物和/或副产物而在人类或哺乳动物体内天然发现的。这类内源光敏剂的实例是诸如咯嗪,诸如7,8-二甲基-10-核糖基-异咯嗪(核黄素)、7,8,10-三甲基异咯嗪(光黄素)、7,8-二甲基咯嗪(光色素)、异咯嗪-腺嘌呤二核苷酸(黄素腺嘌呤二核苷酸[FAD])、咯嗪单核苷酸(也称为黄素单核苷酸[FMN]和核黄素-5-磷酸)、维生素Ks、维生素L、其代谢物和前体、以及萘醌、萘、萘酚及其具有平面分子构象的衍生物。术语“咯嗪”包括异咯嗪。内源基衍生光敏剂包括合成衍生的类似物和内源光敏剂同系物,它们可能具有或缺乏由其衍生的光敏剂的低级(1-5)烷基或卤素取代基,并且它们保留其功能且大致无毒。当使用内源光敏剂时,特别是当这类光敏剂不具有内在毒性或在光辐射后不产生毒性光生产物时,在净化后不需要去除或纯化步骤,可以将处理的产物制剂返回患者体内,或给予需要其治疗效应的患者。优先的内源光敏剂是 本发明的方法需要将所述光敏剂与待净化材料混合。可以通过简单地将所述光敏剂或含光敏剂的溶液加入待净化流体中进行混合。在一个实施方案中,使已经加入光敏剂的待净化材料流过光辐射源,所述材料的流动一般提供足够的湍流,以将所述光敏剂分配在整个待净化流体中。在另一实施方案中,将所述流体和所述光敏剂置于可透光的容器中,并且以分批模式进行辐射,优选同时搅动容器,以将所述光敏剂完全分配并将全部流体暴露于辐射。
待与流体混合的光敏剂的量,为足以充分灭活其中的微生物、但小于有毒量(对人类或其它哺乳动物)或不溶量的量。正如正文所指出的,本领域技术人员不用过度实验,可以容易地确定所需光敏剂的最佳浓度。所述光敏剂的使用浓度最好至少约1μM高至所述流体中光敏剂的溶解度,最好约10μM。对于7,8-二甲基-10-核糖基异咯嗪,浓度范围优选为约1μM-160μM,最好为约10μM。
将含光敏剂的流体暴露于合适波长的光辐射下,以活化光敏剂,光辐射的用量足以活化上述光敏剂,但低于可能对所述生物组分引起非特异性损害或大致干扰流体中存在的其它蛋白生物活性的量。所用的波长将取决于选定的光敏剂,这是本领域已知的,或根据本文内容,不用过度实验即可容易地确定。光源优选荧光或提供约300nm至约700nm的发光源,更优选提供约340nm至约650nm的发光源。紫外光至可见光范围的波长可用于本发明中。所述一种或多种光源可以提供可见光范围的光、紫外光范围的光、或优选可见光和紫外光范围光的混合物,更优选约一半为可见光谱和一半紫外光谱,尽管可以使用其它比例。光混合物的一个益处是,可见光谱不损害血小板,但降低所需更有害的紫外辐射的量。
所述活化光敏剂能够诸如通过干扰而阻止微生物复制,从而灭活所述微生物。通过使所述光敏剂接近所述微生物的核酸,赋予所述光敏剂作用的特异性,这可能是由于所述光敏剂结合至所述核酸所致。“核酸”包括核糖核酸(RNA)和脱氧核糖核酸(DNA)。其它光敏剂可能通过结合至细胞膜或通过其它机制起作用。也可以通过共价偶联至抗体,最好是偶联至抗待灭活微生物的特异性单克隆抗体,将所述光敏剂导向所述微生物。
可以使含所述光敏剂的流体流入可透光容器进行辐射。术语“容器”是指密闭或开放的空间,它可以由刚性或挠性材料制成,例如为袋、盒或料槽。其顶部可以是密闭的或是开放的,其两端可以具有开孔,例如可以是管或管道,以允许流体在其中流通。用吸收池来例举本发明涉及流通系统的一个实施方案。诸如与TrimaTMSpectraTM和单采血液成分术(apheresis)系统一起使用的那些收集袋,已经用来例举涉及分批(batch-wise)处理所述流体的另一实施方案。
术语“可透光的”是指所述容器的材料对于用来活化光敏剂的合适波长的光辐射是充分透明的。在所述流通系统中,容器的深度(在来自光辐射源辐射方向上测量的大小)足以允许光辐射充分透过容器,以在距光源的所有距离上均接触光敏剂分子,并确保灭活待净化流体中的微生物,容器的长度(流体流动的方向的大小)足以确保所述流体暴露于所述光辐射足够时间。根据本文的内容,本领域技术人员不用过度实验,可容易地确定制造这类容器的材料、容器的深度和长度以及流体容器容器的流速,光辐射的强度和流体组分(如血浆、血小板、红细胞)的吸收率将决定所述流体需要暴露于光辐射的时间量。对于7,8-二甲基-10-核糖基异咯嗪,优选的辐射量为约1J/cm2-120J/cm2。
在涉及分批处理的另一实施方案中,将待处理流体置于可透光容器中,将其搅动并暴露于光辐射,其暴露时间足以大致灭活所述微生物。所述可透光容器最好由透明或半透明塑料制成的血液袋,而搅动最好是指振摇台。可以将所述光敏剂以粉状或液体形式加入容器中,搅动容器以将光敏剂与流体混合,以将所有流体充分暴露于光辐射,以确保灭活所述微生物。
可以将光敏剂与待处理流体分别加入或流入可透光容器中,或可以在将流体置于容器中之前将光敏剂加入流体中。在一个实施方案中,将光敏剂加入抗凝剂中,然后将光敏剂和抗凝剂的混合物加至所述流体中。
也可以将增强剂加入流体中,以使得该方法更有效和更具选择性。这类增强剂包括抗氧化剂或防止损害所述流体组分或提高微生物灭活率的其它试剂,实例为腺嘌呤、组氨酸、半胱氨酸、酪氨酸、色氨酸、抗坏血酸、N-乙酰-L-半胱氨酸、没食子酸丙酯、谷胱甘肽、巯基丙酰甘氨酸、二硫苏糖醇、烟酰胺、BHT、BHA、赖氨酸、丝氨酸、甲硫氨酸、葡萄糖、甘露醇、trolox、甘油和它们的混合物。
本发明也包括含生物活性蛋白、血液或血液成分的流体,所述流体也含内源光敏剂、内源基衍生的光敏剂或用权利要求1的方法制备的其光生产物。所述流体也含有灭活的微生物。
除净化全血、含血液制品和生物活性蛋白的流体,该方法可用于处理其它流体,对于人类或动物的营养而言,所述流体是指诸如水、果汁、乳、肉汤、汤等。所述方法也可用来处理腹膜液或胃肠外液。
本发明也包括处理表面以灭活可能存在于表面上微生物的方法,所述方法包括将灭活有效无毒量的内源光敏剂或内源基光敏剂衍生物应用于这类表面,并将所述表面暴露于足以活化所述光敏剂的光辐射。所述表面可以是诸如水果、蔬菜或动物屠体的食物表面、切割的或加工食品的表面。诸如碎肉的颗粒状材料,可以通过将所述光敏剂与所述材料混合,并连续混合同时辐射以将新鲜表面暴露于光辐射,而进行处理。
所述表面或者可以是食物制备表面,诸如柜台顶部或贮藏架,或可以是洗澡容器或洗涤容器表面,所述容器诸如洗碗盆、浴缸或热浴盆(hot tub)或游泳池等。另外,所述表面可以是活体动物或植物的表面,或可以是伤口表面。
通过喷洒、浸入、擦拭或通过本领域已知的其它方法,可将所述光敏剂在合适的载体中应用,所述载体诸如水或含其它处理添加剂的溶液。根据污染水平和待处理材料,本领域技术人员不用过度实验,即可以容易地确定处理所需的光敏剂的量和光辐射的能量。
本发明也提供处理流体或上述其它材料以灭活其中可能存在的微生物的方法,所述方法包括将灭活有效无毒量的维生素K5加至所述流体或其它材料。最好但不是必需的,对所述流体或其它材料进行辐射,以增强对微生物的灭活。正如本文实施例中进一步讨论的,在某些情况下,用维生素K5的灭活发生于周围环境的光中或黑暗中。最好在缺乏光辐射步骤的情况下,用维生素K5处理含红细胞的流体。K5化合物也可以涂布表面,诸如血液或腹膜透析管道装置,以确保无菌连接和无菌对接。
在本发明的净化系统中,光辐射源可以借助光导连接至用于流体的可透光容器,所述光导诸如光管道或光纤管,它防止光源和所述流体容器之间光散射,更为重要的是,防止实质上加热容器内的流体。直接暴露于光源可以产生高达10-15℃的温度,尤其是当暴露于光的流体的量小时,这可能导致血液成分的变性。应用光导使任何加热均低于约2℃。该方法也可以包括使用温度传感器和冷却机制,需要时确保温度低于所述流体中所需蛋白受损害的温度。所述温度优选保持在约0℃和约45℃之间,更优选保持在约4℃和约37℃之间,最优选保持在约22℃。
本发明也提供处理流体以灭活其中可能存在的微生物的系统,所述系统包括(a)包含所述流体和一种内源光敏剂或内源基光敏剂衍生物的容器,所述容器配有输入装置,具有可透光表面,足以使其中的流体暴露于足以活化所述光敏剂量的光辐射;(b)至少一种光辐射源,为所述容器中的流体提供足够的光辐射,选择所述光辐射的类型和量以活化所述光敏剂,藉此大致灭活存在的微生物。
所述光辐射源可以是可见光辐射源或紫外光辐射源或这两者。优选提供可见光和紫外光辐射两种,更优选所述光辐射为约一半紫外光辐射和一半可见光辐射,尽管可以使用其它比例。紫外光光谱和可见光光谱两者的光辐射可以同时或顺序给予,最好是首先供给可见光部分。光辐射源可以是简单的灯,或可以包括多个以不同波长辐射的灯。光辐射源应该能够供给约1至至少约120J/cm2。当所述光敏剂是在暴露期后丧失其吸收可见光能力的光敏剂诸如7,8-二甲基-10-核糖基-异咯嗪时,尤其优选应用混合的紫外光和可见光。
可以使用将所述光敏剂加至待净化流体和将所述流体置于本领域已知的可透光容器的任何装置,这类装置通常包括流料管、排出口、储存器、阀等。所述系统最好包括诸如泵或可调阀的装置,以控制所述光敏剂流入待净化流体的流量,使得其浓度可以控制在上述有效水平。在一个实施方案中,将光敏剂与送至血液单采血液成分术系统的抗凝剂混合。正如本领域已知的,对于内源光敏剂和具有糖部分的衍生物,所述溶液的pH最好保持足够低,以防止糖部分脱落。最好将所述光敏剂在预混合水溶液中加至待净化流体中,所述水溶液例如水或贮存缓冲液。
用于所述流通系统的可透光容器可以是由聚碳酸酯、玻璃、石英、聚苯乙烯、聚氯乙烯、聚烯烃或其它透明材料制成的透明吸收池。所述吸收池可以在具有镀膜壁的辐射室中封闭。可以将诸如第二光辐射源或反射表面的光辐射增强器邻近吸收池放置,以增加接触吸收池内流体的光辐射量。该系统最好包括一个泵,以将所述流体的流速调至所需水平,以确保如上所述大致净化。所述吸收池与通过其的流速协调的长度,足以使其中的流体暴露于足以实现其大致净化的光辐射。
此外最好将吸收池与光源间隔开足够的距离,使得不发生吸收池中流体的加热,并且借助光导将光从光源发射至吸收池。
在另一实施方案中,将所述流体置于可透光容器中,诸如与美国专利第5,653,887号中描述的单采血液成分术系统一起使用的血液袋。合适的袋包括如本文所述的收集袋。Cobe Laboratories,Inc.的SpectraTM系统或TrimaTM单采血液成分术系统中所用的收集袋特别合适。振摇台是本领域已知的,例如美国专利4,880,788中描述的。该袋配有至少一个端口,用于加入流体。在一个实施方案中,将所述光敏剂、最好是7,8-二甲基-10-核糖基-异咯嗪以粉末形式加至充满所述流体的袋中。然后将该袋置于振摇台上,在光辐射下搅动,直至大致所有所述流体已经暴露于所述光辐射。或者,该袋中预包装有粉状光敏剂。然后,可以通过合适的端口加入待净化流体。
上述净化系统可以设计为独立装置,或可以容易地与本领域已知用于分离或处理从患者取出或待给予患者的血液的现有仪器结合使用。例如,这类血液处理仪器包括可得自Cobe Laboratories,Inc.,Lakewood,CO的COBE SpectraTM或TRIMA_单采血液成分书系统、或Cobe Laboratories,Inc的美国专利第5,653,887号和1997年9月5日申请的美国系列第08/924,519号(PCT公布号WO 99/11305)中描述的仪器以及其它生产商的单采血液成分书系统。恰好在将血液制品插入患者之前,或在分离血液成分之前或之后的任何点,可以将所述净化系统刚好插入从患者或供体取血点下游。在一个优选实施方案中,将所述光敏剂与抗凝剂一起加入血液成分中,将分开的辐射源和吸收池置于血小板、血浆和红细胞收集点下游。最好使用三个分开的血液净化系统,以将单一血液净化系统置于单采血液成分术系统的血液分离容器的上游,因为分离的组分管线中较低的流速允许更容易地进行辐射。在其它实施方案中,本发明的净化系统可以用来加工先前收集和贮存的血液制品。
当在待处理流体中存在红细胞时,正如本领域技术人员会认识到的,为了补偿细胞对光的吸收,使所述流体变稀,与其它血液成分使用使必需的相应参数相比,应暴露于较高能量的辐射较长时间,搅动较长时间,或在更浅的容器或管中接受辐射。
本文公开的内源光敏剂和内源基衍生光敏剂可以用于现有的血液成分净化系统以及本文公开的净化系统中。例如,本发明的内源光敏剂和内源基衍生光敏剂可以用于美国专利第5,290,221、5,536,238、5,290,221和5,536,238号中描述的净化系统中。
本文也提供包含上述内源光敏剂和内源基衍生光敏剂的血小板添加溶液。本领域已知的血小板添加溶液可以用于此目的,包括在美国专利第5,908,742、5,482,828、5,569,579、5,236,716、5,089,146和5,459,030号中描述的那些血小板添加溶液。这类血小板添加溶液可以含有生理盐水溶液、缓冲液、最好是磷酸钠和其它成分,包括氯化镁和葡萄糖酸钠。这类溶液的pH最好为约7.0-7.4。这些溶液可用作血小板浓缩物的载体,以允许在贮存期间维持细胞质量和代谢、降低血浆含量和延长贮存期。所述光敏剂可以以约1μM至所述光敏剂在该溶液中的溶解度的任何所需浓度,存在于这类溶液中,优选约10μM和约100μM之间,更优选约10μM。在一个优选实施方案中,所述血小板添加溶液也包含上述增强剂。优选的血小板添加溶液包含乙酸钠、氯化钠、葡萄糖酸钠、1.5mM氯化镁、1mM磷酸钠、14μM 7,8-二甲基-10核糖基-异咯嗪,最好也包含6mM抗坏血酸。
附图简述

图1描述了核黄素的吸收光谱。
图2描述了对红细胞观察和预测的以及对血小板预测的光吸收和红细胞比容的相互关系。
图3描述了核黄素在抗凝剂酸性柠檬酸葡萄糖(ACD)溶液中随时间的光分解。带圆圈的实线代表373nm下剩余的起始核黄素的百分比。带方框的虚线代表447nm下剩余的起始核黄素的百分比。
图4描述了各种塑料吸收池随波长变化的透射分布图。实线代表一个3.2mm丙烯酸吸收池。虚线(---)代表一个3.2mm UV丙烯酸吸收池。短划线(--)代表3.2mm聚苯乙烯(PS)吸收池,而交叉线代表3.2mm聚碳酸酯(PC)吸收池。
图5描述了随流速变化的在mW/cm2中所需的光通量,即将1焦耳/cm2传递至吸收池中样品所需的光通量。
图6描述了加入本发明光辐射装置的血液分离仪器。
图7描述了本发明的净化组件。
图8描述了随辐射能变化的、使用维生素K5作为光敏剂对血小板制剂中细菌的灭活。
图9描述了随血小板制剂和辐射能变化的对细菌的灭活,采用90%血小板和10%血小板添加剂溶液(90∶10)和30%血小板与70%添加剂溶液(30∶70)。
图10显示将抗氧化剂加入血小板浓缩物中对灭活病毒、噬菌体和细菌的影响。
图11显示在20J/cm2的辐射能下,用一半紫外光和一半可见光,随光敏剂浓度变化的对Ⅱ型单纯疱疹病毒的灭活曲线。
图12显示在不同浓度的光敏剂和辐射能下对表皮葡萄球菌的灭活。
图13显示在不同浓度光敏剂和辐射能下对φX174的灭活。
图14显示在不同辐射能下,用50∶50紫外光和可见光混合物对金黄色葡萄球菌和φX174的灭活。
图15显示在不同辐射能下,用50∶50紫外光和可见光混合物对表皮葡萄球菌和HSV-Ⅱ的灭活。
图16显示在搅动并在不同能级下辐照下,血对液袋中的HSV2病毒的灭活。
图17比较了用单独的紫外光或50∶50可见光和紫外光对各种流体中牛痘病毒的灭活结果。
图18比较了在不同辐射时间下,用或不用光敏剂对牛痘病毒的灭活结果。
图19比较了在5μM和50μM光敏剂和不同辐射能下对细胞外HIV-1的灭活。
图20比较了在5μM和50μM光敏剂和不同辐射能下对细胞内HIV-1的灭活。
图21比较了在5μM和50μM光敏剂和不同辐射能下用p24抗原水平对细胞内HIV-1的灭活。
图22显示在不同辐照水平下,用血小板浓缩物和含血小板添加剂溶液和抗坏血酸的介质中的血小板浓缩物、对HSV-Ⅱ的灭活。
图23显示本发明的一个实施方案,其中采用含待处理流体和光敏剂的血液袋,用振摇台搅动所述流体,同时暴露于来自光源的光辐射。
详细描述本文例举了采用内源光敏剂和内源基衍生光敏剂的本发明的净化方法,采用7,8-二甲基-10-核糖基异咯嗪作为光敏剂,然而,可以使用能够通过光辐射活化而引起微生物灭活的任何光敏剂。所述光敏剂必需是不破坏待净化流体中所需组分的光敏剂,所述光敏剂也优选不因光辐射而分解为显著破坏所需组分或具有显著毒性的产物。采用文献的原始资料或直接测量,如本文所述确定所述光敏剂被活化的波长。其在待净化流体中或在载体液体和待净化流体的混合液中的溶解度也可照此测定。也必需如本文所述,测定于活化波长下光辐射透射待净化流体的能力。测定所述光敏剂与其底物反应的合适温度以及最优化微生物灭活并最大限度地减小对所述流体中所需蛋白和/或细胞成分损害的温度范围、光辐射强度和持续时间,光敏剂的浓度。实施例1-7和图1-5说明开发本发明流通净化系统所需信息的测定。
一旦已经确定流通系统的这种系统需求,则可以设计提供使所述流体中存在的微生物灭活的合适流速、透光率(photopermeability)和光强的仪器,如本文所述。将待净化流体与光敏剂混合,然后于光辐射下辐照,其光辐射量以足以活化所述光敏剂,以与流体的微生物反应,使得所述流体中的微生物被灭活。通过选择以下参数控制达到所述流体中微生物的光辐射量合适的光辐射源、光辐射源距待净化流体的合适距离(可以通过使用光导将光辐射直接带至所述流体的容器,来增加此距离)、所述流体的容器的合适的可透光材料、允许将光辐射完全透入到容器的合适深度、光辐射增强器诸如一个或多个额外的光辐射源(最好在所述容器的与第一光辐射源的相对端,或将来自所述光辐射源的光反射回所述容器)、流体在容器中的合适流速以及允许将存在的微生物灭活充足时间的合适的容器长度。
也可能需要温度监测器,以将流体保持在最佳温度。图6描述了作为分离血液成分的仪器部分的本发明的净化系统,图7提供了优选净化系统的细节。
对于分批系统,最好将该待净化流体与光敏剂一起置于袋中,所述袋可透光的或透过的光至少足以允许足够的辐射到达其内容物,以激活所述光敏剂。向每个袋中加入足够的光敏剂,以提供灭活,最好提供的光敏剂浓度至少约10μM,该袋在辐照下搅动,辐照最好为约1至约120J/cm2,时间为约6分钟至约36分钟,以确保将大致所有流体暴露于辐照下。最好同时使用可见光和紫外光的组合。加入粉状形式的所述光敏剂。
所述方法优选使用内源光敏剂,包括通过干扰核酸复制而起作用的内源光敏剂。7,8-二甲基-10-核糖基异咯嗪是用于本发明的优选光敏剂。相信在7,8-二甲基-10-核糖基异咯嗪和核酸之间发生的化学作用不通过单线态氧依赖性过程(即Ⅱ型机制)进行,而是通过直接的致敏剂-底物相互作用(I型机制)进行。Cadet等(1983)J.Chem.,23∶420-429清楚地证明,7,8-二甲基-10-核糖基异咯嗪的作用是因鸟苷残基的非单线态氧氧化引起的。另外,腺苷碱基看来对7,8-二甲基-10-核糖基异咯嗪加UV光敏感。由于腺苷残基对单线态氧依赖性过程相对不敏感,因此这是重要的。7,8-二甲基-10-核糖基异咯嗪看来在暴露于UV光时不产生大量的单线态氧,而是通过与激发态致敏剂种类的电子转移反应与底物(例如核酸)之间直接相互作用而发挥其作用。由于对细胞和蛋白的普遍损害主要由单线态氧源产生,因此7,8-二甲基-10-核糖基异咯嗪作用的机制途径,使得在其作用中的选择性比在用诸如具有显著Ⅱ型化学的补骨脂素的化合物的情况下选择性大。
图6显示加入本发明光辐射装置的血液仪器装置和单采血液成分术系统。从供体/患者4中取全血,提供至单采血液成分术系统或血液成分分离装置8,在此将血液分离为各种成分类型,从装置8中取出至少一种这些血液成分类型。然后,这些血液成分供另一患者随后使用,或可以经过治疗处理,再返回所述供体/患者4。
在血液组成分离装置8中,从供体/患者4中取血,指导其通过限定整个封闭无菌系统的体外管线回路10和血液处理容器12。血液成分分离装置8连接一个泵(未显示)。血液从所述供体/患者4通过体外管线回路10流入旋转的血液处理容器12。血液处理容器12中的血液被分为各种血液成分种类,这些成分类型(血小板、血浆、红细胞)连续从血液处理容器12中取出。不保留用于收集或用于治疗处理的血液成分(例如红细胞、白细胞、血浆)也从血液处理容器12中取出,然后通过体外管线回路10返回供体/患者4。
最好用本文包括的一个或多个计算机处理器控制血液成分分离装置的操作。
体外管线回路10包括一个盒式组件14和多个互连的管线组件20、50、60、80。90、100。血液的取出/返回管线组件20在供体/患者4和盒式组件14之间提供一个单针接口(interface),血液入口/血液成分管线子组件60在盒式组件14和血液处理容器12之间提供接口。抗凝剂管线组件50、血小板收集管线组件80、血浆收集管线组件90、红细胞收集管线组件70和排气袋管线子组件100也与盒式组件14互连。
血液取出/返回管线组件20包括与其互连的针式子组件30和通过盒式组件14连接至抗凝剂管线组件50的抗凝剂管线26。
盒式组件14包括前和后模塑塑料板,它们被热焊接在一起,限定一个具有完整流体通道的矩形盒式构件。盒式组件14还包括多个向外延伸的连接不同完整通道的管线环。所述完整通道也连接至不同的管线组件。
具体地说,盒式组件14与血液取出/返回管线组件20的抗凝剂管线26以及抗凝剂管线组件50互连。抗凝剂管线组件50包括可连接至抗凝剂和光敏剂源53和灭活滤器56的掺料滴注室52。在使用期间,抗凝剂管线组件50将与光敏剂混合的抗凝剂供应给从供体/患者4取出的血液,以降低或防止体外管线回路10中的任何凝固。许多抗凝剂是本领域已知的,例如在AABB Technical Manual,第11版,1993的第3章中公开的,包括ACD-A、CPD、CP2D、CPDA-1和肝素。这些抗凝剂以及细胞贮存溶液AS-1、AS-3和AS-5均与本文所述的内源光敏剂和内源基衍生光敏剂相容。
盒式组件14也包括与血液取出/返回管线组件20的血液取出管线的互相连接。血液通过压力传感器和盒式组件14中的一个入口滤器,然后达到血液入口管线62。血液入口管线62也与血液处理容器12互连,向其提供全血用于处理。
为了将分离的血液成分返回盒式组件14,血液入口/血液成分管线组件60还包括与血液处理容器12上相应出口端互连的红细胞(RBC)/血浆出口管线、血小板出口管线和血浆出口管线。红细胞(RBC)/血浆出口管线将分离的红细胞(RBC)/血浆成分通过盒式组件14引导通过第一净化系统72至红细胞收集管线组件70。血小板出口管线通道将分离的血小板通过盒式组件14引导通过第二净化系统82至血小板收集管线组件80。血浆出口管线通道将分离的血浆通过盒式组件14引导通过第三净化系统92至血浆收集管线组件90。在净化系统72、82和92中辐照以活化所述光敏剂并灭活存在的微生物后,将所述血液成分收集在红细胞收集袋74、血小板收集袋84和血浆收集袋94中。排气袋104用来排除所述系统内的气体。
图7描述了独立形式的本发明净化系统。将血液制品180(它可以是最近收集的血液或血液成分或贮存的血液)连接至血液制品管路186,它通过泵184导至净化吸收池164。光敏剂储蓄器186连接至配有入口泵170的光敏剂入口管路168,导入净化吸收池164上游的血液制品管路186。净化吸收池164是一个可透光的吸收池,选择其深度(d)和长度(1)以确保净化。与温度监测器192组合的冷却系统190与净化吸收池164连接,以控制流体的温度。净化吸收池164通过光导162连接至光辐射源160。光辐射增强器163邻近(或者接触或者与其间隔开)净化吸收池164放置,以增加到达吸收池中血液制品的光辐射量。净化的血液制品管路188从净化吸收池164导至净化的血液制品收集器182。
在操作中,将血液制品180导入血液制品管路186,在此将其与来自光敏剂储蓄器的光敏剂结合,所述光敏剂从光敏剂储蓄器166流出的流速受连接血液制品管路186的光敏剂入口管路68中的光敏剂入口泵170控制。血液制品管路186中的流速受泵184控制至选定的速率,以确保净化吸收池164中的净化。温度监测器192测量吸收池164中流体的温度,并控制冷却系统190,将吸收池中的温度保持在最佳运作所需的范围内。通过来自光导162中传导的光辐射源160的光辐射,辐照净化吸收池164中的血液制品。所述光辐射源可以包括两种或多种有效光。箭头指出来自光导162末端、在透明净化吸收池164中传播的光辐射。邻近净化吸收池164的是光辐射增强器163,它可以是额外的光辐射源或辐射表面。从光辐射增强器163指向净化吸收池164的箭头指出来自光辐射增强器163、照射在吸收池164中血液制品材料的光辐射。净化的血液制品通过净化血液制品管路188离开净化吸收池164,收集在净化血液制品收集器182中。
在一个实施方案中,用Sigma Chemical Company的7,8-二甲基-10-核糖基异咯嗪作为光敏剂,使用得自EFOS Corporation,Williamsville,N.Y.的由光线组成的光导。该系统能够传递强度为6,200mW/cm2、范围为355-380nm的聚焦光束。使用可与该系统互换的滤光器以达到在400-500nm的光谱范围中输出为4,700mW/cm2也是可能的。在两种情况下,可忽略在不超过320nm范围内光的输出。用该系统可利用不同大小(3、5和8mm)的光导。光离开光导尖端以21度扩展。8mm光导是合适的,将其正确地放置,以充分照亮净化吸收池的优选面,所述吸收池是在Industrial Plastics,Inc.,Forest Grove,OR的Cobe Spectra_一次性套装(disposables sets)上使用的标准吸收池。
流速是可变的,由计划传递至样品的光能的量决定。借助Cole-Parmer Instrument Company,Vernon Hills,IL的蠕动泵控制流速。可以通过本领域已知的计算机处理器,控制流速和输入流的类型。
图23描述了本发明的一个实施方案,其中待净化流体置于配有入口端282的血液袋284中,从烧瓶286通过倾倒槽288经入口端282加入粉状形式284的光敏剂。开启振摇台280振荡袋284,以溶解光敏剂290,同时开启光辐射源260辐照袋284中的流体和光敏剂。或者,可以提供预包装的所述袋,以使其含有光敏剂,此后将流体加入所述袋中。
本发明的方法不需要使用诸如“猝灭剂”或氧清除剂的增强剂,然而,可以使用这些增强剂,通过降低非特异性细胞或蛋白损害化学作用的程度,或增加病原体灭活速率,增强该过程。使用无毒内源光敏剂和内源基衍生光敏剂的其它优选方法,不需要在光辐射后从流体中取出光敏剂。测试结果表明,几乎没有或没有对血液成分的损害,即血小板在处理后5天仍保留生物活性。
实施例实施例1.7,8-二甲基-10-核糖基异咯嗪的吸收分布图7,8-二甲基-10-核糖基异咯嗪样品(纯度为98%)得自SigmaChemical Company。将一部分该样品采用扫描UV分光光度计分析。研究的范围覆盖200-900nm的范围。为了进行分析,将样品溶于蒸馏水中。得自该分析的样品光谱示于图1。
结果与文献中报道的7,8-二甲基-10-核糖基异咯嗪的最大吸光度和消光系数一致。文献的λ最大(ε)测量的λ最大(ε)267(32,359) 222(30,965)265(33,159)373(10,471) 373(10,568)447(12,303) 445(12,446)辐照的合适波长为373nm和445nm。在这些最大吸光度下观察到的消光系数足以确保充分活化所述溶液中的致敏剂。实施例2.7,8-二甲基-10-核糖基异咯嗪的溶解度在Isolyte S,pH 7.4介质中的溶解度如下测定7,8-二甲基-10-核糖基异咯嗪在Isolyte S介质中的最大溶解度。
将7,8-二甲基-10-核糖基异咯嗪与Isolyte S混合,直至形成沉淀。于室温下将混合物搅动1小时并涡旋混合,以确保完全溶解悬浮的材料。加入额外的7,8-二甲基-10-核糖基异咯嗪,直至尽管再进行涡旋混合仍保持固体悬浮。然后将该悬浮液离心以除去不溶的物质。取出该制剂的上清液,用分光光度计分析。于447nm和373nm测定该溶液的吸光度值。由预先测定的消光系数,可以估计所述饱和溶液的浓度浓度(373)=110 μM=42μg/ml浓度(447)=109μM=40.9μg/ml在ACD-A抗凝剂中的溶解度用ACD-A抗凝剂重复上述相同的步骤。从这些测量结果获得的数值如下浓度(373)=166μM=63μg/ml浓度(447)=160μM=60.3μg/ml并这些研究获得的数值显示可以预期的所述化合物溶解度的上限。实施例3.7,8-二甲基-10-核糖基异咯嗪在水性介质中的光分解制备7,8-二甲基-10-核糖基异咯嗪在SigmaACD-A中的溶液,浓度为63 μg/ml。将该制备物吸入玻璃吸管中,置于UV光源的光程中(365 nmλ最大用滤光器以取出320nm以下的光)。对悬浮液以特定的间隔辐照,间隔期间取出等分样品进行光谱学分析。以每种时间间隔,于373nm和447nm监测溶解的7,8-二甲基-10-核糖基异咯嗪的吸光度。结果描述于图3和表1。
表1.在酸性溶液中暴露于UV光(365nm)时7,8-二甲基-10-核糖基异咯嗪的光分解
该溶液于373nm的吸收分布图表明,在整个辐照期间所述试剂没有显著分解。该波长的光的吸光度相当于n-π*电子跃迁。该峰强度没有随时间降低,表明尽管在这些条件下辐照较长时间,但该分子的环结构仍是完整的。该分子于447nm下的吸光度是由于π-π*电子态跃迁引起的。该分子于该波长下吸光度随辐照时间的增加而降低,表明该分子共振结构的微妙改变。这种变化最可能是因为7,8-二甲基异咯嗪骨架的环结构丧失了核糖,并因此生成7,8-二甲基咯嗪所致。这些变化与文献关于该分子在用UV光辐照时行为的报道一致。
显然该分子环结构没有分解,这与用补骨酯素基化合物在相似条件下的观察形成鲜明对比。在辐照期间,观察到该分子在溶液中的显著荧光。该分子的这种行为与所述环结构的共振特征一致,提供激发态分子以非破坏性方式进行能量散逸的方式。实施例4.流动控制系统概念评估现有Spectra吸收池的光透射特性现有的Spectra吸收池由聚碳酸酯构成。通过将吸收池置于UV分光光度计的光程中,于373nm和447nm下测定这种吸收池的光透射特性。获得的值如下光的波长透射%373nm 66%447nm 80%这些结果与文献中关于聚碳酸酯塑料报道的结果一致(参见图4)。文献的数值表明,通过聚碳酸酯的陡峭的光透射肩的范围为300nm。对于350nm以上的范围,所述光透射特性对于该应用是足够的。作为流速函数计算的光通量的需求为了使流速控制系统可行,必须为样品在其在光束中存在期间提供充足的光通量。如果将此提出的Spectra吸收池用于此目的,则可以如下估计作为流速函数的通过该吸收池的光通量需求存在于该吸收池辐照区中的溶液体积约为0.375ml。由以下公式确定细胞通过该吸收池该区的通过时间 在100ml/min下,通过时间(T)将为0.00375min=0.225秒。
根据以下公式,样品暴露的能量取决于通量 如果我们假定需要1焦耳/cm2以充分活化所述致敏剂,且通过时间(T)为0.22秒(即通过吸收池的流速为100ml/min),则样品通过吸收池期间需要的通量为4,545mW/xm2。图5提供了描述来自光源的所需通量与通过吸收池的流速关系的图。
这些结果表明,为了流动控制系统正确运行,需要输出范围瓦特/cm2的UV光。
图2显示吸光度如何随血小板浓度变化。实施例5.红细胞的吸光度为了评估UV光透过红细胞样品的程度以及样品厚度和血细胞比容对光透过的影响,用化学光能测定学进行几个初步实验,化学光能测定学是通过测定吸收的光可以影响化学反应的能力和程度来测定从光源发射的光强的实际量的方法。对于这些研究,用草酸铁溶液,以测定相对于水观察的光源强度。在Gordon,A.J.和Ford,R.A.(1972),“The Chemist’s CompanionA Handbook of Practical Data,Techniquesand References”(John Wiley&Sons),第362-368页中,指出了用于样品制剂的化学反应和方法的细节。
在测试材料(水或不同红细胞比容的血液制品)中制备浓度为0.15M的草酸铁(Ⅲ)样品。然后这些样品加样至标准Spectra吸收池中,置于辐射组件中。将样品暴露相当于所需能量剂量水平(1J/cm2)的预定时间间隔。然后取出样品,如Gordon,A.J.和Ford,R.A.(见上文)中所述,通过读出测试制品在1,10-菲咯啉溶液于510nm下的吸光度,测定Fe3+向Fe2+的转化量。较高的吸光度值表示较多的光透入到样品中。观察到的水在暴露于1J/cm2UV辐照后的吸光度值用作100%透射水平。测定相对于该标准的红细胞样品的所有值。
表2.在样品暴露于1J/cm2UVA光后读出的吸光度。所有平均值均代表6个实验的平均值。相对于水样品计算透射值%。 用这些数值,可以用Beer定律(A=εbC)计算出UV光的透入深度。
根据Lambert定律,吸光度=Log(1/透光度)如果我们让浓度(C)等于样品的血细胞比容,因为b=0.3cm(Spectra吸收池的光程长度),则可以通过将红细胞样品的吸光度值对血细胞比容与光程长度的乘积作图,确定样品(ε’)的拟消光系数(pseudo-extinction coefficient)。样品的消光系数由该曲线的斜率表示。表3红细胞样品消光系数的测定 采用如上所述获得的数值,可以确定这些样品的拟消光系数为0.08661。
消光系数值允许计算作为样品血细胞比容函数的UV光透入红细胞样品的距离。为了进行这种估计,用以下公式确定90%入射光被吸收的样品的透过深度A=εbCA=1(90%入射光吸收),ε=0.08661,C=样品血细胞比容,b=光程长度。
将用光能测定学测定的数值与先前用UV分光光度计测定红细胞和血小板样品中光的吸光度得到的估计值进行比较。
图2显示吸光度和距光源的距离对于红细胞如何变化,比较了预测值和观察值。这些结果表明,对于范围为80%的血细胞比容的样品,可以采用本发明的优选结构,使光进入样品的深度为0.14cm。这代表低于目前Spectra吸收池宽度一半的流路宽度。实施例6.病毒灭活处理对血小板体外参数的影响评估病毒灭活处理对血小板体外参数的影响。用7,8-二甲基-10-核糖基异咯嗪结合UV光处理血小板制剂。各种体外参数用作血小板功能的监测参数,以确定处理条件诱导的变化程度。检查诸如UV光暴露的能级、7,8-二甲基-10-核糖基异咯嗪的使用剂量和样品处理条件的因素对处理后血小板质量的影响。该项研究的结果用来确立不损害血小板功能而灭活HIV-1的合适的处理窗口。
用三种不同浓度的7,8-二甲基-10-核糖基异咯嗪制备样品。由标准SpectraLRS收集装置获得的血小板用于这些研究。
将起始样品离心,以浓缩血小板沉淀。将沉淀重悬浮于70∶30(Isolyte S,pH 7.4;McGaw,Inc.介质∶血浆)溶液中。特定浓度的7,8-二甲基-10-核糖基异咯嗪存在于所述血浆∶介质混合物中。然后使血小板悬浮液以三种特定流速中的一种流速通过UV辐射室。流速与通过辐射室的细胞/介质混合物暴露的能级直接相关。流过辐射室后,样品贮存于柠檬酸增塑样品袋中用于后续分析。
辐照后,评估血小板功能的体外测定结果,包括低渗休克反应(HSR)、GMR-140表达、pH、pCO2、pO2、血小板swirl和细胞计数,以确定处理方案对细胞质量的影响。
监测随辐照条件(致敏剂浓度和流速/能级)变化的血小板质量。血小板质量包括诸如HSR反应、GMP140激活等的参数。研究的流速可能如下与暴露能量有关 Fr=流速(ml/min)0.375ml=吸收池体积(ml) 评估UV暴露能量和7,8-二甲基-10-核糖基异咯嗪对处理的血小板的稳定性和生存力的影响。如下评估三种能级和三种浓度水平能级1、5、9J/cm2*7,8-二甲基-10-核糖基异咯嗪浓度1、50、100μM***按照表4的转化表,根据悬浮液通过辐射室的流速,确定总能量暴露水平。**由于介质是稀释的70∶30(介质∶血浆)贮存液,适当调节与血浆混合之前7,8-二甲基-10-核糖基异咯嗪在单独介质中的浓度。这需要在Isolyte S中的起始浓度为1.43、71.4和143μM。表4.随通过辐射室的流速变化的能量暴露水平 通量=3640mW/cm2;室体积=0.117ml。将处理样品的数值与对照组进行比较。对照样品包括血浆中的未处理样品(历史对照)+流动-UV-7,8-二甲基-10-核糖基异咯嗪步骤正常供体的血小板单采血液成分术制品得自AABB信托血库设备。用标准SpectraLRS方法收集样品。以下描述的所有操作或步骤均用标准实验室完全步骤和方法进行。记录单位数和血型。所有样品均在收集的24小时内使用。所有样品的转移和处理步骤均按照无菌方法进行。
将样品转移至500ml PVC转移包装中,以5000xg离心5分钟,以收集血小板。然后用标准血浆press从血小板沉淀中取出血浆。保留血浆待用。然后将从细胞沉淀取出的血浆与Isolyte S,pH 7.4储液(McGaw,Inc.)混合。通过将预定量的7,8-二甲基-10-核糖基异咯嗪加入Isolyte S中,使得终浓度为1.43、71.4和143μM,制备介质储液。加入7,8-二甲基-10-核糖基异咯嗪后,将储液通过0.22μM无菌滤器过滤。然后将储液与自身血浆以70∶30(v∶v)比率混合,使得7,8-二甲基-10-核糖基异咯嗪的终浓度分别为1、50和100μM。在制备7,8-二甲基-10-核糖基异咯嗪储液期间,小心避免曝露于光。按照以下制备样品1μM 2个样品100μM 2个样品50μM 1个样品然后将血小板沉淀重悬浮于血浆∶介质混合物中,至起始样品的原始体积。将样品连接至流动仪器,所述仪器包括用于细胞和光敏剂的容器、用于介质的容器,所述容器通过的装设阀门的管路连接至配有一个泵的用于混合的细胞/光敏剂和介质的单管路。混合的细胞/光敏剂和介质流入支架中放置的具镀膜壁的吸收池中,用一个光源辐照。该辐射室配有温度探头。通过吸收池后,将流体收集在制品袋中。
管道装置最初灌注Isolyte S介质。测试样品开始流动前5分钟,开启光源。在该间隔期间监测温度,在辐射室中将其保持低于32℃。
根据表4的表,确定样品通过辐射室的流速。根据以下测试基质利用提供总辐射能级为1、5和9J/cm2的流速样品试验#17,8-二甲基-10-核糖基异咯嗪浓度=1μMA.+7,8-二甲基-10-核糖基异咯嗪+1 J/cm2B.+7,8-二甲基-10-核糖基异咯嗪+9 J/cm2样品试验#27,8-二甲基-10-核糖基异咯嗪浓度=100μMA.+7,8-二甲基-10-核糖基异咯嗪+1 J/cm2B.+7,8-二甲基-10-核糖基异咯嗪+9 J/cm2样品试验#37,8-二甲基-10-核糖基异咯嗪浓度=50μMA.+7,8-二甲基-10-核糖基异咯嗪+5 J/cm2样品试验#4对照样品,7,8-二甲基-10-核糖基异咯嗪浓度=0μMA.+流动-UV-7,8-二甲基-10-核糖基异咯嗪所有样品均根据试验号和相应于处理条件的样品字母命名(即1A)而鉴别。每个样品组总共重复测试2次。按照随机数发生器分配,确定样品处理的顺序。
对于每个样品,每种试验条件收集20ml体积的样品。将这些样品收集到柠檬酸增塑的样品袋(53ml总体积)并贮存用于分析。于每个试验开始、中点和结束时注意样品和辐射室的温度。
处理后取出每种制剂的原始等份样品用于分析。分析参数包括细胞计数、pH、pCO2、pO2、血小板swirl、HSR和GMP-140分析。将样品的剩余部分置于+22培养箱中的竖转式(end-over-end)血小板搅动器,处理后贮存5天。第5天,取出第二等分样品,分析同样的体外参数。
使用以下设备Nikon Labophot显微镜;Serono-Baker System9000血液学分析仪;分析天平;血小板培养箱(+22℃)和旋转装置;实验室用冰箱(+4℃);Mistral 3000i离心机;Corning血液气体分析仪;Becton-Dickinson FACSCALIBUR流式细胞仪;UV辐射室;UV辐射计(UVX辐射计,UVP,Inc.);EFOS Ultracure 100SS Plus(365nm最大输出和340nm通带滤光片);和温度探头(热电偶)。
对于限定的暴露能量和7,8-二甲基-10-核糖基异咯嗪浓度的条件,比较每组测试变量的结果。与未处理对照样品进行直接比较,根据一对单尾Student’s T检定分析,显著差异定义为概率p>0.05。
这些研究的结果概括如下1.在10μM的过量光敏剂浓度和高于1.5E+06/μl的血小板浓度下,到第2天为止样品pH下降。贮存第2天后,pH稳定地下降,到贮存的第3天为止达到不可接受的水平(<6.5)。所有其它体外参数遵循样品pH观察到的模式。2.无论样品是否暴露于UV光,均发生样品pH的这种下降。3.在5.4E+05/μl的血小板浓度下,在研究的高达100μM的任何光敏剂浓度下延长贮存后,样品pH没有下降。4.在高达10μM的光敏剂浓度,血小板浓度高于1.5E+06/μl和UVA水平高达10J/cm2下,测量的血小板特性与对照未处理细胞品相当。在处理后贮存5天或更长时间后,剩余的这些特性与对照水平相当。
对处理后血小板功能的这些研究提供了将细胞特性保持在与未处理细胞相当的水平的清楚窗口。结果也表明,改变细胞的的不同贮存条件或处理条件,可以扩展该窗口。在用或不用UV光的情况下7,8-二甲基-10-核糖基异咯嗪对样品pH的观察效应,提示可以因样品贮存或处理条件变化而缓和的该添加剂的代谢效应。实施例7.随流速和样品血细胞比容变化的红细胞上剪切应力的测量在高血细胞比容下透入红细胞样品中的低水平UV光,导致需要了解使红细胞通过光程中窄开孔的效应。在高样品血细胞比容下,光程中样品厚度的减小应该增加UV剂量的传递。为了证实这种方法,用不同大小的开孔进行几种压降测量。将压力表置于在窄开孔上游和下游各具有一个蠕动泵的管路中。使不同血细胞比容的全血以受控的流速通过所述开孔。两个位置的压力读数的差异允许直接测量跨开孔的压降。用该值和开孔大小,可以用以下公式确定当红细胞通过狭室时所经受的剪切应力 对于血液,μ=粘度=0.0125/(1-血细胞比容)g=引力常数=981Q=流速=ml/secl、w、d=以cm计的开孔大小表5随流速和样品血细胞比容变化的红细胞上剪切应力的测量结果
在先前的实验中,确定1-10分钟间隔1,000-2,000达因/cm2的剪切应力或约10msec间隔5,000-7,000达因/cm2的水平,足以诱导红细胞溶血。仅在最高样品血细胞比容(61%)和最高流速(16.9)的情况下,数值超过1,000达因/cm2。仅最窄的宽度(0.008英寸)的开孔发生这种情况。
用提出的结构(configuration)光透过深度值表明,甚至对于具有高血细胞比容的样品,也可达到传递足以驱动病毒灭活过程的UV能量。
对红细胞样品上经受的剪切应力分析的结果表明,显著减小流路大小并保持高流速,而无红细胞溶血的风险。实施例8.将血小板浓缩物与血小板添加剂溶液Isolyte S以20∶80的血小板浓缩物∶Isolyte S比率混合。血小板浓缩物和血小板添加剂溶液的混合物本文称为在“介质”中。无添加剂溶液的血小板浓缩物本文称为在“血浆”中。这两种均掺有单核细胞增生利斯特氏菌。然后每种加入300μg/ml B量的维生素K5。然后将每种在图7的吸收池装置中暴露于UV光、可见光或室内光线,结果示于表6。
表6
UV光=365nmVIS光=419nm病原体=单核细胞增生利斯特氏菌K5浓度=300μg/ml实施例9.如表7所示,含维生素K5的上述介质和血浆掺有细菌,并辐照或仅暴露于室内光线(K5-光),培养3天后评估生长。在缺乏辐照的情况下观察到某些物种的灭活。
表7 UV光=365nm,40J/cm2+=培养3天后检测到生长-=培养3天后没有检测到生长K5浓度=300μg/ml实施例10.用实施例8中描述的血小板浓缩物和Isolyte S以70∶30的Isolyte S∶血小板浓缩物比率制备的、含有300μg/ml维生素K5的介质,掺有几种细菌,并以30和60J/cm2的能级辐照。表8和图8提出了随辐射能量变化的灭活。
表8
实施例11.向实施例8描述的血小板浓缩物和实施例10描述的70∶30介质中,加入10μM 7,8-二甲基-10-核糖基异咯嗪。所述血小板浓缩物和介质掺有金黄色葡萄球菌或表皮葡萄球菌,并于80J/cm2和30J/cm2辐照,如上测定灭活。结果示于图9。实施例12.向标准血液袋中含有的实施例8描述的血浆浓缩物中,加入粉状形式的25μM 7,8-二甲基-10-核糖基异咯嗪。所述袋中掺有表9所示的细菌,将其搅动并暴露于120J/cm2的辐照。表9陈述了灭活结果。
表9
实施例13.向实施例8描述的血小板浓缩物中,加入7,8-二甲基-10-核糖基异咯嗪、咯嗪单核苷酸或7,8-二甲基咯嗪,然后掺混金黄色葡萄球菌或表皮葡萄球菌,并于80J/cm2辐照。表10陈述了灭活结果。
表10
实施例14.向实施例8描述的血小板浓缩物中,加入10μM 7,8-二甲基-10-核糖基异咯嗪。等分样品不含添加剂,含有10mM抗坏血酸或10mMKI作为“猝灭剂”或抗氧化剂。溶液掺有HSV-2、φX174、表皮葡萄球菌或金黄色葡萄球菌,并于80J/cm2辐照。结果示于图10。实施例15.向实施例8描述的血小板浓缩物中,加入不同浓度的7,8-二甲基-10-核糖基异咯嗪。这些溶液掺有Ⅱ型单纯疱疹病毒(HSV-Ⅱ),这是一种双链DNA有包膜病毒。于80J/cm2下进行辐照。实验平行测定(replicated)3次。在所有三个实验中均达到完全灭活。结果示于图11。实施例16.按照实施例15的方案,用表皮葡萄球菌代替HSVⅡ,辐射能为40、80和120J/cm2。灭活结果示于图12。实施例17.按照实施例15的方案,采用X174(1种单链DNA噬菌体),在不同浓度的7,8-二甲基-10-核糖基异咯嗪和幅射能下。灭活结果示于图13。实施例18.向实施例8的血小板浓缩物中,加入10μM 7,8-二甲基-10-核糖基异咯嗪。这些溶液掺有金黄色葡萄球菌或φX174,于可见光和紫外光的50∶50混合物的不同辐射能下进行辐照。灭活结果示于图14。实施例19.按照实施例18的方案,采用表皮葡萄球菌和HSV-Ⅱ作为所述微生物。由DYMAX光源供应紫外光和可见光的50∶50混合物。灭活结果示于图15。实施例20.向实施例8的血小板浓缩物中,加入10μM粉状形式的7,8-二甲基-10-核糖基异咯嗪。进行加入或不加入抗坏血酸的试验。将150ml测试溶液置于SpectraTM血液袋中,将其振摇并用50∶50可见光∶紫外光使其暴露于不同的辐射能。接受40 J/cm2后,将每个袋的内容物转移至新袋中,以避免由于已经保留在所述袋中掺料部分的微生物引起的误差。灭活结果示于图16。向下的箭头表示可能检测到的灭活水平(2.5log滴度)。实施例21.向实施例8的血小板浓缩物中和Isolyte S中的30∶70血小板浓缩物∶Isolyte S的血小板浓缩物中,加入20μM 7,8-二甲基-10-核糖基异咯嗪。这些掺有牛痘病毒(一种双链DNA有包膜病毒)用DYMAX 2000UV光源将它们暴露于60J/cm2可见光或混合(50∶50)可见光∶紫外光下30分钟。检测极限为1.5log。灭活结果示于图17。不用光敏剂、用单独Isolyte S介质中的光敏剂、用在Isolyte S介质中的血小板,用8-甲氧基补骨脂素代替7,8-二甲基-10-核糖基异咯嗪的Isolyte S介质中的血小板、和Isolyte介质中的血小板浓缩物(30∶70),进行比较。实施例22.向Isolyte S介质中血小板浓缩物30∶70、含有或不含有10μM 7,8-二甲基-10-核糖基异咯嗪的样品,掺混牛痘病毒,并50∶50可见光∶紫外光以60J/cm2辐照不同的时间,灭活结果示于图18。实施例23.向实施例8的血小板浓缩物样品中,加入5μM或50μM 7,8-二甲基-10-核糖基异咯嗪。给样品掺混HIV 1。使用图7所示的吸收池的流动室(flow cell),用EFOS光源以50∶50紫外光∶可见光辐照。灭活结果示于图19。实施例24.向实施例8所述的血小板浓缩物样品中加入HIV感染的ACH-2细胞。向样品中加入5μM或50μM 7,8-二甲基-10-核糖基异咯嗪。按照实施例23的方案,灭活结果示于图20。通过HIV对测试细胞的细胞病变效应分析HIV的存在。实施例25.按照实施例24的方案,通过定量测定P24抗原产生的水平分析HIV的存在。灭活结果示于图21。实施例26.向实施例8所述的血小板浓缩物样品中和含30%血小板浓缩物和70%PASⅢTM介质的介质中,加入6 mM抗坏血酸和14μM 7,8-二甲基-10-核糖基异咯嗪。向样品掺混HSV-Ⅱ。灭活结果示于图22和表11。
表11 本领域技术人员容易理解,上述描述仅仅为了说明,在不脱离本发明范围的情况下可以进行许多变化。例如,可以使用上述光敏剂以外的光敏剂,优选结合核酸并由此防止其复制的光敏剂,更优选无毒且无有毒降解产物的光敏剂。另外,根据本发明的内容,本领域技术人员不用过度试验,可以容易地设计出本文所述的用光敏剂构成流体净化流通系统的相当结构。
权利要求
1.处理流体以灭活其中可能存在的微生物的方法,所述流体含有选自蛋白、血液和血液制品的一种或多种成分,所述方法包括(a)将灭活有效的、大致无毒量的内源光敏剂或内源基衍生光敏剂加入所述流体中;(b)使步骤(a)的流体暴露于足以活化所述光敏剂的光辐射下,藉此灭活所述微生物。
2.权利要求1的方法,其中所述光敏剂为光可活化化合物,所述化合物的光解产物(如果有的话)对于人类或动物的毒性低或无毒。
3.权利要求1的方法,其中所述光敏剂为选自内源咯嗪、维生素K和维生素L的内源光敏剂。
4.权利要求1的方法,其中所述光敏剂为选自以下的内源光敏剂7,8-二甲基-10-核糖基-异咯嗪、7,8-二甲基咯嗪、7,8,10-三甲基异咯嗪、咯嗪单核苷酸、异咯嗪-腺苷二核苷酸、维生素K1、维生素K1氧化物、维生素K2、维生素K5、维生素K6、维生素K7、维生素K-S(Ⅱ)和维生素L。
5.权利要求1的方法,其中所述光敏剂为7,8-二甲基-10-核糖基-异咯嗪。
6.权利要求1的方法,其中所述微生物选自细菌、噬菌体以及细胞内和细胞外病毒。
7.权利要求1的方法,其中所述微生物为细菌。
8.权利要求1的方法,其中所述微生物选自HIV病毒、肝炎病毒、新培斯(sindbis)病毒、巨细胞病毒、疱疹性口腔炎病毒、单纯疱疹病毒、痘苗病毒、人嗜T淋巴细胞反转录病毒、HTLV-Ⅲ、淋巴结病病毒LAV/IDAV、细小病毒、输血传播的(TT)病毒、EB病毒、噬菌体φX174、φ6、λ、R17、T4和T2、铜绿假单胞菌(P.aeruginosa)、金黄色葡萄球菌(S.aureus)、表皮葡萄球菌(S.epidermis)、单核细胞增生利斯特氏菌(L.monocytogenes)、大肠杆菌、肺炎克雷伯氏菌和S.marcescnes。
9.权利要求1的方法,其中所述光辐射为可见光谱中的光。
10.权利要求1的方法,其中所述光辐射为紫外光谱中的光。
11.权利要求1的方法,其中所述光辐射包括可见光和紫外光谱中的光。
12.权利要求1的方法,其中约一半所述光辐射在紫外光谱中,而约一半在可见光谱中。
13.权利要求1的方法,其中所述暴露步骤还包括使含所述光敏剂的流体流过光辐射源,选择其流速或深度以确保所述光辐射透过所述流体并灭活所述微生物。
14.权利要求1的方法,还包括在对所述光辐射透明的容器中包含所述流体和光敏剂,并使所述流体暴露于所述光辐射。
15.权利要求14的方法,包括在光辐射期间搅动所述容器。
16.权利要求1的方法,包括将所述流体置于对所述光辐射透明的容器中,将粉末形式的所述光敏剂加入所述流体中,搅拌所述容器并使所述容器暴露于所述光辐射。
17.权利要求1的方法,其中所述流体包括血液成分。
18.权利要求1的方法,其中所述流体包括全血。
19.权利要求1的方法,其中所述流体包括分离的血液制品。
20.权利要求1的方法,其中所述流体包括从全血分离的血小板。
21.权利要求1的方法,其中所述流体包括从全血分离的红细胞。
22.权利要求1的方法,其中所述流体包括从全血分离的血清。
23.权利要求1的方法,其中所述流体包括从全血分离的血浆。
24.权利要求1的方法,其中所述流体包括治疗蛋白组合物。
25.权利要求1的方法,其中所述流体含有选自以下的一种生物活性蛋白因子ⅤⅢ、Von Willebrand因子、因子Ⅸ、因子Ⅹ、因子Ⅺ、Hageman因子、凝血酶原、抗凝血酶Ⅲ、纤连蛋白、纤溶酶原、血浆蛋白组分、腹膜透析液、免疫血清球蛋白、修饰的免疫球蛋白、白蛋白、血浆生长激素、促生长素抑制素、纤溶酶原链激酶复合物、血浆铜蓝蛋白、运铁蛋白、触珠蛋白、抗胰蛋白酶和前激肽释放酶。
26.权利要求1的方法,其中所述光敏剂被加入抗凝剂中,并将所述抗凝剂加入所述流体中。
27.权利要求1的方法,其中在将所述流体暴露于光辐射之前,将增强剂加入所述流体中。
28.权利要求27的方法,其中所述增强剂选自腺嘌呤、组氨酸、半胱氨酸、酪氨酸、色氨酸、抗坏血酸、N-乙酰-L-半胱氨酸、没食子酸丙酯、谷胱甘肽、巯基丙酰甘氨酸、二硫苏糖醇、烟酰胺、BHT、BHA、赖氨酸、丝氨酸、甲硫氨酸、葡萄糖、甘露醇、trolox、甘油和它们的混合物。
29.处理流体以灭活其中可能存在的微生物的方法,所述方法包括(a)将灭活有效的、大致无毒量的内源光敏剂或内源基衍生光敏剂加入所述流体中;(b)使步骤(a)的流体暴露于足以活化所述光敏剂的光辐射,藉此灭活所述微生物。
30.权利要求29的方法,其中所述流体为食品。
31.权利要求29的方法,其中所述流体为计划用于人类或动物消费的饮料。
32.权利要求29的方法,其中所述流体为腹膜液。
33.用权利要求1的方法制备的流体,包含生物活性蛋白、血液或血液成分以及光敏剂或其光生产物。
34.用权利要求1的方法制备的血液制品,包含光敏剂或其光生产物。
35.用权利要求1的方法制备的流体,包含生物活性蛋白、血液或血液成分、光敏剂或其光生产物和增强剂。
36.处理流体以灭活其中可能存在的微生物的系统,所述系统包括(a)包含所述流体和一种内源光敏剂或内源基衍生光敏剂的容器,所述容器配有输入装置,具有可透光表面,足以使其中的流体暴露于足以活化所述光敏剂的量的光辐射;(b)至少一种光辐射源,为所述容器中的流体提供足够的光辐射,选择所述光辐射的类型和量以活化所述光敏剂,藉此灭活存在的微生物。
37.权利要求36的系统,其中所述光辐射源提供可见光谱的光。
38.权利要求36的系统,其中所述光辐射源提供紫外光谱的光。
39.权利要求36的系统,其中所述至少一个光辐射源提供可见光谱和紫外光谱的光。
40.权利要求36的系统,也包括一个光辐射增强器。
41.权利要求40的系统,其中所述光辐射增强器包括一个反射表面。
42.权利要求36的系统,包括一个用于将光辐射从所述光辐射源传导至所述可透光容器的光导(light guide)。
43.权利要求36的系统,也包括一个温度监测器。
44.权利要求36的系统,也包括用于使所述流体流入和流出所述容器的装置。
45.权利要求36的系统,也包括搅动所述容器中的所述流体的装置。
46.包括权利要求36的系统的将全血分离为血液成分的仪器。
47.在含微生物的流体中灭活所述微生物的系统,包括(a)用于将有效量的内源光敏剂或内源基衍生光敏剂加入所述流体的装置;(b)与以选定流速加入光敏剂的所述装置保持流体联系的用于所述流体的可透光容器,选择所述装置的深度和长度以允许其中步骤(a)的流体暴露于足以活化所述光敏剂的量的光辐射;(c)用于产生所述流体通过所述容器的所述选定流速的装置;和(d)至少一个光辐射源,用于为所述容器中的流体提供足够的光辐射,选择所述光辐射的类型和量以活化所述光敏剂。
48.处理流体以灭活其中可能存在的微生物的系统,包括(a)粉状形式的光敏剂;(b)含有所述流体和光敏剂的可透光容器;(c)用于搅动所述容器的装置;(d)至少一种光辐射源,为所述容器中的流体提供足够的光辐射,选择所述光辐射的类型和量以活化所述光敏剂,藉此灭活存在的微生物。
49.权利要求48的系统,其中所述可透光容器为透明的塑料袋。
50.权利要求48的系统,其中用于搅动所述容器的所述装置包括一个振摇台。
51.权利要求48的系统,其中所述可透光容器在加入所述流体之前含有所述光敏剂。
52.灭活表面上微生物的方法,包括(a)将灭活有效量的内源光敏剂或内源基衍生光敏剂应用于所述表面;和(b)使所述表面暴露于足以活化所述光敏剂的光辐射。
53.权利要求52的方法,其中所述表面为食品表面。
54.权利要求52的方法,其中所述表面为动物尸体表面。
55.权利要求52的方法,其中所述表面为食品制剂表面。
56.权利要求52的方法,其中所述表面为沐浴或洗涤容器表面。
57.权利要求52的方法,其中所述表面为动物皮肤表面。
58.权利要求52的方法,其中所述表面为伤口表面。
59.权利要求52的方法,其中所述内源光敏剂选自内源咯嗪、维生素K和维生素L。
60.权利要求52的方法,其中所述光敏剂为选自7,8-二甲基-10-核糖基-异咯嗪、7,8-二甲基咯嗪、7,8,10-三甲基异咯嗪、咯嗪单核苷酸、异咯嗪-腺苷二核苷酸、维生素K1、维生素K1氧化物、维生素K2、维生素K5、维生素K6、维生素K7、维生素K-S(Ⅱ)和维生素L。
61.权利要求52的方法,其中所述光敏剂为7,8-二甲基-10-核糖基异咯嗪。
62.权利要求52的方法,其中所述微生物选自细菌、噬菌体以及病毒。
63.处理也含有选自以下的一种组分的流体以灭活其中可能存在的微生物、而不破坏这种组分生物活性的方法,所述流体选自蛋白、血液和血液成分,所述方法包括将灭活有效无毒量的维生素K5加入所述流体中,以大致灭活所述微生物。
64.在周围室内光下进行的权利要求63的方法。
65.在黑暗中进行的权利要求63的方法。
66.权利要求63的方法,也包括将增强剂加入所述流体中。
67.权利要求63的方法,其中所述增强剂为抗氧化剂。
68.处理表面以灭活其上可能存在的或可能与所述表面接触的微生物的方法,所述方法包括将灭活有效无毒量的维生素K5涂用于所述表面,以大致灭活所述微生物。
69.水性血小板添加剂溶液,包含选自内源咯嗪、维生素K和维生素L的内源光敏剂。
70.权利要求69的血小板添加剂溶液,包含生理盐水溶液;和缓冲液。
71.权利要求69的血小板添加剂溶液,也包含氯化镁。
72.权利要求69的血小板添加剂溶液,还包含葡糖酸钠。
73.权利要求69的血小板添加剂溶液,其中所述光敏剂存在的浓度为约1μM至其最大溶解度。
74.权利要求73的血小板添加剂溶液,其中所述光敏剂的浓度为约10μM。
75.权利要求69的血小板添加剂溶液,其pH为约7.0至约7.4。
76.权利要求69的血小板添加剂溶液,其中所述光敏剂为7,8-二甲基-10核糖基异咯嗪。
77.权利要求69的血小板添加剂溶液,包含氯化钠;乙酸钠;葡糖酸钠;氯化镁;磷酸钠;和7,8-二甲基-10核糖基异咯嗪,并且其pH为约7.0至约7.4。
78.权利要求69的血小板添加剂溶液,也包含选自以下的一种增强剂腺嘌呤、组氨酸、半胱氨酸、酪氨酸、色氨酸、抗坏血酸、N-乙酰-L-半胱氨酸、没食子酸丙酯、谷胱甘肽、巯基丙酰甘氨酸、二硫苏糖醇、烟酰胺、BHT、BHA、赖氨酸、丝氨酸、甲硫氨酸、葡萄糖、甘露醇、trolox、甘油和它们的混合物。
79.处理流体以灭活其中可能存在的微生物的方法,所述方法包括(a)将灭活有效量的光敏剂加入所述流体中;(b)使步骤(a)的流体暴露于紫外光和可见光的混合物,藉此灭活所述微生物。
80.权利要求79的方法,其中所述光混合物为50∶50紫外光∶可见光。
81.权利要求79的方法,其中所述光敏剂为无毒的内源光敏剂或内源基衍生光敏剂。
82.处理流体以灭活其中可能存在的白细胞的方法,包括(a)将灭活有效的、大致无毒量的内源光敏剂或内源基的衍生光敏剂加入所述流体中;(b)使步骤(a)的流体暴露于足以活化所述光敏剂的光辐射,藉此灭活所述白细胞。
83.权利要求82的方法,其中所述流体包括血液或血液成分。
全文摘要
提供用于灭活流体或表面上的微生物的方法和仪器。所述流体最好含有血液或血液制品并包含生物活性蛋白。有效方法包括以下步骤:将有效无毒量的内源光敏剂加入流体中,使所述流体暴露于足以活化所述内源光敏剂的光辐射,藉此灭活微生物。其它流体,包括果汁、水等,也可以用这些方法净化,许多食品表面、动物尸体表面。伤口表面、食品制剂表面以及沐浴和洗涤容器表面也可以用这些方法净化。其中有效的光敏剂为咯嗪和维生素K和维生素L。也提供用于流通和分批方法的系统和仪器,用于用光敏剂净化这类流体。
文档编号A61L2/08GK1287496SQ99801588
公开日2001年3月14日 申请日期1999年7月21日 优先权日1998年7月21日
发明者小R·P·古德里希, F·科宾三世, 小E·C·伍德, D·赫拉文卡 申请人:甘布洛公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1