汽车废气系统的热处理的制作方法

文档序号:1385786阅读:205来源:国知局
专利名称:汽车废气系统的热处理的制作方法
技术领域
本发明涉及汽车废气系统,尤其涉及对在催化转化器中产生的热的处置和利用的系统。
背景技术
大多数汽车的废气系统,尤其是由燃汽油的内燃发动机驱动的汽车的废气系统,都装备着催化转化器,以减少废气中的有害排放物。最有效的现有技术催化转化器地由被一种或多种贵金属催化剂(例如铂、钯或铑)涂覆着的陶瓷基体组成的。用于减少高温碳氢化合物的优选贵金属是钯,而铑对于改善氧化亚氮和一氧化碳排放物是有效的。所谓的3级催化转化器典型地包括了这些贵金属的组合,这些贵金属可催化两个氧化反应,即将一氧化碳氧化为二氧化碳,以及将碳氢化合物氧化为二氧化碳和水。与此同时,氧化氮被还原成氮和氧。这些反应在某些高温下是非常有效的。但是,直至催化剂被加热到其起燃(温度light-off temperature)(起燃温度被定义为要求50%的碳氢化合物被氧化的温度)以前,催化转化器的效率都是很低的。例如,J.C.Summers等人在其题为“应用起燃催化剂以符合加利福尼亚LEV/ULEV标准”的论文中(该论文刊于催化剂和排放技术,汽车工程学会专集第968集,Warredale,PA,1993年出版,即,“Catalysts andEmission Technology,Society of Automotive Engineers Special Publication No.968,Warredale,PA,1993″),指出在起初冷起动(Bag1)阶段,大约产生60-85%尾喷管碳氢化合物排放物。
为了较快地达到起燃温度,希望在催化转化器中尽可能多地保存废气热,至少保持到达到起燃温度,通常达到约600°-800°F范围。在催化转化器周围设置一个热绝缘套会有助于保热。但是,在持续运转过程中,一旦达到起燃温度,催化转化器的温度会由于与废气的催化反应放热而迅速上升。假如在持续运转期间或从在催化转化器反应过的富燃气中产生的热不能有效地散逸,温度就可能升至催化剂的失效点,或甚至会导致催化转化器或其邻近的零件或物体的永久性损坏。所以,所希望的最大运转范围通常为1,500°F。颁发给D.Bainbridge的专利号为5,163,289的美国专利论述了这一问题,它披露了一种围绕着催化转化器的绝缘套,其中的绝缘物质是一种高温下导热优于低温下导热的耐火纤维。而这种方法只是在有帮助的方向上的一个开端,为了进一步减少废气排放物和进一步利用在催化转化器中产生的热,仍有必要对催化转化器的热进行更好的控制和更有效的处理。
本发明的公开因此,本发明的总的目的,在于要提供一种更好的催化转化器热处置系统,用以减少在汽车的废气催化转化器系统中达到起燃温度所要求的时间,在某些条件下甚至可排除这一时间要求,而在持续运转期间则防止产生过热。
本发明的另一个目的,在于在汽车废气系统中的催化转化器的周围提供充分的热屏蔽,以便在持续热运转期间保护相邻的或近处的对温度敏感的材料和零件。
本发明还有一个目的,是在发生过热和温度可能危及在汽车废气系统中的催化转化器维持其有效寿命的情况下,恢复从催化转化器安全地排放或散逸热量。
本发明再一个目的,在于为催化转化器中产生的热提供有效和有用的利用结构和方法。
本发明更明确的目的,在于提供一种用于催化转化器的可控制的绝缘和能量转化器套,这样的可控套可被用于使保存热和保持催化温度高于起燃温度的时间区间延长,而在起燃温度不能保持的情况下,缩短达到起燃温度的时间,并可被用于保护催化转化器材料和周围的零件或环境免于过热和温度上升,以及使催化转化器和废气系统的其它零件的运转温度稳定,并使在催化转化器中产生的热得到更有益的使用。
本发明附加的目的、优点和新颖的特征,将在下文中予以部分阐述,对于本技术领域那些熟练技术者,通过研究下文或可从本发明的实施中了解,有一部分将成为显而易见的。藉助于媒介和综合在所附权利要求中特别指出的,这些目的和优点可被理解和实现。
为达到上述的和其他的目标,并按照本发明的各项目的,在此予以具体地和概括地描述所提供的废气处置系统包括围绕着催化转化器的可调节的和可控制的绝缘,当在催化转化器中没有废气正在反应时,或当催化转化器的温度低于最佳温度或起燃温度时,该可调节的绝缘可被开启,以把热保存在催化转化器中;但当催化转化器的温度升高到高于最佳温度或起燃温度时,可调节的绝缘可被关闭。绝缘最好也能被保持在一种水平,或被保持在从开启到关闭之间的种种水平,以调整在催化转化器系统中的温度。可调节的和可控制的绝缘可以是具有气体或固体传导控制能力的真空绝缘,用以有选择地中止或恢复绝缘。一个热交换器可被提供来把热量传导给催化转化器或从催化转化器传导出热量,可用致密的真空绝缘给热交换器作外套,以便每次在可调节的热导绝缘被开启时有助于保持热量。附图简介下列附图,被编入并作为说明书的一部分,图解说明了本发明的较佳实施例,并与文字描述一起用于解释本发明的要点。


图1是按照本发明的催化转化器热处置系统的示意简图;图2是按照本发明可提供热处置的催化转化器结构的横截面图;图3是传统的催化转化器废气系统的排出物、运转时间和温度之间关系的曲线图;图4显示了按本发明具有热处置构造的催化转化器废气系统的运转时间、温度和排出物之间关系的曲线图,用作与传统的催化转化器系统的排放物对比;
图5是本发明催化转化器热处置系统另一个实施例的横截面图;图6是用于调节图2或图5所示催化转化器实施例热传导的热短路销棒的放大的横断面图;图7是另一个实施例的横截面图,在该实施例中,一种相变材料被放置在包围着催化剂基体的内罩壳中。
实施本发明的最佳模式图1显示了按本发明带有一个热处置系统的催化转化器10,它被安装在排气管P上,排气管P连接着一辆汽车(图中未显示)的内燃发动机E的排出管M。排气管P把废气从内燃机E导流至催化转化器10。在催化转化器10中可以容纳传统的3级催化剂,用于与在废气中的未燃烧的燃料起反应,从而减少废气中的碳氢化合物、一氧化碳和氧化亚氮排放物。反应过的废气然后通过通常在汽车尾部(图中未示出)的尾喷管T排出。
现参见图2,本发明催化转化器10由一个催化剂内罩壳12构成,最好用金属或其它不透气的材料制造,以容纳一个或多个催化剂基体14、16和18,这些基体可以是包覆着3级催化剂材料(例如铂、钯和/或铑)的陶瓷材料。废气从内燃机E(图1)流经催化转化器10,如图2中箭头20所示,包括流经在陶瓷基体14、16和18中形成的大量细小的、包覆着催化剂的毛细孔或通道22。形成这些毛细孔和通道是为了增加催化剂的暴露面积。
催化剂内罩壳12被封闭在外罩24中,外罩被放置在从催化剂内罩壳12径向地向外隔开一个距离处。外罩24,像内罩壳12一样,最好也是用金属或其它不透气的材料,甚至在热的、高度真空环境下也不透气的材料制成。被封闭在内罩壳12和外罩24之间的环状腔30是被抽成真空的。腔30的热绝缘特性最好以可控方式使之可变化,下文将对此予以详述。在此只要说明腔30的热导绝缘作用使之能抑制催化剂基体14、16和18的热量传导到内罩壳12的外面以至到外罩24,从而防止热量散失在周围环境中,或者腔30的热导绝缘作用能被中止而允许这样的热传导,从而使废气催化反应热“放泄”到周围环境中。最好也能在完全恢复或完全中止其热绝缘性能之间调节其恢复和中止的程度,这取决于任何时候所需要的热传导性或绝缘能力。所以,绝缘腔30能恢复其绝缘性而使在催化剂基体14、16和18中的热量得以保存,例如在发动机起动时,这使催化剂达到起燃温度或最佳运转温度的时间缩短。然后当催化剂达到最佳运转温度时,其绝缘性可被中止,以防止产生过热和高的温度,该温度会损坏基体14、16和18或使包覆在基体14、16和18上的催化剂材料的使用寿命缩短。但是,或更重要的是,当发动机关闭时,绝缘腔30能被中止以尽可能长时间地把热量保持在基体14、16和18中,从而使基体14、16和18的温度保持高于起燃温度直至发动机下次起动。或者至少使基体14、16和18的温度保持高于周围温度,以便发动机下次起动时催化剂升至起燃温度的时间缩至最短。
这种用于控制热传导能力的可调节的热导绝缘、方法及装置,在我们的美国专利申请(专利号07/960,885)中有详细的图示和叙述,现将其列于此处以供参阅。实质上,真空腔30与内罩壳12的内部是隔离的,废气在内罩壳12内部流经催化剂基体14、16和18;真空腔30与外罩24的外部环境也是隔离的。如何确切地完成这种隔离并非必须限于任何特殊技术。但对延续很长的隔离,最好通过金属对金属焊接来造成隔离。例如,如图2所示,内罩壳12可带有焊在圆筒侧壁36两端的内端板32和34。外罩24相似地带有焊在外圆筒侧壁42两端的外端板38和40。藉助于复杂间隔物50使外圆筒侧壁42与内圆筒侧壁36分离开。间隔物50最好用低导热材料(例如陶瓷)制成,具有弧形或尖头的表面形状,以形成热阻节点,使从内罩壳12传导到外罩24的热所通过的接触表面的面积减小至最小。例如,如图2所示,间隔物50可带有位于两个弧形陶瓷衬瓦46和48之间的球形陶瓷小珠44,因此在内罩壳12和外罩24之间形成了一系列四个“近点”,即十分小的、陶瓷对陶瓷的表面接触面积,或热阻节点。热阻节点之中的两个位于衬瓦46、48的弧形外表面与对应的内圆筒侧壁36和外圆筒侧壁42接触处。另两个热阻节点位于球形小珠的径向两侧与相应的衬瓦46和48的内表面的接触处。当然,弧形衬瓦46和48并非必要,但它们增加了热流通过球形小珠44的热阻。小珠44也可以是卷缠在内罩壳12上的细长的多股线,但这种造形会导致较大的接触表面面积。陶瓷间隔物50优于玻璃、瓷或其它材料,因为陶瓷能用具有较高熔点的材料制成,它可能有必要在催化反应产生的高温下保存其构造的完整性。
在内端板32、34和外端板38、40之间的废气通道,最好用不透气的、但是薄的、焊接在对应的金属端板32、38和34、40上的金属箔导管52和54密封住,以保持在内罩壳12和外罩24之间的绝缘腔的真空紧密封。导管52、54最好也是象折式风箱那样是有折皱或有波纹的,以增加热量从内罩壳12通过导管52、54传导到外罩24所必须通过的有效距离。被间隔物58间隔开的许多薄的、可折射热的金属箔辐射屏蔽56,可被放置在绝缘腔30中,以抑制内罩壳12和外罩24之间的热辐射。间隔物56最好用陶瓷制成,但不要用会显著释放气体的材料制造。
绝缘腔30被抽至高真空,最好达10-5-10-6托范围,以获得高效的真空热绝缘效果。但可以包括一个真空绝缘中止系统,例如图2所示的气体控制系统60,以用于有选择地恢复或中止真空腔30的绝缘作用。气体控制系统60,正如专利申请号为07/960,885的我们的美国专利申请所描述的,可以带有一个氢气源,例如金属氢化物62,和一个例如为铂64那样的氢气窗口或阀门,该氢气源被封闭在相对应的金属容器66、68中,并通过一个导管70与真空腔30相连接。当金属氢化物62被加热时,例如通过一个电加热元件72对其进行加热时,它便释放出氢气,氢气流入腔30并从腔30的这头到那头传导热,由此有效地使腔30中止或关闭其绝缘效应。然后,当金属氢化物62被冷却时,它又重新回收氢气并在容器66中造成一个把氢气从腔30中拉回的低压差,由此使腔30再恢复或开启其绝缘效应。钯阀门64被加热时,例如被元件74加热时,氢气得以通过钯门64,但当它不被加热时氢气就不能透过。因此,通过既加热金属氢化物62,又加热钯门64,氢气一旦被导入腔30就能被保存在腔30中,甚至当关断加热元件72的电源,也关断加热元件74的电源使钯门64冷却时,氢气仍被保持在腔30中。事实上,在冷却金属氢化物62之前,通常使钯门64先冷却,以便藉助气体控制系统60可靠而充分地使所有氢气被收集在腔30中,从而达到最大程度的绝缘中止。然后,当要再次恢复绝缘时,只需要瞬时加热钯门64以使氢气被从腔30中拉出并通过钯门64而回到金属氢化物62中。当然,金属氢化物62和钯门64各自的加热和冷却可被控制和定时,以使穿过腔30的气体的导热作用只部分恢复或部分中止到任何所希望的程度,由此可改变或控制热传导率使之处于充分导热和完全不导热之间的任何程度。
以上述及的驱动气体控制系统60的电源,可以使用电池,如标号88所示。利用催化转化器产生的热的热电或热伏打能源器件,也可作为一种适合应用的电源。事实上,从催化转化器输送出的热量足以在这样的热电或热伏打器件中开始产生出临阈级的电,能使绝缘腔30的热导开始并持续下来。
藉助于任何适合的电控制系统,例如各个继电器开关82、84,可以开启或关断加热元件72、74。继电器开关82、84可由合适的电控制组件86,例如微信号处理器或其他逻辑回路来控制。只要本发明的要点被理解,设计和制造上述电控制回路就是在有技术经验的人的能力范围之内的。例如,控制组件86可包括一个与汽车的点火开关76或指示发动机E(图1)起动时间的其它电回路连接的定时器,然后在设定的允许催化剂基体14、16、18达到最佳催化剂操作温度的一段运行时间后,使继电器开关82、84动作,以关闭绝缘腔30。然后,控制组件可被编程以再起动绝缘腔30,以便当关掉发动机E时,使催化剂基体14、16、18中的热量在发动机E不运转期间能尽可能长时间地保存,而不使它很快冷却到周围温度。用这种方式控制时,催化剂基体14、16、18的温度可被长时间地保持高于起燃温度,直至发动机E再次起动。这就具有了促进废气的催化反应以便几乎立即减少有害的废气排放物的益处,而不会耽误从周围温度再次达到起燃温度的要求。
图3和图4显示出了这种益处。首先参考图3,曲线90图示了发动机运转时间与在传统的催化转化器(图中未示)中的催化剂温度之间的关系,而曲线100图示了传统的催化转化器的废气排放物与发动机运转时间以及与时间-温度曲线90的关系。例如,当传统的催化转化器在发动机起动之前运行时,催化温度(如标号91所示)基本上处于周围温度TO。当然,周围温度TO在夏季可能超过100°F而在冬季可能低于0°F,但在任何场合,TO都远低于现有技术水平的催化剂的起燃温度TL的典型值600°-800°F。发动机在初始时间tO起动时,废气温度起初相对较冷,排放的废气是湿的并富含未燃烧的燃料。因此,如标号102所示,在初始加温阶段92期间,冷的发动机和冷的催化转化器排出的排放物EC很高。由于发动机废气中的热的驱使,在初始升温阶段92(典型的约60-180秒)以后经时间t1,最终达到了起燃温度TL(约600°-800°F),在催化转化器中的废气发生催化反应而放出的热促使温度以很大的加速速率上升,如标号94所示,直至时间t2时达到了某个平衡运转温度TR。如上所述,起燃温度TL被定义为这样一个温度,即在此温度时排放物EL中有50%的碳氢化合物已被催化剂转化。在从t1到t2(约30-60秒)这相同的时间间隔期间,催化反应变得更加有效,如标号104所示,排放物迅速减少到一个运转水平ER,该水平大体上被保持得与发动机运转时间一样长。当然,特殊运转温度TR取决于许多因素,诸如废气中的燃油含量、发动机负荷和废气体积或流速、催化剂的效果、和催化转化器热散失的能力。虽然倾向使TR高到(约1200°F)足以能有效地催化减少排放物的反应,但不能高到会损坏催化剂和其基体、或相邻的零件或构件的程度。当发动机关闭时,如在时间t3处,排放物曲线端部如标号106所示那样陡降,而催化转化器,包括催化剂,都如标号96所示那样会很迅速地冷却,在时间t4时再次冷至周围温度TO。时间t4取决于许多因素,如环境气候或其他情况,周围温度TO的高低,以及车辆中催化转化器的构造和所处位置。无论如何,通常可以指望典型的传统催化转化器会在约20到40分钟内冷却到起燃温度以下,并在约4-6小时内冷却到接近周围温度TO。曲线100下方的有阴影线面积代表在发动机运转期间全部排放物量。
现在参见图4,按本发明构造的催化转化器10(图2)的时间-温度曲线和对应的时间-排放物曲线120,图示出了本发明的改进了温度控制和改善了的减少排放物的结果。腔30和本发明的附设的热贮存元件的热绝缘性能效果,在装有不到五(5)磅热贮存或吸热材料的情况下,足以使催化转化器基体14、16、18(图2)中的热保持40小时或更久,保温时间的长短取决于周围温度和其它的周围气候条件。所以,除非车辆已经持续很长时间未被驱动,在起始时间tO以前催化剂温度仍会高于周围温度TO,假如发动机E已在12小时以前运转过,这对用于工作和家庭之间联系的汽车而言是很典型的使用,在此情况下如标号111所示,催化剂温度最可能在起燃温度TL附近变动。假如新近驱动过汽车,例如在过去10到12小时内驱动过,则绝缘腔30和所组合的热贮存元件将使催化剂基体的温度保持高于起燃温度TL,如标号111’所示。
当发动机E(图1)在时间t0被发动,在标号111或111’处(图4)已温暖的催化剂已对催化某些与废气的放热反应有效。所以,假如催化剂还不在或不高于起燃温度TL,则在很短时间区间t0到t1约60秒钟内即可达到催化剂的起燃温度TL,如标号112所示。温升时间区段t0到t1被缩短,不仅由于有在起动时间t0时已温热的催化剂,而且还由于在温升期间绝缘腔30把放热反应和废气热约束在催化剂基体14、16、18中。所以,如标号122所示的高排放物EC的温升阶段,在t0到t1区段期间,也非常短,肯定比传统的催化转化器的高排放物EC的这个区段要短得多,如曲线100所示,曲线100从图3被以虚线形式叠放在图4上。当发动机在其催化剂温度高于起燃温度TL时起动,如标号122’所示,温升的排放物甚至更少。当然,一旦在t1时达到起燃温度TL,则放热反应使催化剂的温度如标号114所示那样迅速升高到最佳运转温度TR。与此同时,排放物降低到如标号124所示的低运转水平ER。在最佳运转温度TR,气体控制系统60(图2)能被驱动来使绝缘腔30关闭,以便使与废气发生的放热催放反应产生的过量热消散到围绕着外罩24的周围环境中。当发动机关停时,如在时间t3时,如标号126所示,排放物当然会停止。但是,发动机E(图1)在时间t3时刚一关停(图4),气体控制系统60(图2)就被驱动从而使绝缘腔30回到开启状态以阻止催化剂迅速冷却到周围温度TO。在图4中以标号116显示了随着绝缘腔30的开启,催化剂会冷却得慢得多。而且,如上所述,催化剂可被保温高于环境温度TO长达40小时或更长时间。
按本发明装备有热处置的催化转化系统10的汽车,在其运转期间的全部排放物,如图4中曲线120下方阴影面积128所示。通过比较曲线120下方的阴影面积128(代表本发明催化转化器10的排放物)与曲线100下方的阴影面积108(代表传统的催化转化器的排放物),就能看出本发明带有热处置的催化转化器10所实现的起动期间排放物量的相对减少优于传统的催化转化器。
重新参见图2,设定控制组件86在发动机起动以后的某个预定时间关闭绝缘腔30,如上所述,该预定的时间最好对催化剂达到起燃温度TL是充分的时间,其它输入信号和控制也能被使用,这应是在本领域技术人员的能力之内的,只要他们对本发明的要点有所了解。例如,从与内罩壳12接触的温度传感器78所得到的输入信息可被用于驱使气体控制系统60动作,例如当内罩壳12的温度达到某个所希望的运转温度时,就关闭绝缘腔30。当然,这样的温度传感器78应必须是与环境和外罩24很好绝缘的,以便当绝缘腔30被开启时避免通过那些地方导热。也应有必要对外罩24上那些穿透外罩24而显露出泄漏的地方予以堵塞,例如用类似专利申请号为07/960,885的我们的美国专利申请中所描述的那些陶瓷堵塞连接物来堵塞泄漏。
处于下游废气出口130中的另一种可供选择的或补充的温度传感器79,被用于测量从催化转化器10中涌出的废气尾气温度,它也可以表示出催化剂的温度水平,即使并非是其相同的确切温度。催化剂的温度水平,对驱动气体控制系统60是有用的。在出口130中的这样一个可供选择的温度探测器79不必如同延伸穿过隔热腔30的传感器78所要求的那样既要绝缘以避免热传导又要密封以保持真空。
其它输入信号,例如位于邻近外罩24的温度传感器80,能被用于开启或关闭绝缘腔30。例如,如果靠近催化转化器10的其它零件或结构(图中未示)只能经受住这么高的温度,而从外罩24辐射出热量81的温度升至高于予先设定的水平,则温度传感器80就会使控制组件86动作以开启绝缘腔30。
另一方面,在其它应用中,更快地从内罩壳12和催化剂基体14、16、18“放泄”出热,可能比可操纵关闭绝缘腔30更为重要。所以,在内罩壳12和外罩24间设置金属对金属的接触以起如同热短路的作用。例如图2所示,与我们的美国专利申请07/960,885所描述的相似的一个或几个双金属凹座或调节器132,可被设置在内罩壳侧壁36处,并可被设计成当内壁36达到予设定的最大温度时,调节器132可从通常的凹形改变成凸形,如虚线132’所示。热分流支柱134,最好用导热好的金属制成,它们从外罩24的外壁42延伸到极接近对应的双金属凹座132的逼近处,这样,当双金属凹座猛地凸起成凸形132’时,它们就与支柱134形成金属对金属接触。这种金属对金属接触一形成,支柱134就很迅速地把热量从内罩壳12传导至外罩24,热量可从该处消散到周围环境中。
在某些情况或应用中,也可能期望使热量从催化剂基体(例如基体14、18从头到尾)到内罩壳侧壁36并进入绝缘腔30的热传导增强,例如在基体14、18都是由陶瓷材料制成的因而导热差的情况下。用一个或几个细长的销棒136,其一端延伸到基体14、18中,其另一端穿透内罩壳侧壁36而延伸到绝缘腔30中,从而可强化热传导。如果这些销棒并未长到足以接触到外壁42,则就不存在通过这些销棒的金属对金属热传导到达外罩24,当如上所述,通过气体控制系统60使绝缘腔30关闭时,销棒将仍把热量传导给绝缘腔中的氢气。
或者,销棒136可被设计成和放置为在较低温度下不与外罩24接触,但在较高温度下通过热膨胀它们能伸长到足以与外罩24的外侧壁42接触,如图6中标号136’所示。一旦实现了接触,如标号136’所示,则销棒136就成为把热量从内罩壳12直接传导到外罩24的外侧壁42的一种热分路或短回路。为了以这种方式起作用,销棒136在其中段被焊接点135焊到圆筒侧壁36上。因此,当其被加热时,销棒136在其两端轴向膨胀,如图6中虚线136’和136”所示。使销棒136充分膨胀到能如标号136’所示那样与外侧壁42接触所要求的热量在设计销棒136时应对这些参数加以考虑,即如销棒136从焊接点135向外延伸到圆筒侧壁36的长度、制成销棒136的金属或其它材料的类型及其热膨胀系数、销棒136端部与外侧壁42之间间距等等。催化转化器10可以被设计和制造成带有许多这样的销棒136,这些销棒136具有不同的长度或用具有不同热膨胀系数的不同材料制成,这样,它们就不会同时或在同一温度下与外侧壁42接触,从而使热短路的数量发生变化,因此也使横穿过腔30的总的热传导发生变化。图6中所示的销棒137是一个补充方案,它只从圆筒侧壁36径向地向外延伸而不向内延伸,所以它只从圆筒侧壁36中导出热量,这可以是用作建立热短路的另一种变化的设计。
在排放废气的路径中设置热吸收装置或挡帘材料138(如图2所示),以提供附加的热辐射和热对流控制,这也可能是更可取的,但并非必要的,这可抑制基体14、16、18径向地直接辐射热量到内罩壳12的外面,同样也可遏制在该范围内热的废气的热对流。当热吸收装置或挡帘材料138是如图2所示的固体迷宫结构时,它可以是一种松散的材料,例如陶瓷毛纤维,它对红外辐射是不透光的,因此它能在纤维之间强制进行多重再辐射,从而阻挡由轴向辐射引起的热逸失。陶瓷毛纤维或其它材料也起到减小对流单元的尺寸的作用,因而也阻挡了由对流引起的热逸失。图中所显示的挡帘材料138只在内罩壳12的下游端,当然,类似的挡帘也可以被放置在紧接着第一基体14的上游空间中。
为了更扩展本发明对废气热和排放物的处置,图5中图示了带有热贮存器和热交换器特征的另一实施例催化转化器140。但是,在详细叙述催化转化器140之前,首先再参考图1。在本实施例中,与废气的催化放热反应所产生的热与各种原因相适应地被投入有益的利用、储备或散逸。例如,催化转化器140产生热而且比冷的发动机E发动后产生的热增加得快得多,冷发动机E不仅不能像温暖的发动机那样有效运转,而且也产生更多的有害废气排出物并更消蚀发动机零件。并且,大多数汽车的客室是用热的发动机冷却剂供暖的,所以不仅在发动机E本身热起来之前,而且在发动机E的水套中的冷却剂热起来之前,都不会有热量可供客室或挡风玻璃除霜用。
所以,按照本发明,催化转化器140所产生的热,不是由于散逸到大气中损耗掉,而是如虚线144所示意表明的,被导入歧管142中并被导至发动机E的水套中,以有助于使发动机E更快地暖起来,而这又能使温热的冷却剂通过如虚线146示意表明的传统的加热器软管更快地到达客室的暖气设备H。可备择的或附加的实施方案是,催化转化器140所产生的热可被直接导至客室以加热客座S(如虚线148示意表明)或加热其它零件,如挡风玻璃、驾驶盘和空间加热器等。由于在运转着的催化转化器140中的温度和很快也在其周围达到的温度,对标准的发动机冷却剂/防冻剂溶液而言往往是过高的,所以最好在热交换腔164(图5)中使用热交换和热贮存液166,这种液体166具有高的沸点,并在这样比较高的温度下比发动机冷却剂/抗冻剂溶液更稳定。因此,可设置另外的热交换界面装置153(图1)以把更适合的热量和温度水平传导给汽车发动机E中使用的发动机冷却剂/防冻剂溶液。
当不需要附加热时,例如在带有催化器140的汽车正常持续运转期间,发动机E通过连接系统144,以及其它零件的温度已上升到正常操作温度,在此情况下,催化转化器140所产生的热可被导至热贮存槽150和散热器152,或者通过连接系统144导至发动机E,并从该处随发动机E的热一起通过传统的汽车暖气装置R散逸入大气。以上提及的实际的管道系统、阀、控制装置以及类似的用于各种热应用的装置,在此均未详细叙述,因为只要本技术领域有经验的人员对本发明的要点有所理解,这些就完全在其实施能力范围之内的。要说的只是,假如使用液体发动机冷却剂或其它液体介质来传导热,这种循环回路将包括一个输送液体的导管、另一个返回液体的管道、一台泵、许多阀门,以及由电、真空或空气压力驱动的可以是手动或自动的阀门控制器。同时,热贮存槽150可被用于贮热,为以后用于对要起动的发动机和冷的客室供暖,或者,被贮存的热也可用于帮助使在催化转化器中的被提升了的温度保持更长的时间。一种热贮存装置可以是,例如,如同在题为“潜热贮存器”一文(发表在1992年2月出版的汽车工程杂志第100卷,第2号,第58-61页)所描述的那种。热输送管道,虽然在图中未特别显示,但也可以用于取代热传送液体以把热量传导至催化转化器或从催化转化器中把热传导出来。
现在参看图5,按本发明的催化转化器140具有与上述的催化转化器10相同的基本零件,包括(但不限于)容纳在一个内罩壳12中的三个催化剂基体14、16、18,一个外罩24把绝缘腔30密封在其中,气体控制系统60,金属对金属热分流支柱134和关联的双金属凹座132,以及轴向辐射挡帘材料138。
然而,催化转化器140还有至少一个包围着外罩24的主要热交换器160,它被用于从外壁36吸收热再把热传导至歧管142(图1)或其它零件或上文述及的其它应用。该主要的热交换器160包括一个从外罩24的外端壁38和40径向地向外延伸的外套162,它把包围着外壁36的主要热交换器腔164密封在其中。腔164被制造成并被密封以容纳热交换流体166,它可以是一种液体或一种气体,最好是一种稳定的流体。假如是一种液体,如上所述,最好在催化转化器通常遭遇的高温下不会达到其沸点。这样一种热交换器流体可以是,例如,聚醚或硅。
许多叶片168从外壁36径向地向外突入热交换器腔164以增加热交换表面面积。因此,当绝缘腔关闭时,从催化剂基体14、16、18和内罩壳12传导来的热通过腔30传导到外罩24,然后从叶片168上被流体166有效地吸收。流体166可流经热交换器腔164,例如从入口170流入腔164而从出口172流出,从而把热从催化转化器140带走。合适的软管或其它管道系统(图中未示出)能把已热的流体166传输到其它部件,例如歧管142、热贮存槽150、散热器152、热交换器153,如此等等,如图1所示和如上所阐明的。当然,反向传导也是可能的,即流体166可能从热贮存器150把热带回到催化转化器140中,例如为了在起动发动机E之前予热催化剂基体14、16、18时。
主要的热交换器160的外套162,如图5所示,最好用十分有效的绝缘材料制成,例如用我们的美国专利(专利号5,175,975)的主题-致密真空绝缘物(CVI)制成,该专利被引用在此以备参考。因此,当绝缘腔30被开启时,例如,当发动机E被关闭时,不仅热的内罩壳12和热的催化剂基体14、16、18被高效的绝缘腔30所隔绝,而且外罩24也被在热交换器腔164中的热的流体166所包围。CVI外套162对保存包围液体166中的热十分有效,通过横穿过绝缘腔30的热梯度或热差别保持在很低水平,外套162还抑止了催化剂基体14、16、18的热传导。
催化转化器140的几个任选零件包括具有从废气入口129和出口130中回收热的第二热交换器174,184。如图5所示,在入口129上的第二热交换器174包括一个外套176,它封闭着一个腔,该腔容纳有从入口129径向向外延伸的叶片178。热交换流体,例如与用于主要热交换腔160的流体166同样的流体,能从流体入口180流经该腔到达流体出口182,以把热量从叶片178带到其它零件以供使用、贮存或散逸,如同上文叙述过的。同样地,在废气出口130上的第二热交换器184也有一个外套186,它容纳着热交换流体介质166。流体介质166在入口190和出口192中循环,以把叶片188的热量带至其它零件,如上文叙述过的以供使用、贮存或散逸。在第二热交换器174、184上的外套176、186并未被认为是CVI的组成部分,因为这些第二热交换器并未起到把热量保存在催化剂基体14、16、18中的主要功能,虽然假如希望的话,它们也能用CVI制成并能辅助上述功能或用于使进入周围大气的热损失减至最小。
图5所示的催化转化器140的另一个任选零件是,一个固体的吸收芯194延伸着通过催化剂基体14、16、18的中心。该固体的吸收芯194用于两个目的。首先,它使废气的催化反应发生在催化剂基体14、16、18的外部,因此当热被传导通过绝缘腔30时,这就使热量必须流经陶瓷基体14、16、18而到达内罩壳12的距离减少到最低程度。其次,热吸收芯194最好是例如铝硅合金或镁锌合金类具有大的热吸收能力的材料,因而在催化剂运作期间它能接受并保存大量的热。再者,当发动机E关闭而绝缘腔30开启时,热吸收芯194所含的热有助于使催化剂基体14、16、18的温度保持更长的一段时间,从而增大了催化剂基体14、16、18仍然高于或接近起燃温度,或至少高于发动机E下次再起动时的周围温度的可能性。
正如上述的在催化转化器实施例10中,图5中的控制器68可以从诸如点火开关76、温度探测器80、89,以及类似的许多器件或传感元件取得输入信号,以引发气体控制器60动作使绝缘腔30开启或关闭。例如,位于外套162邻近的温度探测器80能探测到催化转化器140周围的环境温度何时会变得太高,从而使控制器或者开启绝缘腔30或者使流体166开始通过连接装置196循环流至一个泵控制装置(图中未示)或汽车或系统的其它适合的控制零件。例如,位于发动机E水套或在汽车客室中的一个更遥控的温度探测器可把信号输入控制器68,使绝缘腔30、流体166的循环以及类似装置起动或不起动。许多其它可任选的信号输入,以导线197代表,以及如到阀和其它零件的任选信号输出,以导线198代表,对本技术领域的技术人员而言是显而易见的,只要他们对本发明的要点和本发明的主要特征有所理解。
为进一步增加催化转化器的热容量,尤其为了长时间地保持足够的热,以便有可能在发动机E起动前把基体14、16、18加热到起燃温度,一些相变材料,例如金属、氢氧化金属盐、三甲醇乙烷氢化物(TME)或其它多元醇(在美国专利号4,572,864和4,702,853中对此均有阐述,在此引用这两个专利号以供参阅)都能被容纳围绕着或在与基体14、16、18有关的热流之中。例如,在图5的实施例140中,可以不用上文述及的流动的热传导流体166通过主要的热交换器腔164,而可以用PCM充满腔164以取代流体166,并可以带有也可不带有入口配件170、172。当由在内罩壳12中的催化反应生成热时,绝缘腔30的热传导功能被起动(绝缘作用中止),如上所述,它把热传导到固态PCM166中,在此该热量作为熔化热使PCM熔化,并以此形式把热量贮存在液态PCM中。因此,假如PCM是可以过冷的或可被激发的,如上文提到的氢氧化物或氢化物那样,则当发动机关闭而基体14、16、18随之冷却时,甚至当PCM过冷到低于其熔点时,熔化热仍被保存在液态PCM中,这正如美国专利号4,860,729所阐述的,它也被引用在此以供参阅。然后,当操纵者决定起动发动机E时,点火开关76发出的信号可使相变激发器动作,正如美国专利号4,869,729中所述,该专利也被引用在此以供参阅。如图1中以标号154表示的这样一个相变激发器能被连接到如图5所示的一个配件170、172上。当相变激发器被致动时,它引发PCM的成核晶化而使PCM释放出其熔化热。由于绝缘腔30的传导功能也被致动(绝缘作用中止),PCM的熔化热被传导回内罩壳12以便有助于使基体14、16、18达到其起燃温度。
当然,为此目的使用PCM的方法有很多。例如,热贮存槽150或其它类似装置也装盛PCM。热量也可被传导到带有热交换器流体液166的外部的PCM容器中或从中被传导出来。其他腔(图中未示)也可被设置在腔164的径向向外处,以便同时使用PCM和热交换流体166来包围内罩壳12。
在图7所示的另一个实施例中,带有环状腔157的一个陶瓷容器156被置于内罩壳12中,并相对包围着催化剂基体14、16、18。相变材料158,例如铝或铝合金,几乎充满但稍微不充满环状腔157。在发动机运转期间当催化剂基体热起来时,它也加热了环状腔157和相变材料158。但由于陶瓷是很差的热导体,容器和相变材料158取得热量不能足以快到把基体14、16、18加热到起燃温度所需要增加的时间。在发动机E运转期间,在腔157中的材料158热到足以熔化并大体上加热到催化转化器最佳运转温度所需的超额时间,可由上述本发明的各种配件来控制。上面提及的在腔157中材料158稍微不充满,是为了当材料158被加热时为适应其热膨胀而在腔157中留出足够的空间。然后,当发动机E关闭时,相变材料158将有助于把热保存在基体14、16、18上。起始冷却是以一种可被感知的方式进行的,如同上文讨论过的图5中的热吸收芯158。然而,当温度冷至材料158的冰点时,由于材料158释放出其熔化热而使温度长时间地保持不变。随之,只要材料158的组成具有高于催化剂起燃温度的冰点或熔点,该材料158就有助于使基体14、16、18的温度长时间保持高于起燃温度。
虽然上述对本发明的阐述和举例主要都涉及有关内燃发动机的汽车,但这并不限制本发明的应用范围。可例举出其它的应用,如在化工和石油化工工业中用于控制催化工序反应器。
上述阐述仅应被看作为说明本发明要点的例证。而且,鉴于本技术领域的技术人员容易想到许多修改和变化,因此不应把本发明限制在上述确定的结构和步骤中。因此,所有合适的修改和等效物可被列入如下列权利要求所定义的本发明的范围。
权利要求
按照本发明实施例,对专利权或特许权的权利要求限定如下1、一种废气热的处置设备,包括催化转化器装置,由催化剂和为催化剂提供表面及支撑结构的基体组成,用于催化废气中污染物的氧化反应或还原反应;催化剂罩壳装置,用于容纳所说的催化转化器装置,并把废气引导到催化转化器装置;和可调节的热导绝缘装置,它包围着所说的催化剂罩壳装置,用于使所说的罩壳装置有选择地热绝缘,以随着第一信号而抑制所说的罩壳装置径向地热传导,或随着第二信号而恢复其热传导。
2.按照权利要求1的一种废气热的处置设备,其中,所说的催化剂罩壳装置包括一个内金属侧壁,所说的可调节的热导绝缘装置包括包围着内金属侧壁的外金属密封罩,它被置于从所说的内金属侧壁径向地向外隔开距离处,从而密封住在所说的内金属侧壁与所说的金属密封罩之间的主绝缘腔。
3.按照权利要求2的一种废气热的处置设备,其中,所说的主绝缘腔被抽空至很高的真空度,而其中所说的可调节的热导绝缘装置包括与所说的主绝缘腔连接的绝缘中止装置,用于有选择地随着所说的第二信号而中止所说的主绝缘腔的抑制热传导的作用,或随着所说的第一信号而恢复所说的主绝缘腔的抑制热传导的作用。
4.按照权利要求3的一种废气热的处理设备,其中,所说的绝缘中止装置由与所说的主绝缘腔连接的气源装置构成,用于随着所说的第二信号而释放气体进入所说的主绝缘腔,或随着所说的第一信号而从所说的主绝缘腔中回收气体。
5.按照权利要求4的一种废气热的处置设备,其中,所说的气源装置包括被加热时释放氢气而冷却时回收氢气的一种金属氢化物。
6.按照权利要求5的一种废气热的处置设备,其中,所说的气源装置包括被设置在所说的金属氢化物和所说的主绝缘腔之间的阀门装置,用于有选择地让氢气流通过或挡住氢气流。
7.按照权利要求6的一种废气热的处置设备,其中,所说的阀门装置由钯构成,当它被加热时允许氢气从其中流过,而当它被冷却时挡住氢气流从其中通过。
8.按照权利要求1的一种废气热的处置设备,其中,所说的可调节的热导绝缘装置被设置以用于在所说的废气开始流经所说的催化转化器装置时抑制所说的罩壳装置的热传导,而其中所说的第二信号驱使所说的可调节的热导绝缘装置,在所说的废气和所说的反应使所说的催化转化器装置的温度升至高于起燃温度后恢复所说的罩壳装置的热传导。
9.按照权利要求8的一种废气热的处置设备,其中所说的第一信号驱使所说的可调节的热导绝缘装置,在所说的废气停止流经所说的催化转化器装置时,抑制所说的罩壳装置的热传导。
10.按照权利要求9的一种废气热的处置设备,包括用于引发所说的第二信号的定时装置。
11.按照权利要求9的一种废气热的处理设备,包括用于产生所说的第二信号的温度传感器。
12.按照权利要求3的一种废气热的处置设备,包括置于所说的内罩壳和所说的外金属密封罩之间的热可致动的热分流装置,用于在所说的内罩壳达到予定的最高温度时,在所说的内罩壳和所说的外金属密封罩之间造成金属对金属的接触。
13.按照权利要求12的一种废气热的处置设备,其中,所说的热分流装置包括一个双金属元件,当双金属元件的温度达到所说的预定温度时,它从凹形转换成凸形。
14.按照权利要求12的一种废气热的处置设备,其中,所说的热分流装置包括固定在所说的内罩壳中的热致可膨胀销棒,它径向地向外延伸到与所说的外金属密封罩非常近的位置,以便可热致膨胀地与所说的外金属密封罩接触。
15.按照权利要求3的一种废气热的处置设备,其中,所说的可调节的热导绝缘装置包括许多位于所说的内侧壁和所说的外金属密封罩之间的陶瓷间隔物,所说的间隔物被成形为与所说的内侧壁与所说的外金属密封罩只有点接触或近似点接触的形状。
16.按照权利要求15的一种废气热的处置设备,其中所说的间隔物包括具有球形外表面的间隔物元件,和位于所说的间隔物元件与所说的内侧壁和所说的外金属密封罩各方之间的具有弧形外表面的衬瓦元件。
17.按照权利要求15的一种废气热的处置设备,包括至少一个辐射屏蔽,它位于主绝缘腔中,在所说的内侧壁和所说的外金属密封罩之间。
18.按照权利要求3的一种废气热的处置设备,包括一个热传导销棒,它延伸穿过所说的内侧壁进入所说的催化转化器装置中,以及进入所说的主绝缘腔中。
19.按照权利要求18的一种废气热的处置设备,其中所说的销棒被固定在所说的内侧壁上,它作为一个温度功能元件,热致可膨胀地和可收缩地与所说的外金属密封罩接触或脱离接触。
20.按照权利要求3的一种废气热的处置设备,包括废气入口导管装置,它在所说的内罩壳装置和所说的外金属密封罩之间延伸并将这两者分隔开来,用于把废气导至所说的内罩壳装置中,所说的入口导管装置包括一个用薄的金属箔制成有折皱的管道,该管道的一端焊接在所说的外金属密封罩上而其另一端焊接在所说的内罩壳上。
21.按照权利要求3的一种废气的处置设备,包括废气出口导管装置,它在所说的内罩壳装置和所说的外金属密封罩之间延伸并将这两者分隔开来,用于把废气从所说的内罩壳装置中导出,所说的出口导管装置包括一个用薄的金属箔制成的有折皱的管道,该管道的一端焊接在所说的内罩壳上而其另一端焊接在所说的外金属罩上。
22.按照权利要求21的一种废气热的处罩设备,包括位于所说的催化转化器装置和所说的出口导管装置之间的辐射挡帘装置,用以遮断从所说的催化转化器装置向所说的出口导管装置发射的热辐射。
23.按照权利要求21的一种废气热的处置设备,包括位于所说的催化转化器装置和所说的出口导管装置之间的对流挡帘装置,用以阻挡从所说的催化转化器装置向所说的出口导管装置的热对流。
24.按照权利要求23的一种废气热的处置设备,其中,所说的对流挡帘装置包括陶瓷毛纤维。
25.按照权利要求3的一种废气热的处置设备,包括包围着所说的外金属密封罩的热交换器装置,用于从所说的外金属密封罩导入或导出热量。
26.按照权利要求25的一种废气热的处置设备,其中,所说的热交换器装置包括一个外套,该外套位于从所说的金属外密封罩径向地向外间隔距离处,它把包围着所说的外金属密封罩的主要热交换器密封起来,以容纳流体热交换器介质。
27.按照权利要求26的一种废气热的处置设备,包括一个流体入口和一个流体出口,用以把所说的流体热交换器介质导入或导出所说的主要热交换器腔。
28.按照权利要求27的一种废气热的处置设备,其中,所说的外套由致密的真空绝缘体构成,它包括相互之间距离很靠近的两块硬的但可弯折的金属箔片,通过金属对金属焊接将该两块金属箔片的相互边缘周围密封住,以在其中形成一个真空腔,所说的真空腔被抽空到其压力至少低至10-5托,而在所说的金属箔片之间有许多具有低导热率的间隔物以保持所说的间距。
29.按照权利要求27的一种废气热的处置设备,包括与所说的主要热交换器腔有关的流动的流体相接触的热槽热贮存器件。
30.按照权利要求27的一种废气热的处置设备,包括与所说的主要热交换器腔有关的流动的流体相接触的散热装置,用以把从所说的外金属密封罩传导出的热散逸给所说的流体介质。
31.按照权利要求27的一种废气热的处置设备,包括把所说的主要热交换器腔连接到发动机冷却剂热交换器上的流体导管装置,用以把热传导给产生废气的内燃发动机中的水套。
32.按照权利要求3的一种废气热的处置设备,包括包围着所说的外金属密封罩的热贮存装置,用于贮存在所说的内罩壳内产生的热。
33.按照权利要求32的一种废气热的处置设备,其中,所说的热贮存装置由一种相变材料构成。
34.按照权利要求32的一种废气热的处置设备,包括有选择地可致动激发装置,用于有选择地引发相变材料的成核化。
35.按照权利要求1的一种废气热的处置设备,包括在所说的催化剂罩壳装置中并与所说的基体相接触的热贮存装置,用于贮存在所说的催化剂罩壳装置中所产生的热。
36.按照权利要求35的一种废气热的处置设备,其中,所说的热贮存装置由一种相变材料构成。
37.按照权利要求20的一种废气热的处置设备,包括一个与所说的废气入口导管装置连接的第二热交换器,用以在废气到达所说的基体前从废气中取得热。
38.按照权利要求21的一种废气热的处置设备,包括一个与所说的废气出口导管装置连接的第二热交换器,用以在废气已通过所说的基体后从废气中取得热。
39.一种处置在催化转化器中的热的方法,由以下步骤组成用可调节的热导绝缘体包围催化转化器,该可调节的热绝缘体在可“开启”以遏制热传导和“关闭”以恢复热传导之间被调节;在没有废气正在催化转化器中起反应时开启可调节的热导绝缘体以便把热保存在催化转化器中;当催化转化器的温度低于催化转化器的起燃温度时,让可调节的热导绝缘体开启着;当催化转化器的温度高于起燃温度时,关闭可调节的热导绝缘体。
40.按照权利要求39的一种处置在催化转化器中热的方法,包括在完全开启和完全关闭之间控制可调节的热导绝缘体的步骤,以使所说的催化转化器保持在所期望的温度。
41.按照权利要求40的一种处置在催化转化器中的热的方法,包括当可调节的热导绝缘体被关闭时,把由催化转化器产生的热回收在一种流体介质中,并把热传导给另一个零件的步骤。
42.按照权利要求41的一种处置在催化转化器中的热的方法,包括把流体介质中的热传导给产生废气的发动机的步骤。
43.按照权利要求41的一种处置在催化器转化器中的热的方法,包括把流体介质中的热传导给热贮存器件的步骤。
44.按照权利要求43的一处置在催化转化器中的热的方法,包括以下步骤在起动产生废气的发动机之前,当催化转化器温度低于其起燃温度时,把热从热贮存器件传导回到催化转化器。
45.按照权利要求41的一种处置在催化转化器中的热的方法,包括把在流体中热传导给汽车客室的步骤,该汽车是由产生废气的发动机给予动力的。
46.按照权利要求41的一种处置在催化转化器中热的方法,包括把在流体中的热传导给散热器以使热散逸到大气中的步骤。
全文摘要
一种催化转化器(10、140)被可调节的热导绝缘物(30、164)所包围,以便使催化转化器(10、140)的运转温度保持在最佳水平,并在催化转化器的温度上升到起燃温度时抑制热损失,还用于贮存过量的热以保持或加速达到起燃温度,以及在达到起燃温度后将过量的热导离催化转化器(10、140)。可调节的热导绝缘物(30)包括真空的气体控制机构和金属对金属的热分流机构(134)。径向的和轴向的屏蔽(138)抑制了辐射和对流热损失。热贮存介质包括相变材料(150)、热交换器腔(164)和流体(166),把热带入或带出催化转化器。
文档编号A47J27/00GK1144551SQ95192286
公开日1997年3月5日 申请日期1995年1月27日 优先权日1994年1月27日
发明者戴维·K·本森, 托马斯·F·波特 申请人:戴维·K·本森, 托马斯·F·波特
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1