空心门、制造模制门面板的方法及压力机的制作方法

文档序号:1638136阅读:349来源:国知局
专利名称:空心门、制造模制门面板的方法及压力机的制作方法
技术领域
本发明涉及一种将实心平坦木制复合材料制成模制门面板的方法和由此制成的面板及空心门。具体的是,本发明涉及一种制造模制门面板的方法,平坦的或平面木制复合材料实心坯板经预热、加湿,并在压力机中加热到足以软化坯板的温度,压力机压板在压力作用下闭合,且闭合压力连续地增大到一个预定界限值,从而使坯板变形为与门面板相一致的模制形状,并最终制成空心门。
背景技术
空心门可用于室内和室外。很多空心门都是由木制复合材料制成的门面板制成。这些木制复合材料包括碎屑板、刨花板、硬质高压板和中密度纤维板(“MDF”)。木制复合材料通常采用树脂粘结剂来将形成复合材料的木纤维保持为实心状态,这种树脂粘结剂通常是热固性树脂。
空心门可以是“平齐”(flush)型的,也就是在两个主表面(也就是,两个门面板是平的且不包括模制于其上的嵌板)上是平的或平面的。另外,空心门可以是“模制”型的,其具有一系列在制造时形成或模制成表层面板的三维嵌板或类似物。
标准模制门面板由较厚的非实心块料(mat)或絮料(bat)制成,将这些块料或絮料在压力机中压制成较薄的厚度。块料可由干的或湿的纤维制成。如果块料具有很高的水分,在压制过程中水分就会被挤出。压力机可以是多压板压力机,其具有一组表层面板形成腔。由于在压制之前块料处于柔性状态,木纤维可流动从而可与模匹配一致,因此,成品实心面板就被迅速地制成消费者所需要的结构。由于建造工厂来生产模制面板需要较高的资本投入,制造商通常需要一份订单就生产大量的面板以发挥其最大的生产效率。小订单在成本上是不经济的。
原始的木纤维块料或絮料被压平且不是以三维的方式模制成嵌板或类似物,除此以外,平的门面板可以与模制面板类似的方式进行制造。另外,连续带式压力机可用于制造平的面板。因此,平的门面板由较厚的非实心木纤维块料或絮料进行生产,将这些材料压成平面或平的形状,从而形成平的实心面板。这就意味着可使用标准中密度纤维板或硬质高压板。
由于模、压力机等所需的成本较高,标准模制门面板是比较昂贵的。另外,用于平面门的平坦或平面面板是较便宜的,但却不具有消费者通常所要求的美学特征。
由于木制复合材料“平齐”或“平的”面板与木制复合材料“模制”面板的成本不同,曾经尝试将平齐面板转化为模制面板,从而较便宜地制造出模制门。由于表面形状不能令人满意,因此,这种先前的努力并未取得商业上的成功。将平齐的面板转化为模制面板这种努力通常使最终的模制面板产生裂纹、擦痕或其它不美观的形状和/或外形。
因此,需要一种可将平的木制复合材料坯板制成模制门面板的方法,其可以将标准的平齐或平的坯板用作基本材料,并制造出具有消费者可接受的特征和表面特性的模制门面板。另一种需要是将平的木制复合材料门面板制成模制门,其可防潮,从而可将其用于室外。
在所拥有的1997.10.2申请的美国专利申请08/942976(英国专利申请9707318.3的同族专利申请)中,本申请人公开了一种通过使用压力机将平齐或平的门面板制成模制面板来制造空心门的方法,其中,作用于压力机压板的压力是逐渐增大的。本申请人原先申请的方法可进一步得到改进,从而使得平的面板的成形更为有效,并使成品门的强度得到提高,下面将进行描述。
本发明就是为了满足这些需要以及其它的需要。本发明的目的就是为了实现上述需要。

发明内容
本发明的首要目的就是提供一种通过将增大的压力连续地作用于经加湿和软化的平坯板上从而将平齐的木制复合材料坯板制成模制门面板的方法,这样使得所得到的面板具有消费者可接受的模制特征和表面特性。
本发明的另一个目的是提供一种防潮的模制门面板,所制得的门不会发生变形,因此适合于用在室外。
根据本发明,提供一种制造门面板的方法,其包括以下步骤提供一块实心木制复合材料平坯板(也就是,已对其厚的疏松含水状态进行压缩而成)。坯板进行预热、加湿、涂覆密封物,并被放置到加热压力机的压板之间。将压板加热到足以软化坯板中所含树脂的温度,并使坯板软化,作用足够大的压力使压板闭合,压力连续地增大,从而使坯板变形成压板形状所限定的模制形状。压力机的闭合速率由多个特征参数确定,并且是它们的函数,这些特征参数包括硬度、密度、密度分布、模的深度以及所要整形的平齐面板中的粘结剂或树脂含量百分比。然后,将模制的已整形的坯板从压力机压板之间取出。
根据本发明,提供一种门面板,其包括模制的中密度纤维板三维坯板。坯板具有第一部分,第一部分具有第一预定厚度。坯板具有第二部分,第二部分具有第二预定厚度。第二厚度小于第一厚度。
根据本发明,提供一种门面板,在经压力机进行整形后,其包括模制中密度纤维板三维坯板,所述坯板的密度大约为550-1200kg/m3,其密度在面板的整个厚度范围内基本上是均匀的(也就是,在面板整个厚度范围内大约是±75kg/m3,最好大约是在±25kg/m3范围内)。
根据本发明,提供一种门,其包括周边门框架,所述门框架具有相对设置的侧面。至少提供一个第一模制面板。面板具有第一和第二侧面。面板的第一或外部侧面具有附着在其整个表面上的防潮层。门面板的第二或内部侧面固定在门框架的一个侧面上。第二门面板固定在门框架的相反侧。
本发明的又一个目的是提供一种门面板,在整形成模制面板后,其比标准平齐或平的表层坯板和模制面板的强度高。在一个实施例中,整形模制面板的粘结强度至少约为2.0N/mm2,最好至少约为2.5N/mm2。在进行处理后,这可且通常使内部粘结加倍。
本发明的这些和其它的目的和优点可通过结合附图对本发明实施例所进行的详细描述中得出。


图1是空心门的平面图,所述空心门包括一对相对的根据本发明实施例制造的整形面板(也就是由平的面板模制而成)。
图2是图1沿2-2的局部横截面图。
图3是处于本发明模压装置中的平或平齐的门面板的局部横截面图,该图显示了平或平齐的面板仍处于平展状态。
图4是按照本发明实施例来制造图1和2所示空心门的流程图。
图5是实心平板进入图4中的红外预热工作台、加湿工作台、密封工作台、预压工作台和加压工作台的流程图。
图6是本发明图1-5所示实施例的整形面板的横截面图。
图7是图4和5所示本发明实施例的模压压力与时间的关系图线,其显示了在压制(整形)平的面板过程中压力连续地作用于压板,然后使压板保持恒定的压力,此后,向下倾斜的曲线表示压板压力被释放而打开了压模。
图8是本发明实施例的图线,每个整形面板在其整个厚度上具有基本上恒定的密度。
图9是本发明实施例的图线,它显示了压模压板闭合速率是待整形的压制实心平坦门面板的硬度的函数。
图10是本发明实施例制造图1-9所示门的方法和装置的流程图。
具体实施例方式
在附图中,相同的标号表示相同的部件。
如图1和2所示,根据本发明的实施例,空心门1可被高效地制成在美学上与标准模制空心门相类似,这种标准模制空心门是通过与由门挺、横档和嵌板制成实心纤维门的普通方法相类似的方法制成。根据本发明,门1的面板7、9不是象标准模制门那样直接由非实心的块料或絮料模制而形成三维模制嵌板3的。相反,如图3所示,提供一种已压成压实的矩形平板形的平齐(也就是平坦的或成一平面的)实心复合面板10,对其进行预热、加湿、密封,然后再在压板模压机上进行整形处理,从而获得整形模制面板7、9,其每一个都具有嵌板3。整形模制面板7、9可用于制造空心门1。
通过以这种方式对平的压制坯板10进行整形处理,就可省去前面所提的现有技术中门面板的模压过程(例如,通过模、压力机和类似的可处理非实心絮料并将其压成模制面板的装置)。因此,可更有效地和低成本地制造模制门1,且所制成的面板的强度是标准模制面板的两倍多,是标准平齐或平坦的面板的两倍多。Masonite公司的标准模制面板的粘结强度通常约为1.4N/mm2,而本发明实施例的整形面板7、9的粘结强度至少约为2.0N/mm2,且最好至少约为2.5N/mm2。
根据本发明的实施例,控制压力机21的压板17、19的闭合速率是很重要的,如图3所示,它是硬度、密度、密度分布、模的深度以及待整形板10的粘结剂或树脂含量百分比的函数,当对坯板10进行整形处理时,连续地以不阶跃的方式或渐进平稳的方式对压力机21的压板17、19施加增大的压力。随着闭合速率作为板10材料组成结构的函数而受到控制,压力的连续增大可形成更有效的整形面板7、9,且其表面裂纹很少,并且使平的面板10的木纤维在整形过程中更易于流动到面板7、9内的新位置。
在压制之前,向实心板10中添加调节树脂(如三聚氰胺或脲醛热固性树脂)就会使面板7、9强度更高、在美学上更令人赏心悦目。所添加的这些树脂使板变形时产生的伸展或所破坏的内部粘结实际修复了这些纤维并最终使粘结比原先更结实。可改变这些树脂的量以适应于产品根据防潮和内部粘结强度所需求的最终特性。
如图1和2所示,空心门1看上去是标准模制型的,但实际上不是。门1利用压制的平齐或平坦的板10制成,按照本发明实施例进行整形而形成具有嵌板3的模制面板7和9。门1在每个主表面上包括多个三维成形嵌板3和对应的凸起平面部分5。门1包括一对相对的整形面板7和9(在美学上与普通模制面板类似),面板7和9之间限定了空心区域11。在室内所用的门中(如图1所示),门1的面板7和9呈现为门1的外部主表面,而在外部使用的门中(如图2所示),三聚氰胺浸渍皱纹纸或酚醛树脂皱纹纸13可设置在每个面板7和9的整个或全部外表面上。纸13提供了防潮屏障,从而使门1吸收的水分减少。
如图1和2所示,门1的整形面板7和9粘结固定在门框架15上,例如通过聚乙酸乙烯酯(“PVA”)。显然,门框架15围绕矩形的整形面板7和9以及门1的周边延伸,并通常包括两个平行的沿门的纵向边缘延伸的木制门挺和两个平行的位于门的底部和顶部的木制横档。面板7和9通过门框架15相互间隔开来,从而形成可装入泡沫物或类似物的空心区域11。
图3示出了实心坯板10被置于模压机21的压板17和19之间,下面将对其进行详细描述。坯板10通过已知技术被预先制成图示的平齐或平坦的坯板10。通常,通过压一块较厚的非实心木纤维块料或絮料而使坯板10形成没有模制嵌板的实心平坦门面板10。在压力机21处,平的坯板(或平的表层坯板)10再被整形制成模制面板7和9,每个面板包括模制在其上的嵌板3。在压力机21处,底部压板19可保持固定就位,上部压板17可相对于压板19竖直运动以便于打开和闭合压力机。以此方式,当压板17向下运动而将压力作用于坯板10时,凸起23(每个凸起与所要形成的嵌板3相对应)与对应的凹部25相配合,而坯板10位于其间,从而将平的坯板10整形制成带有嵌板3的模制面板7、9。图6示出了离开压力机21后带有嵌板3的整形面板7、9。总之,压力机21可对平的坯板10进行整形,从而在其上模制出多个嵌板3。
如图6所示,在压力机21中进行整形后,每块面板7、9具有由整形面板的表面构成的相对的表面31和33。每块面板具有平坦的第一部分35和平坦的第二部分37。部分37与倾斜部分39和41一起构成整形面板的嵌板3。倾斜部分39和41最好具有在整形过程结束时便于使面板7、9从压力机21的压板中脱出的形状。由于拉伸,因此部分35、37、39和41具有不同的厚度,且木纤维流动使坯板10在压力机中进行整形。例如,对于名义厚度为2.5-5mm的坯板10,最好是3.0-3.5mm,整形面板的第一部分35和部分37可从略小于4mm的原始厚度减小约10%,而倾斜部分39和41的厚度约为2.5-3.5mm(最好约为3.0mm)。在另一个实施例中,部分35、37、39和41具有大致相同的厚度。
下面将进行描述的制造方法可将实心压制平坯板10制成整形面板7、9,所得到的面板7、9在美学上是令人赏心悦目的,制造成本低廉可行,表面基本上无裂纹和无损坏。
如图4、5和10所示,提供实心和已压成平齐/平坦的门坯板10。平的坯板10最好是由热固性树脂粘结在一起的木制复合材料例如中密度纤维(MDF)板或硬质高压板。MDF通常具有用作粘结剂的脲醛树脂,该树脂在320°F-约425°F的温度范围内可进行模制。MDF实心平坦门坯板10可具有各种不同的厚度和重量,范围约为3-7mm。在一个优选实施例中,坯板10处于上限厚度范围,从而提供充足的木纤维以具有鲜明和良好的特征并避免在过渡区产生表面裂纹。但是,大约3-7mm范围内的任何厚度都是可以满足需要的。
在加载工作台45处接收到实心平坯板10。坯板10的密度至少约为550kg/m3,最好是约为750-850kg/m3,其厚度约为3-7mm。坯板10的初始重量约为340-600克(gms)。坯板10的初始水分含量的重量百分比约为7-9%,最好是约8%。通常,坯板10中的所有树脂(例如三聚氰胺或脲醛树脂)粘结剂都未固化,因为过度的固化会引起脆裂。因此,制造商固化处理的坯板10足以使其具有足够的硬度特性,并留下一些未固化的树脂。平的坯板10中大约5-20%(有时约为10-15%)的树脂未固化或固化不足。平的坯板10中的5-20%的未固化树脂在整形处理过程中随后进行固化,这样,整形面板7和9就比当前现有的其它模制面板具有较高的硬度。
可供选择的是,坯板10可在清洁工作台46(见图10)刷洗干净以除去污物、灰尘和其它潜在的表面污物。
如图4和5所示,然后将坯板10送入红外(IR)预热工作台47,利用红外辐射或任何可使板温度升高的有效装置来预热面板10。红外预热器47最好具有一组上、下红外灯,坯板10位于上、下红外灯之间。红外灯组的输出是单独控制的,以便于适应坯板10的不同厚度、组成成分等,从而使坯板10不会被加热到温度过高。大约预热到80-100℃就开始进行坯板10的初始预处理,并增强其接受附加水分(如水汽、水雾或直接用辊子涂敷)的能力。当坯板10预热大约25-125秒的时间,最好大约是30-90秒,预热工作台47就使坯板10的重量失去大约3-15克。坯板10离开预热工作台47时,其带有的水分含量大约是5-7%。预热工作台47将坯板的至少一个表面预热到至少约80℃。
然后,将预热的平坯板10送入到添加水分的直接滚涂工作台49。如图5所示,工作台49的辊子50和/或51转动式地与坯板相接触,并将水分(如水或类似物)涂敷到坯板10的至少一个主表面(在一些实施例中可能是两个主表面)上。坯板的水分含量就增加到大约9-15%,最好大约是10-12%。在添加水分过程中,坯板10的温度大约保持在80-100℃,以易于接收所添加的水分。在一个实施例中,辊子50是一个不添加水分的压辊,而由辊子51将水分添加到坯板10中。将包含表面活性剂以有助于水分吸收的增湿剂(如水)涂敷到坯板10的一个或两个主表面上,涂敷量约为每平方米60-290克,最好约为每平方米80-120克。根据本发明的另一个实施例,可在工作台49将水汽直射到坯板10上,从而将水分添加到平的实心坯板10中。
在一个实施例中,坯板10的主表面可在添加水分之前进行喷砂处理,以便于水分可更有效地吸收到表面上,从而有效地增加坯板的水分含量。喷砂处理可去除掉坯板10表面的物质,而表面通常带有超过内部固化树脂含量的固化树脂含量。去除掉表面的树脂便于水分进入坯板10。
然后,添加了水分的坯板10进入双辊涂敷装置55。辊子57和59与坯板10接触并将调节树脂和可着色的密封物涂敷到平的坯板10上。所涂敷的树脂和密封物可将坯板10的水分含量重量百分比增大到约12-14%。调节树脂可包括带有重量百分比大约为5-20%的三聚氰胺或尿素树脂添加剂的水。在工作台55处,大约20-200g/m2的调节树脂被涂敷到坯板10上。因此,尽管坯板10已具有一些将木纤维保持为实心状态的树脂和未固化的树脂,在工作台55处添加另外的树脂。添加的树脂提高了坯板10可有效地进行整形的能力,而且还提高了成品模制面板的硬度。令人惊讶的是,即使原始存在于坯板10中的树脂是三聚氰胺基的,也可在工作台55处添加三聚氰胺或尿素树脂,或者即使原始存在于坯板10中的树脂是脲基的,也可在工作台55处添加尿素或三聚氰胺树脂。工作台55处的坯板10温度是这样的,即树脂还未开始起反应或固化。在一个实施例中,辊子59将调节树脂涂敷到坯板10上,而辊子57涂敷着色密封涂层。
在工作台55处由辊子57所涂敷的着色密封物(例如具有二氧化钛色素以提供白色或其它的颜色)在整形面板上形成均匀的着色表面。最好,着色密封物涂敷到面板的外表面部分上。着色密封物就为成品面板涂上底料。由现有的模制面板构成的门需要涂底漆,而这样就增加了成本。大约4-10g/m2的着色密封物可在工作台55处通过上部辊子57涂敷到坯板10上。
在工作台55涂敷了着色密封物和附加树脂之后,平的坯板10进入预压工作台61进行额外加热。在工作台61中,坯板10在温度大约为110-130℃(最好约为120℃)的条件下停留大约20-60秒(最好约为30秒)的时间。预压工作台61的容积有限,因此,坯板10中的水分不易蒸发到大气中。当其温度升高时,水分仍保留在坯板中。关闭工作台61,这样,坯板10中的水分就不易从坯板10中散去。预压工作台61可由相互间隔的相对的油加热或电加热的压板构成,坯板10位于压板之间。
对于外部的门而言,如图10所示,在坯板10离开预压工作台61之后,就进入隔层施加工作台62。在工作台62处,将隔层如三聚氰胺浸渍皱纹纸或酚醛树脂皱纹纸13施加到将作为外部门面板表面(也就是背向门内部的表面)的坯板10的主表面上。适用的纸可从Akzo Nobel购买到,其名称为SWEDOTECTM的柔性底薄膜TGPN和TXP。另外,可在工作台62处涂敷构成防潮层的交联聚合树脂系统,作为喷射或涂敷到坯板10表面上的两部分组成液体。防潮层(如皱纹纸或交联树脂)也可增大成品表层的硬度,并具有防腐性,这对于装运和安装是非常有益的。在涂敷了防潮层13后,坯板10就进入压力机21。
在室内所用的门中,坯板10在经预热并有选择地在预压工作台61进一步添加水分之后,平的坯板10进入压力机21,压力机21具有上压板17和固定的下压板19。
最好通过重复循环的油或电阻元件对压力机21进行加热,使压板17和19加热到足以满足预备坯板10中的树脂从而制备坯板的温度。如图3所示,压力机21是透气的,最好是通过小的透气孔v进行透气。底部压板是透气的,以便于排出水汽、挥发物和在压制过程中产生的类似气态物质。令人惊讶的是,使压力机21透气可使成品面板比压力机间歇透气所制成的成品面板强度更高。孔v的直径足够小以避免木纤维将其堵住和/或损坏下层表面。
如图3所示,在压力机21中,平的坯板10位于压板17和19之间。压板19仍保持静止或固定不动,压力作用于上压板17从而使压板17向下朝压板19运动。当压板17被推向压板19时,坯板10就整形为由压板17和19的作用面及其相应的部件23和25所确定的形状(例如嵌板3的形状)。
在另一个实施例中,两个压板可同时相向运动,或者底部压板19向上朝固定的上压板17运动。
如图7所示,使压力机21闭合的作用于压板的压力(如作用于压板17的压力)不间断地增大(见向上倾斜的部分63)到预定的压力界限和/或实际有形的止挡件来控制厚度。所作用的压力63(在有些实施例中,可连续和无变化地作用和/或以直线的方式作用)使压板17和19以每秒0.25mm的速度很慢地闭合。坯板10相应地以较慢的速度进行整形,直到获得图6所示的形状和压力机21闭合为止。当压力机21闭合时,压板17和19就在图7所示的压力65下保持在闭合位置上大约10-60秒的时间,最好是保持大约20-30秒的时间。在保持阶段,当坯板10获得其最终形状时,坯板10中的木纤维继续流动。另外,初始未固化的树脂和添加有调节剂的树脂都开始起反应和进行固化。固化树脂使其硬化;这样就使整形坯板10硬化成面板7。图7所示图线中平稳或基本上平的压力部分65表示作用于压力机21压板上的压力在保持或固化的时间内基本上保持恒定。然后,在经过固化时间之后,压力机21沿曲线67打开,例如通过向上提起压板17,这样,经整形的门面板7、9就可从此取下。在图7中,向下倾斜的压力部分67表示压力机21处于打开状态。最好,图7的压力部分67的倾斜角度比部分63的倾斜角度大,这样,在打开过程中压力释放就比压力机闭合过程中压力作用的要快。
在压力部分65中,尽管这种基本上恒定的压力最好大约是每平方英寸600-900磅,更好是每平方英寸大约750磅,但当峰值压力通过压板作用于坯板10时,每平方英寸作用的压力高达1200磅。压板17和19最好是一种硬的镀铬钢模,最好洛氏硬度为60-70或更高。压板的表面具有坚硬的镀铬层,从而避免了在其它情况下可能发生的木糖的堆积。每个压板的厚度最好大约是3-5英寸,更好的大约是4英寸,且每个压板是电加热的,例如通过Kalrod,虽然在有些实施例中是将油的循环流或蒸汽的循环流作为加热介质。压板17和19最好是相互成镜像,一个是凹的,另一个是凸的。最好,在加压过程中,每个压板17、19保持在温度约为320-425°F的条件下,最好约为370-380°F,虽然纤维和树脂形式可使其有所改变。所选择的温度是树脂和坯板10厚度的函数,其应当在平的坯板10进行整形的整个加压操作过程中给予保持,从而确保坯板中的粘结树脂熔化/再熔化,并在压力作用部分63中保持可流动。
如图9所示,为了优化整形过程,压力机21的闭合速率应当控制成硬度、密度、密度分布、模的深度和所要整形的坯板10中粘结剂或树脂含量百分比的其中至少一项的函数。坯板10越硬,压力机21的闭合速率就越慢。在有些实施例中,压力机21的闭合速率基本上保持恒定,并根据坯板10的硬度,闭合速率大约从0.25mm/s变化到1.0mm/s。如果压力机21变化太快,就会破坏坯板10中的树脂粘结作用。因此,实心坯板10越硬,加热的压板就应当闭合得越慢,从而基本上避免在整形过程中破坏树脂的粘结作用。
当压力机21打开时,就可取下经整形的面板,也就是图6所示的门面板7、9,其每一个都具有多个形成或模制在其上的嵌板3。显然,与嵌板3不同的结构也可模制到面板上。
图8显示了整形面板7、9在其整个厚度上具有大致恒定的密度。这是上述独特的制造方法的另一效果。面板7、9在其整个厚度范围的密度最好大约是800-1200kg/m3,但比原始平坯板10的密度大约高10%。
如图4所示,离开压力机21后,整形模制面板7、9可进入一个可供选择的修整工作台69,在此,面板进行再次加湿,将水分含量加到大约8%(如果在离开压力机后其水分含量低于此值的话)。在进行再次加湿后,在工作台69处还可进行外部修整。通过水雾或类似的方式或者通过使整形面板穿过水浴就可在工作台69实现再次加湿。如果使用在工作台55所涂敷的着色密封物或着色预压密封物,就不必涂底漆。最好在其它所有的应用场合进行涂底漆。当再次进行修整时,这种修整也是可选择进行的,面板7、9进入门成形工作台71,在此将每个面板粘结固定在门框架上,最好是木制门框架,从而制成空心门1。如果门是外部所用的门,在工作台73就通过边缘绑结或涂敷的方式再将一层防潮层附着到门框架的外露边缘处。显然,门1只需具有一个模制面板7或9,且其相对侧是平的。
上面所述的成品门1显示在图1和2中,仅在外部门上使用了皱纹纸13。
图10显示了执行上述方法的一条生产线。其具有两台压力机21,每台压力机具有一个预压工作台61。这是由于在整个操作过程中压力机21比其相应的预压工作台61工作得慢。而且,对于每个加载工作台45、加湿工作台49、和密封/调节工作台55等,可具有多个预压工作台61,每个具有两台压力机21。因此,图10所示的生产线是便于扩展的;减少了生产同数量门面板所需的初始成本。
显然,除了上述实施例以外,本发明还具有很多其它的结构特点、变型和改进。这些结构特点、变型和改进都属于本发明的一部分,都落在本发明权利要求所限定的范围之内。
权利要求
1.一种空心门,其包括门框架;固定在所述门框架上的第一和第二门面板,从而在两者之间限定一个空心区域,所述面板中的至少一个是模制门面板;所述一个模制面板在其上模制有多个嵌板;以及其中,所述一个模制门面板的粘结强度至少大约是2.0N/mm2。
2.根据权利要求1所述的门,其特征在于,第一和第二门面板中的每一个都是模制门面板,其粘结强度至少约为2.5N/mm2。
3.根据权利要求1所述的门,其特征在于,每个所述第一和第二门面板是通过将疏松的絮料或块料压制成密度至少约为550kg/m3的平的门坯板、然后进行加湿、加热、并在压力机中将所述平的门坯板整形成模制门面板而制成的,其中所述模制门面板在其上模制有嵌板,从而每个面板的粘结强度相对于制成它们的原始平坯板的粘结强度被增大。
4.一种制造模制门面板的方法,其包括以下步骤提供一块平的实心木制复合材料坯板,该坯板的密度至少约为550kg/m3;将液态热活性树脂涂敷到平的坯板上;将平的坯板放置到压力机中,该压力机具有第一和第二压板;加热第一和第二压板,使其每一个的温度至少达到大约320-425°F;以预定的闭合速率闭合压力机,从而将平的坯板整形成门面板,该门面板包括多个模制在其上的嵌板;以及使整形的门面板中的树脂固化,从而形成模制门面板。
5.一种用于模制门面板的压力机,其包括(a)第一和第二压板,每个所述压板被加热;(b)在至少一个所述压板上设有的多个透气孔;以及(c)用于使至少一个所述压板移向和离开另一个所述压板以打开和闭合压力机的驱动装置。
全文摘要
本发明提供了一种空心门,其包括门框架;固定在所述门框架上的第一和第二门面板,从而在两者之间限定一个空心区域,所述面板中的至少一个是模制门面板;所述一个模制面板在其上模制有多个嵌板;以及其中,所述一个模制门面板的粘结强度至少大约是2.0N/mm
文档编号B27N3/04GK1765599SQ20041000766
公开日2006年5月3日 申请日期1999年7月27日 优先权日1998年7月29日
发明者哈特利·莫耶斯 申请人:美森耐进户门公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1