一种单向透湿、保温复合材料及其制备方法与流程

文档序号:15329905发布日期:2018-09-04 20:41阅读:182来源:国知局

本发明属于纺织技术领域,涉及复合材料的制备方法,特别是指一种单向透湿、保温复合材料及其制备方法。



背景技术:

纤维质复合材料作为由纤维组成的多孔介质,具有轻质、疏松和多孔的特性,以其内部不流动的空气来阻隔热的传导。而非织造材料作为典型的纤维质材料,可以是多种不同类型的纤维通过机械固网法、热固网法等加工工艺方法直接形成的具有一定厚度和独特的结构,并表现为有通透性能的柔性纤维质材料,并在隔热保温、过滤等领域具有广泛的应用。而纤维质材料的保温性和导湿性是一个矛盾体,这个矛盾体的存在极大的降低了纤维质保温材料的综合性能和价值,并对被保温材料造成损伤,如:保温服、棉被内的湿气不能有效的传导将降低穿着舒适性,建筑保温材料内潮气引起霉变,管道壁面湿气引起锈蚀等。由此可见,隔热保温行业和纤维材料科学领域亟需解决纤维质保温材料的导湿性和保温性的矛盾。

现有的众多研究尝试利用将纤维质材料和膜材料进行复合应用以提高;如,专利cn201320178398.9尝试将聚氨醋薄膜设置在两层面料之间以获得一种抗风保温透湿性织物;专利cn201610488189.2.将涂层织物作为透湿层与面料层复合以获得透湿保暖纺织面料;但是涂层织物和覆膜纤维材料都会隔绝或阻碍了水汽扩散通道导致湿传输效果低。从水分在纤维材料中的传输机理来看,汽态水主要依靠通过纤维间的连续孔隙和纤维自身的吸湿和放湿散失于外界环境之中而,液态水主要依靠纤维间的芯吸作用以及纤维材料自身的传湿向外界传递。由此可见,纤维材料间贯通孔隙对导湿性有显著的影响。因此,通过对纤维材料的结构设计是提高保暖用纤维材料的导湿性的一种有效方式。如专利cn201310104507.7模仿羊毛原纤逐级分叉的白相似分形仿生结构,设计多层织物中的组织循环,进而缩短了水分沿纱线由织物低层向织物顶层的传输通道,获得一种透湿保暖型多层分形仿生织物;该方法主要针对由纱线组成的具有一定厚度的机织物或针织物来实现透湿保暖。而对于纤维直接组成的非织造类纤维复合材料来说,仅具有借鉴意义。也有相关研究针对非织造材料的单向导湿进行研究,如:cn201210057127.8、cn201510574771.6和cn200910239652.x均采用拒水整理剂整理的方法以获得单向导湿性能,但是均没考虑其保暖性。

鉴于上述原因,本发明以期创设一种单向透湿、保温复合材料的生产方法用于生产具有单向透湿特性的保温纤维质复合材料用于防寒服装、被褥的内衬和建筑保温材料、管道保温用高蓬松保温层等。



技术实现要素:

本发明提出一种单向透湿、保温复合材料及其制备方法,解决了现有技术中纤维复合材料功能单一不具有单向透湿、保温的功能的技术问题。本发明通过将棉、麻、黏胶等亲水纤维、pe/pet皮芯型双组份和三维卷曲pet分别按照一定比例混合后梳理-交叉铺放成混纺纤维层,并通过在线复合的方式将静电纺丝制备的纳米纤维层和梳理-交叉铺网制备的混纺纤维层进行在线复合;其中混纺纤维层按照亲水纤维的比例从下到上铺放成亲水纤维梯度增加的多层纤维网后通过热风穿透的方法定型成由多层纤维网组成的蓬松层;所述蓬松层由于亲水纤维比例的不同而形成亲水梯度,具有很好的虹吸效果,从而形成蓬松结构的透湿层;而在混纺纤维层之间的纳米纤维层则提高湿的纵向传导能力。蓬松层与超细纤维气密层进行层间复合,从而将超细纤维层的气密性和蓬松层的静止空气存储特性,超细纤维大比表面积的快干特性和亲水梯度的湿虹吸特性进行有机复合,进而提高材料保暖性的同时获得单向导湿特性。

本发明的技术方案是这样实现的:

一种单向透湿、保温复合材料,所述单向透湿、保温复合材料包括蓬松层和气密层,所述蓬松层为纳米纤维层和粗旦纤维层交替排列而成,所述气密层为pet-pa6双组份超细纤维非织造布,所述纳米纤维层为pva纳米纤维层,所述粗旦纤维层为pe/pp皮芯双组份纤维、三维卷曲涤纶和亲水纤维混纺梳理的纤维层。

所述蓬松层为由5层粗旦纤维层与4层纳米纤维层交替铺放而成。

所述粗旦纤维层包括以下重量份的原料:亲水纤维0-45份、pe/pp皮芯双组份纤维20份和三维卷曲涤纶36-80份,其中亲水纤维为棉、麻或黏胶纤维的一种或者几种的混合。

所述粗旦纤维层中亲水纤维的含量自上而下依次为第一层0%,第二层为10%,第三层为第二层的1.382-1.618倍,第四层为第三层1.382-1.618倍,第五层为第四层1.382-1.618倍。

所述纳米纤维层为纤维细度在100nm-1200nm的pva纳米纤维。

所述pet-pa6双组份超细纤维非织造布为pet-pa6中空橘瓣形双组份纺粘-水刺非织造材料,克重范围为40-80g/m2,纤维细度为0.5-2.5d,孔隙率分布在80-86%,开纤率在76-86%。

所述的单向透湿、保温复合材料的制备方法,步骤为:

(1)粗旦纤维层的制备

将亲水纤维、pe/pp皮芯双组份纤维和三维卷曲涤纶按质量比为(5-80):70:(0-75)的比例进行混合、开松、梳理并交叉铺放成混纺的粗旦纤维层;

(2)纳米纤维层的制备

将pva树脂加入到85-95℃的水中,搅拌20-40min,配成浓度为5-15%的纺丝液,将纺丝液加入到静电纺丝装置,于26℃、35kv电压下,将纺丝液持续喷出冷却后即得纳米纤维层;

(3)蓬松纤维层的制备

将步骤(1)制备的混纺的粗旦纤维纤维层沉积在接收网帘上,然后再将纳米纤维层通过静电纺丝的方式沉积在混纺的粗旦纤维纤维层表面,再将混纺的粗旦纤维纤维层沉积在纳米纤维层表面,依次类推,形成混纺的粗旦纤维纤维层与纳米纤维层交替排列的多层复合纤维层,多层复合纤维层送入到烘箱内采用110-150℃静热风穿透处理,形成蓬松纤维层;

(4)起绒pet-pa6双组份超细纤维非织造布的制备

退绕下来的pet-pa6双组份超细纤维非织造布经过下针刺ⅰ频率100刺/min、上针刺600刺/min、下针刺ⅱ400刺/min的起绒处理后,形成气密层,卷绕于卷绕装置上待用;

(5)单向透湿、保温复合材料的制备

将气密层与蓬松纤维层一起送入绗缝机进行复合,形成单向透湿、保温复合材料。

所述步骤(1)中的亲水纤维为棉、麻或黏胶纤维中的一种或多种混合,pe/pp皮芯双组份纤维的细度为1.67dtex-6.67dtex,长度为38-51mm;高卷曲pet纤维的长度为35-51mm,细度为1.67dtex-6.67dtex。

所述步骤(2)中的pva树脂分子量为80000-150000,纳米纤维层中纳米纤维的细度为100-1200nm。

所述步骤(3)中采用的热风温度为110-150℃,为了保证单向透湿、保温复合材料内部具有大量的空隙,使得静止空气大量存在而隔绝热的传输,因此,通过热风穿透的非织造成型技术来保证蓬松透湿层的孔隙率为95%~99%。热风穿透的非织造成型技术,可以参考现有的双网帘夹持式热风成型非织造成型技术,在此不做具体限定。

所述步骤(4)中起绒pet-pa6双组份超细纤维非织造布的制备具体步骤为:将pet-pa6双组份超细纤维非织造布送入到针刺机内进行2道上针刺,一道下针刺,其总针刺密度为450-750刺/cm2;由于蓬松透湿层的孔隙率较大,其空气穿透阻力较小,容易被风穿透而丧失保温性;因此采用超细纤维层作为气密层与蓬松透湿层进行复合,以保证单向透湿、保温复合材料的保温性,另外通过针刺办法使得超细纤维非织造布表面形成细密的绒毛,保证静止空气的存在。

本发明的有益效果在于:本发明的单向透湿、保温复合材料的制备方法,是一种无污染,方便快捷的处理方法。在制备过程中,通过将棉、麻、黏胶等亲水纤维与es纤维和三维卷曲涤纶分别形成亲水纤维梯度增加的混纺纤维层与纳米纤维层进行交替排列;并将蓬松层与超细纤维气密层进行绗缝复合,获得一种单向透湿、保温复合材料;通过亲水纤维的比例控制湿的传输特性,亲水效果易于控制,气密层和蓬松层结构保证了材料的保温性;因此,本发明制备的纤维复合材料具有理想的单向导湿和保温作用,适合用于防寒服装、被褥的内衬和建筑保温材料、管道保温用高蓬松保温层等。

附图说明

图1为单向透湿、保温复合材料结构示意图;其中1-气密层,2-蓬松层。

图2为蓬松层形成示意图;其中3-粗旦纤维层,4-纳米纤维层,5-接地装置,6-接收网帘,7-烘箱,8-卷绕机。

图3静电纺丝配置示意图;9-纺丝针头,10-金属导线,11-高压电源。

图4针刺起绒示意图;12-1为下针刺ⅰ,12-2为下针刺ⅱ,13为上针刺,14为卷绕装置,15为退卷装置,16为pet-pa6双组份超细纤维非织造布。

具体实施方式

下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

(1)粗旦纤维层的制备

将黏胶纤维、es纤维和三维卷曲涤纶纤维(pet)分别按照表1所示的比例进行混合、开松、梳理并交叉铺放成粗旦纤维层,并向接收网帘上面沉积;所用黏胶纤维为1.67dtex,38mm;es纤维(pe/pp皮芯双组份纤维)为3.3dtex,38mm;pet纤维为6.7dtex,38mm;

表1

(2)纳米纤维层的制备

将5份pva树脂放入95份的90℃的水中,搅拌搅拌30min,得到纺丝液;将纺丝液加入静电纺丝装置,并设定高压电源处纺丝电压35kv,以保证通过导线相连的纺丝针头与接地装置之间的纺丝电压能保证纳米纤维的持续喷出,设定环境温度26℃,纺丝针头的流量为0.2ml/h;

(3)蓬松纤维层的制备

经混合、开松、梳理并交叉铺放成粗旦纤维网沉积在接收网帘,此后纳米纤维层通过在线静电纺丝的方式沉积在粗旦纤维网的表面,此后同样经混合、开松、梳理并交叉铺放的混纺纤维层沉积在纳米纤维层表面;依此类推,形成粗旦纤维网与纳米纤维网的交替排列的多层复合纤维层;多层复合纤维层进入烘箱,设定烘箱温度160℃,卷绕机的速度为1.3m/min;

(4)起绒pet-pa6双组份超细纤维非织造布的制备

从退圈装置上退绕下来的pet-pa6双组份超细纤维非织造布经过下针刺ⅰ,上针刺下针刺ⅱ的起绒后卷绕在卷绕装置上;设定下针刺ⅰ频率100刺/min,上针刺频率600刺/min,下针刺ⅱ400刺/min,卷绕速度1.5m/min;

(5)绗缝复合采用直线法进行处理即得单向透湿、保温复合材料。

实施例2

实施例2与实施例1的区别在于混纺纤维层中棉纤维、es纤维和三维卷曲涤纶纤维(pet)的比例不同,如表2所示。

表2

实施例3

实施例3与实施例1的区别在于混纺纤维层中麻纤维、es纤维和三维卷曲涤纶纤维(pet)的比例不同,如表3所示;

表3

产品性能测试与分析

保温性测试采用yg606型平板式保暖仪,透湿性测试采用吸湿法,使用yg501n-ii纺织品透湿量仪,透气性测试采用yg461e-iil全自动透气量仪。

表4产品参数

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1