陶瓷连接的制作方法

文档序号:1844893阅读:621来源:国知局
专利名称:陶瓷连接的制作方法
技术领域
本发明涉及陶瓷材料及其加工工艺领域。具体来说,本发明主要涉及两个或更多碳化硅制品的组接;与这些碳化硅制品形成内连接或者相邻连接时用到的材料;以及对这些材料进行接缝连接的工艺过程,除此之外,还包括用这些材料制的连接部件。
背景技术
在高温环境下对稳定性的要求较高时,金属物质的局限性就会表现出来。但在相同情况下,陶瓷的稳定性要比金属好得多。如果陶瓷可以被制成各种复杂的形状,更大的尺寸,并且像金属一样,可相对容易地进行结构定型,那么陶瓷制品就可以凭借其对高温环境的适应性在日常多种应用中替代金属制品。
然而,将陶瓷制成具有各种复杂的外形和较大的尺寸是一项技术难题,由于陶瓷的硬度大并且易碎,因此为减小陶瓷在加工和成型方面的难度,陶瓷通常只被制成简单的形状和较小的尺寸,但金属却可被机械化地加工成具有不同复杂外形和较大的尺寸。如果可以将陶瓷制品连接起来的话,那么只具备简单外形和较小体积的那些陶瓷成品就可以通过组接的方式,使其具有各种外形和不同尺寸,达到金属制品的效果。
虽然可以用扩散式连接的方法实现陶瓷制品的拼接粘合,即用接近陶瓷熔点的高温加热陶瓷接缝表面使接缝点的里外两面互相粘合,但是要达到陶瓷的熔点温度需要投入很高的成本,并且在熔点温度状态下,陶瓷往往会变得非常脆弱甚至成为熔渣。如果用铜连接会出现由金属杂质导致的腐蚀和污染。同时,在高温状态下热膨胀系数的不匹配会对连接点产生高强度的压力。通过在特定陶瓷加工温度下使用陶瓷生成聚合物,可以实现两个陶瓷制品之间的连接,并且不会产生热匹配不一致和污染的问题。
陶瓷生成聚合物如烯丙氢聚碳硅烷、聚硼硅氧烷和聚硅氮烷常常会被一起加入碳化硅,然而这些聚合体在转化为陶瓷的过程中会发生收缩,由此会给连接点带来较大的压力并且在连接点会生成气孔和裂缝。因此要进行成功的连接,聚合体的多层渗透可以帮助形成紧密的夹层。对于大多数陶瓷生成聚合物,要经过8到10次的渗透才能形成一个坚固的连接点。由于渗透过程比较耗时,填充材料可在此过程中起到减少渗透工作量的作用进而形成坚固的连接点。在聚合体转化为陶瓷的过程中,填充材料如碳化硅粉末可以用来减少聚合体收缩的体积。但是,在这些聚合物最终转化成陶瓷之前,填充材料可能会由于被固定在聚合物中而丧失作用,无法在聚合物收缩时填充空隙。
陶瓷生成聚合物的厚度也是连接点强度的决定因素。因此,连接点的构成成分对其耐受力有着重要的影响,甚至连接点表面的粗糙程度都会影响其作用的发挥。高强度的加工和镜面抛光处理是减少连接点材料厚度从而生成坚固连接点时常用的方法。

发明内容
题述发明涉及不同陶瓷制品之间连接方法,例如碳化硅与碳化硅之间的连接是通过对以陶瓷生成聚合物与众多形态的碳化硅粉末的混合物为成分,并具有特定厚度的浆料进行高温分解而实现的。这些浆料经过加热和冷却流程后成为陶瓷制品并且在连接点周围形成紧密粘合的过渡层。通过在要被连接的陶瓷器皿中融入了几何学的应用,即,浆料在连接点区域的聚合,连接被大大增强。


本发明在实践中涉及的相关环节在下列图示中进行说明图1是陶瓷制品套管的横截面;图2是陶瓷制品套管的不同圆锥角的横截面图;图3a是大小不同直径的接搭处透视图;图3b是弯头接缝点透视图;图3c是U型弯头接缝点透视图;图3d是Y型弯头接缝点透视图;
图4a是大小管相连处的透视图;图4b是角落处的透视图;图5是接缝点描绘图;图6示出了不同陶瓷部件之间构成套管接缝时的步骤流程。
具体实施例方式
通过上述方法可以连接成碳化硅物体10的形状包括盘型、杆型、球型、管型以及其他形状。这些碳化硅物体10可以连接成相近或不同的各种碳化硅形状(见图1至图4b)。
通过这种技术连接相连的碳化硅物体10仅需要碳化硅物体10之间由浆料12构成的薄层紧密融合即可。这种合成是通过把浆料12进行高温热解的方式来实现的。另外有很多种几何形状的合成也可以完成,其中除了图1至图4中所列的,还包括在单个碳化硅物体上进行的多个碳化硅部件的连接。这种方式的运用,可以实现如图4中所显示的由多个管状部件组成的结构。
浆料12是由陶瓷生成聚合物与多种形式的碳化硅粉末构成的混合物。而碳化硅粉末是由2个或更多的碳化硅微粒构成的混合物。浆料12一般被用来连接陶瓷制品10,通过加热和冷却,并且在接缝处形成紧密粘着的转换层,浆料12就成为了陶瓷制品。这种加热和冷却的速度连同浆料12的高温分解对接缝处的顺利形成至关重要。
为保证陶瓷碳化硅物体10之间以及与接缝处之间的正确排列,陶瓷碳化硅物体10的几何角度需通过锥体的使用来进行调整。该锥体可以是要连接的碳化硅物体10之外的单独个体,也可以作为连接整体中的一部分。
为使浆料12与连接表面达到最佳的接触,常要对陶瓷碳化硅物体10与连接表面进行几何调整。这个找正的几何调整可以是(1)将浆料12固定在要连接的陶瓷碳化硅物体10之间的区域;和(2)当被连接的陶瓷碳化硅物体10之间产生空间,在浆料12要流入该空间之前,建立一个浆料12的储料槽。这种找准和对中几何结构可以相互结合并且时常起着相同的作用。
为使连接同时具有对中和找准的几何结构,套管14的两端都加工为内锥面,锥角为2度,两端锥面几乎相连,将管状部件端部加工成外锥面,角度为1度,用于连接使用。管状部件端部加工的外锥面长度同套管14内锥的长度相同。当管状部件端部与套管连接后,锥面可在加热时用于保持对中,并且还可做为连接浆料12的储料槽。与套管14相比,管状部件端部具有更浅的锥角,因此在用于连接浆料12的储料槽的锥面之间占据了一定的空间。
这种连接可在比完成扩散式连接温度低的条件下完成(扩散式连接所需温度大约为2200℃),只需在850℃至1400℃之间的温度范围内,就可以完成连接,温度越高,连接的强度就越大。
根据碳化硅鲜明的热属性、化学及物理属性,碳化硅物体的连接有多种应用。许多碳化硅合成体的配置设计成为可能,如可以很容易生产制造具备更大体积、更多结构、更长管状部件的碳化硅。
与只在端部的连接相比,这种端部加接搭处的三维空间连接方法增加了几何构架的整体强度。通过采用适当厚度覆盖的浆料12以及抓准锥面(图2所示)的应用,造就了更坚固的连接效果。如图5所示,当内部的角度小于外部角度时,浆料12就会填充于碳化硅物体10之间。当浆料12以最佳的方式发生聚合作用时,相应地也就会产生具有最佳厚度的区域。
对中锥形的引入使得整体结构可以自行校正对准并且形成自立式连接。由于处理过程中,表面接触与碳化硅物体10的矫正对准产生了相对摩擦,因而这种连接可以是自动锁定的,也可以是锥面锁定的。浆料12由AHPCS和双分子碳化硅粉末构成,在加热步骤中,两者在被加入碳化硅物体10和熔渣后,成为碳化硅本身的一种表现形式。对于这样一种连接,并没有来自第三方的杂质污染。如果浆料12包含了活性的填充材料,在加工温度下进行熔化,再填充至通过高温分解方式产生的碳化硅小孔中,那么连接点的密封性就会大大提高。浆料12的粘性很强并且在常规条件下基本上不会流动,如果在合成连接过程中借助真空抽气机,浆料12就可以进行流动,这样就增加了处理过程中连接的灵活性。
管型碳化硅连接在业内的应用备受广泛关注,目前碳化硅管的合成已经成为可能,包括长管的制造,套管或弯曲管的连接,以及多个管的连接。例如冶金马口铁的合成作为构成这些合成的表现方式之一,对其进行的连接是为了使其能够插入用于高温热转换处理的化学处理设备。
两个管之间存在的接缝点的重要作用就是使管壁内外环境的有效分隔,我们所指的这种管壁内外材料的分离就是针对其密封性来讲的。同时,在连接的同时,被合成连接的管子的热属性和物理属性不会被接缝点本身明显地弱化。
本发明的一个目标就是提供一种先进的、方便进行碳化硅管合成连接的方法,并且这种方法是可以适合在较高的作业温度下所采用。在此期间,会利用到多种碳化硅管合成连接的几何手段,包括但不限于如图1-4b所描述的那些方式。除此之外,本发明还涉及到在单个碳化硅部件上进行的多个碳化硅部件的连接,例如像图4a所示的由不同大小管组成的多结构组接。
本发明包含的是一种可以对碳化硅制成的陶瓷管子进行连接的方法。与碳化硅套管14相配合,本发明可在管体之间产生集密封性和机械强度于一身的接缝点。本发明的主要应用是将碳化硅管的特定区域进行连接从而增加碳化硅管的整体长度,并在高温转换处理过程中替代超耐热合金管—马口铁。由于管壁要将燃烧气体与化学反应或热处理环境分离开来,因此冶金用马口铁需要非常好的密封性保证。
以下是对本发明的最佳操作方式(图6)的介绍-针对要连接的管子端部和套管14,通过与双分子碳化硅粉末进行热解处理的方式,对陶瓷生成聚合物进行混合,可以生成浆料12。
-对接缝点进行合成并在1400℃高温下进行加热。
-在此过程中,加热的速度至关重要,尤其是在400℃以下的环境中。因为过快的加热速度会导致快速膨胀并产生较多气孔,同时过快的加热速度也可以导致聚合物热解过程中出现明显的裂缝。在室温至400℃之间,对接缝点的加热应以每分钟上升2至3℃为宜,在400℃至1400℃之间,以每分钟上升10至20℃为宜。
-该加热步骤最好在惰性环境中完成,静态氩就在加热步骤中常常被用到。
要连接的碳化硅成分由两个碳化硅管和一个碳化硅套管14组成,碳化硅管的连接是在其端部进行,因此端部需要被切成平面,除此之外,为了实现与两个碳化硅管的顺利接合,碳化硅套管要被进行机械加工。坚固的接缝点是在这个碳化硅管外径和套管14内径之间小于0.010″的空间里形成的。
浆料12由陶瓷生成聚合物和相关填充材料构成,并且是在惰性环境中如氩环境中生成的。首先,填充材料是通过重量占90%的7微米阿尔法的碳化硅粉末和重量占10%小于1微米阿尔法的碳化硅粉末混合而成的,之后重量占60%的填充材料再与重量占40%的烯丙氢聚碳硅烷(AHPCS)进行混合。浆料12具有很强的粘稠性,其粘性可达100至200厘泊,可以很好地作用于连接区域碳化硅套管14的内壁和碳化硅管的外壁。浆料12的这种特性可以被应用于进行连接粘合的区域,用扁平的木棍就可以完成操作(也可以是刷子并且可以蘸湿)。浆料12具有高强度的粘性,可以很好地贴合于相应的区域。用木棍的操作方法可以使得浆料12非常稀薄,稀薄的接缝点常常要比厚重的接缝点更加坚固。
浆料12全部转化为碳化硅,如果用这种方法将两个碳化硅部件进行连接,就会生成一个坚固稳定的接缝点,这一过程的进行与接缝点构成成分的内在材料的性质是相吻合的。如果在连接合成过程中加入其他材料,如氧化铝(矾土)、石墨或者氮化硅,由浆料12产生的碳化硅就会和正在合成连接的材料产生坚固的分子粘合作用,并且极大提高这些不同材料之间的粘合效果从而保证更加可靠的接缝质量。
一个碳化硅管与碳化硅套管14进行搭接,这样碳化硅管就可以向下延伸,同时还有支架的应用可以使碳化硅管不致于滑落至套管的末端。对于这个支架并没有什么特别的条件要求,只要它可以承受高温并且不会与浆料12发生碰触即可。这种连接合成是在炉子中进行的,首先是套管14,接着炉子在真空环境下放置1个小时,真空环境有助于在室温环境下排除陶瓷生成聚合物产生的气体,这样在加热进行连接合成时,陶瓷生成聚合物中的挥发性气体就不会被存留甚至造成气孔现象。
接着再把氩填回炉子。此时氩在一个标准大气压下以每分钟2升的速度导入炉子,碳化硅管、套管14连同浆料12以每分钟2℃的速度从室温加热至400℃。当温度达到400℃时,加热速度改为每分钟15℃直至达到1400℃。炉子在1400℃的温度下保持30分钟,接着以每分钟20℃的速度冷却至室温,移去支架。
浆料12可以被应用于尚未连接的碳化硅管连接区域的外壁以及套管14连接区域的内壁。此外,浆料12还被用在和套管14连接的碳化硅管的端部以及尚未连接的碳化硅管。尚未连接的碳化硅管与套管14的搭接使得已经连接和尚未连接的碳化硅管端部之间相吻合,接着此处接缝点的连接合成就放回到炉子环境中进行。
炉子放置在真空环境下1小时以后,接着用氩回填。此时氩在一个标准大气压下以每分钟2升的速度导入炉子,碳化硅管、套管14连同浆料12以每分钟2℃的速度从室温加热至400℃。当温度达到400℃时,加热速度改为每分钟上升15℃直至达到1400℃。炉子在1400℃的温度下保持30分钟,接着以每分钟20℃的速度冷却至室温。
关于通过不同加热方式对本方法的论证本发明常常通过微波混合加热的方式进行检验。加热容器是一个真空密闭的微波环境。波源是0至6千瓦并且在2.45千兆赫下运转的等幅波生成器。将试验样本放置在微波感应器上的薄层内部,就可以看到混合式加热(微波加辐射)的效果。这种加热方式只需借助较小的微波能量就可以进行局部和整体的加热,也正是这个原因,这种加热方法被常常采用。除此之外,其他较传统的加热方法如烤炉加热法或者感应加热也可以与本发明结合应用。
对聚合物的热解处理可以产出碳化硅并且双分子碳化硅粉末有助于降低聚合物热分解产品的体积收缩。热解聚合物具有的多孔性是由于在聚合物与热解的交联过程中有氢和甲烷这样的气体存在,并且在1000℃的高温环境下,聚合物从非结晶的碳化硅转化为碳化硅晶体时伴随着体积收缩。
关于碳化硅管与合成连接材料的准备-将要连接的碳化硅管和套管14分别用外径磨床和内径磨床进行打磨,直至碳化硅管与套管14相匹配。
-要打造密封性较好的接缝点,浆料12和相应的加热处理必不可少,这主要是由于在热解过程中,在套管14和碳化硅管之间存在的空隙往往都会造成陶瓷生成聚合物的明显收缩。
-浆料12的厚度以尽可能稀薄均匀的分布为宜。
示例碳化硅管的合成连接可以采用多种不同的化学混合物,陶瓷生成聚合物是主要的成分,烯丙氢聚碳硅烷-AHPCS是我们推荐使用的,其他可以采用的原料还包括氢化聚碳硅烷,聚硼硅氧烷和聚硅氮烷。在陶瓷生成聚合物与碳化硅粉末混合时,粉末微粒的大小可以从20毫微米至35微米,单峰(一个微粒大小),双峰(2个微粒大小)或三峰(三个微粒大小)。其他可以被加入浆料12的材料有氮化硅(AHPCS与氮化硅微粒的混合)、石墨(AHPCS与碳微粒的混合)以及氧化铝/矾土(AHPCS与氧化铝的混合)。
锥体可以在碳化硅管、套管14上同时使用,锥体对于合成连接并不是必需的,但是有了它,对连接有着很大的帮助。
示例1用320磨石金刚板对两个长度分别为1″和3″、外径为2-3/8″、内径为2″的碳化硅管的端部进行打磨,接下来的环节是600碳化硅研磨砂纸对其的加工,最后是6微米的金刚石研膏处理。
浆料12由陶瓷生成聚合物和相关填充材料构成,并且是在惰性环境中如氩环境中生成的。填充材料是通过重量占45%的7微米阿尔法的碳化硅粉末、重量占5%小于1微米阿尔法的碳化硅粉末和重量占50%的活性填充材料混合而成的,这种活性材料是是由83.6%的硅原子和16.2%的钛原子构成,是一种在1330℃高温环境中熔化的45微米长的低共熔合金粉末。接着重量占60%的填充材料再与重量占40%的陶瓷生成聚合物-烯丙氢聚碳硅烷进行混合。浆料12具有很强的坚固性,并且常常用扁平的木棍在要合成的碳化硅管的端部进行操作。
对碳化硅管对接端进行压合与扭转可以确保浆料12在接缝点表面的充分覆盖。这个对接点的合成要在一个炉子中完成,而炉子需要在真空环境放置一个小时。
接着再把氩填回炉子。对接点的合成是以每分钟上升2℃的速度从室温加热至400℃,当温度达到400℃时,加热上升速度变为每分钟上升15℃直至达到浆料12中活性填充材料的熔点温度1330℃。炉子在1330℃的温度下保持30分钟,从而可以慢慢地凝固活性填充材料,接着以每分钟下降20℃的速度冷却至室温。
示例2两个由碳化硅纤维SiCf/SiCm构成的盘子的大小是1″×1″×0.125″,大小为0.2″×0.2″的长方形的楔形榫头被切削至其中一个盘子的一边,还有相同大小的长方形楔形榫头被切削至另一个盘子使得两个盘子得以匹配。
浆料12由陶瓷生成聚合物和相关填充材料构成,并且是在惰性环境中如氩环境中生成的。首先,填充材料是通过重量占90%的7微米阿尔法的碳化硅粉末和重量占10%小于1微米阿尔法的碳化硅粉末混合而成的,之后重量占60%的填充材料再与重量占40%的陶瓷生成聚合物-烯丙氢聚碳硅烷(AHPCS)进行混合。浆料12具有很强的坚固性,常常用扁平的木棍就可以在楔形榫头的端部进行操作。
切削楔形榫头的采用并且将其放在处于真空环境的炉子里一小时以后,两个合成盘子达到了最佳匹配。接着再把氩填回炉子,此时氩在一个标准大气压下以每分钟2升的速度导入炉子,两个盘子以每分钟上升2℃的速度从室温加热至400℃。当温度达到400℃时,加热速度变为每分钟上升15℃直至达到850℃。炉子保持在850℃的温度环境下可以将浆料12中所有的陶瓷生成聚合物转化成不定型的碳化硅。炉子在850℃的温度环境下保持30分钟,然后以每分钟20℃的速度冷却至室温。
示例3借助浆料12将一个碳化硅管末端和套管14进行合成连接并加热至400℃,将另一个碳化硅管的末端连接到上述两者的连接生成物上并加热至1400℃,接着再用浆料12对相连的碳化硅管进行两次反复渗透处理。加热完之后,相连的碳化硅管被移出加热容器,并在真空和压力测试后证明具有良好的密封性。
对于碳化硅管连接时的垂直定向,氧化铝块会对碳化硅管的合成起到帮助作用,它可以将套管14支撑保持在适当的高度。
对于碳化硅管连接时的垂直定向,位于炉子内部的氧化铝V型槽块和超出炉子包含范围、炉子外的金属V型槽块会对碳化硅管的合成起到帮助作用。在连接过程中,这种构造结构应该可以很好地得到应用从而尽量减少对接缝点造成的扭转、扭曲和弯曲外力。
在前述各实施方案中对本发明进行了详细描述,这些描述只是用于对本发明进行例示。理应了解,本领域技术人员可以在不偏离本发明的主旨和范围的情况之下,作出在本发明所附的权利要求所描述的内容之外的各种改变。
权利要求
1.一种在第一个物体和第二个物体之间进行连接的方法,包括如下步骤在由碳化硅制成的第一个物体的端部施加浆料;将第一个物体的端部放置于一套管内;在由碳化硅制成的第二个物体的端部施加浆料;将第二个物体的端部放置于该套管内;对所述第一个物体和第二个物体进行加热,其中在所述第一和第二个物体周围的套管内设有用以形成连接的浆料。
2.如权利要求1所述的方法,其中施加浆料的步骤包括施加由微粒大小为20毫微米至35微米的碳化硅粉末构成的浆料的步骤。
3.如权利要求2所述的方法,其中所述的施加浆料的步骤包括施加由最少两种以上不同微粒大小的碳化硅粉末构成的浆料的步骤。
4.如权利要求3所述的方法,其中对第一个物体施加浆料的步骤包括将浆料施加在第一个物体的外壁以及套管的内壁的对应连接区域的步骤。
5.如权利要求4所述的方法,其中加热步骤包括如下步骤利用支架使第一个物体被保持在套管内的所需位置处,接着将套管和该第一个物体加热至1400℃。
6.如权利要求5所述的方法,其中对第一个物体加热的步骤包括如下步骤把第一个物体和套管以及支架放入炉子;使炉子内形成真空并用惰性气体回填炉子。
7.如权利要求6所述的方法,其中对第二个物体施加浆料的步骤包括将浆料施加在第二个物体的外壁以及套管的内壁的对应连接区域的步骤。
8.如权利要求7所述的方法,其中加热步骤包括如下步骤把第二个物体、套管和第一个物体放入炉子;使炉子内形成真空并用惰性气体回填炉子。
9.一种在第一个物体和第二个物体之间形成连接的方法,包括下列步骤在由碳化硅制成的第一个物体的带锥度区域施加浆料;在由碳化硅制成的第二个物体的带锥度区域施加浆料;对第一个物体和第二个物体的带锥度区域进行对准操作,使该两个物体接触;对第一个物体和第二个物体以及用以形成连接的浆料进行加热。
全文摘要
本发明公开了一种在例如碳化硅物体(10)的陶瓷制品之间进行连接的方法,其中例如双分子碳化硅的粉末与陶瓷生成聚合物进行混合,以浆料(12)形式被施加。通过在例如套管(14)的接缝区域加入其他物质,其机械性能和密封性能可以得到很大的提高。本发明还公开了对连接进行热处理的工艺。
文档编号C04B35/565GK1602252SQ02824111
公开日2005年3月30日 申请日期2002年11月26日 优先权日2001年12月3日
发明者F·M·马考 申请人:A·M·舒瓦茨, F·M·马考
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1